
Vectors are records, too
Jesper Cockx1, Gaëtan Gilbert2, and Nicolas Tabareau2

1 Gothenburg University, Sweden
2 INRIA, France

When talking about dependently typed programming languages such as Coq and Agda, it
is traditional to start with an example involving vectors, i.e. length-indexed lists:

data Vector (A : Set) : (n : N) → Set where
nil : Vector A zero
cons : (m : N)(x : A)(xs : Vector A m) → Vector A (suc m)

(1)

This definition of vectors as an indexed family of datatypes is very intuitive: we take the
definition of lists and ornament them with their length. Alternatively, we can also define
vectors by recursion on the length:

Vector : (A : Set)(n : N) → Set
Vector A zero = ⊤
Vector A (suc n) = A × Vector A n

(2)

This transformation of an indexed family of inductive datatypes (or indexed datatype for short)
into a recursive definition has a number of benefits:

• Vector inherits η-laws from the record types ⊤ and A × B: every vector of length zero is
definitionally equal to tt : ⊤, and every vector xs : Vec A (suc n) is definitionally equal to
the pair (fst xs, snd xs) where fst xs : A and snd xs : Vector A n.

• We get the forcing and detagging optimizations from Brady et al. (2004) for free: we do
not have to store the length of a vector, and not even whether it is a nil or a cons.

• There are no restrictions on the sorts of the types of forced indices; they can be in a bigger
sort than the datatype itself. In particular, this allows us to define indexed datatypes
in a proof-irrelevant universe such as Prop, as long as the constructor can be uniquely
determined from the indices and all non-forced constructor arguments are in the proof-
irrelevant universe themselves.

• The recursive occurrences of the datatype do not have to be strictly positive: they only
have to use a structurally smaller index. This allows us to define stratified types as in
Beluga (Pientka, 2015).

While this transformation works for vectors, it is not possible for all datatypes. For example,
the recursive definition of N by the equation N = ⊤ ⊎ N is invalid since it is not terminating.
This explains why we cannot allow η-laws for all datatypes.

As another counterexample, consider the datatype Image (A B : Set)(f : A → B) : B → Set
with one constructor image : (x : A) → Image A B f (f x). Image cannot be defined by
pattern matching on y : B since f x is not a pattern. We can instead transform the index
into a parameter by introducing an equality proof: Image A B f y = Σ(x:A)(f x ≡B y). This
transformation removes the non-pattern index and hence allows us to match against an element
of Image A B f u even when u is not a variable. On the other hand, this transformation does



Vectors are records, too Cockx, Gilbert and Tabareau

not enable us to have large indices: we cannot define Image in Prop since both A and f x ≡B y
have to fit in the sort of Image.

Both these transformations for removing the indices from a datatype definition as described
above are well known, but so far the only way to get their benefits was to apply them by hand.
This means that we also have to define terms for the constructors and the elimination principle
ourselves, and we cannot rely on built-in support for indexed datatypes such as dependent
pattern matching.

We present a fully automatic and general transformation of an indexed datatype to an
equivalent definition of a type as a case tree. This transformation generates not just the type
itself but also terms for the constructors and the elimination principle. It exposes eta laws for
datatypes when there is only a single possible constructor for the given indices, and removes
non-pattern indices by introducing equality proofs as new constructor arguments.

Our transformation is similar to the elaboration of dependent pattern matching (Goguen
et al., 2006). It uses pattern matching on the indices where it can, and introduces equality
proofs where it must. First we elaborate the datatype declaration to a case tree where each
internal node indicates a case split on one of the indices, and each leaf node contains some
(possibly zero) telescopes for the arguments of each constructor. For Vector we get:

Vector = λA, n. casen

{
zero 7→ ()
suc m 7→ (x : A)(xs : Vector A m)

}
(3)

Any non-constructor patterns and non-linear variables are dealt with by replacing them with
fresh variables and introducing equality types on the right-hand side. For Image we get:

Image = λy. (x : A)(p : f x ≡B y) (4)

Once we have a case tree, it is straightforward to construct a definition for the datatype itself,
as well as for the constructors and the eliminator.

Our approach is similar to the notion of case-splitting datatypes of Dagand and McBride
(2014), but we do not require any annotations from the user. One could however imagine
extending our approach with some user annotations to guide the elaboration process, similar
to the inaccessible patterns from dependent pattern matching.

For a long time datatypes have been discriminated against by refusing to give them eta
equality and restricting the sort of their indices. We say: no more! Let vectors be records, too.

References
Edwin Brady, Conor McBride, and James McKinna. Inductive families need not store their

indices. In Types for Proofs and Programs, 2004.

Pierre-Evariste Dagand and Conor McBride. Transporting functions across ornaments. Journal
of functional programming, 24(2-3):316–383, 2014.

Healfdene Goguen, Conor McBride, and James McKinna. Eliminating dependent pattern match-
ing. In Algebra, Meaning, and Computation: Essays dedicated to Joseph A. Goguen on the
Occasion of His 65th Birthday. 2006.

Brigitte Pientka. Beluga 0.8.2 Reference Guide, 2015. URL http://complogic.cs.mcgill.
ca/beluga/userguide2/userguide.pdf.

2

http://complogic.cs.mcgill.ca/beluga/userguide2/userguide.pdf
http://complogic.cs.mcgill.ca/beluga/userguide2/userguide.pdf

