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Abstract

Dependently typed languages such as Agda, Coq and Idris use
a syntactic first-order unification algorithm to check definitions
by dependent pattern matching. However, these algorithms don’t
adequately consider the types of the terms being unified, leading to
various unintended results. As a consequence, they require ad hoc
restrictions to preserve soundness, but this makes them very hard to
prove correct, modify, or extend.

This paper proposes a framework for reasoning formally about
unification in a dependently typed setting. In this framework, uni-
fication rules compute not just a unifier but also a corresponding
correctness proof in the form of an equivalence between two sets of
equations. By rephrasing the standard unification rules in a proof-
relevant manner, they are guaranteed to preserve soundness of the
theory. In addition, it enables us to safely add new rules that can
exploit the dependencies between the types of equations.

Using our framework, we reimplemented the unification algo-
rithm used by Agda. As a result, we were able to replace previous
ad hoc restrictions with formally verified unification rules, fixing
a number of bugs in the process. We are convinced this will also
enable the addition of new and interesting unification rules in the
future, without compromising soundness along the way.

Categories and Subject Descriptors F.3.3 [Logics and Meanings
of Programs]: Studies of Program Constructs — functional constructs,
program and recursion schemes; D.3.3 [Programming Languages]:
Language Constructs and Features — data types and structures,
patterns, recursion

Keywords Unification, Type Theory, Dependent Types, Inductive
Families, Agda

1. Introduction

Unification, a generic method for solving symbolic equations al-
gorithmically, is a fundamental algorithm used in many areas in
computer science, such as logic programming, type inference, term
rewriting, automated theorem proving, and natural language process-
ing. In particular, type checkers for languages with dependent pattern
matching (Coquand 1992) use unification to determine whether a
set of constructors covers all possible cases. For example, a func-
tion f that takes an argument of type Vec A (1 + n) (i.e. a vector

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

ICFP’16, September 18-24, 2016, Nara, Japan
ACM. 978-1-4503-4219-3/16/09...
http://dx.doi.org/10.1145/2951913.2951917

270

containing 1 4+ n elements of type A) needs only be defined in the
case f (cons n x zs) (where cons n x xs is the vector with head
x : A and tail zs : Vec A n): the case f [] is impossible because
unification of 0 (the length of []) with 1 + n reports an absurdity. In
the cases where unification succeeds, it can also teach us something
extra about the type of the right-hand side. For example, when an-
alyzing a variable x of type Vec A n it tells us n = 0 in the case
x =[] and n = suc n’ in the case z = cons n’ x zs. This method
of solving equations to either gain more information about the type
of the right-hand side or to derive an absurdity is one instance of a
very useful technique called specialization by unification (Goguen,
McBride, and McKinna 2006).

In languages that have dependent pattern matching as a primitive
such as Agda (Norell 2007), the particularities of the unification
rules used become crucial for the language’s notion of equality.
Indeed, in Agda one can match on a proof of u =4 v with
the constructor refl precisely when the unification algorithm is
able to unify u with v. For example, if the unification algorithm
uses the deletion rule to remove reflexive equations, then this
allows us to prove uniqueness of identity proofs (UIP) by pattern
matching (Coquand 1992). So it is important to have a solid
theoretical understanding of unification in order to study these
languages.

When dependently typed terms themselves become the subject of
unification, it is possible that we encounter heterogeneous equations:
equations in which the left- and right-hand side have different
types, that only become equal after previous equations have been
solved. For example, consider the type ¥ a.set A with elements
(A, a) packing a type A together with an element a of that type.
By injectivity of the constructor (-, -), an equation (A4, a) = (B, b)
can be simplified to A = B and a = b, but the type of the second
equation is now heterogeneous since a : A and b : B. The question
becomes then whether we can still apply the standard unification
rules to heterogeneous equations, and under what conditions.

Because traditional unification algorithms only look at the syntax
of the terms they are trying to unify, they cause problems when
applied in a setting with heterogeneous equalities. For example,
they can simplify the equation (Bool, true) = (Bool, false) of
type X a:set A to Bool = Bool and true = false. Subsequently,
they can derive an absurdity from the second equation. However,
this line of reasoning depends on the principle of equality of
second projections, which is equivalent to UIP (Streicher 1993).
Indeed, if we have access to the univalence axiom (The Univalent
Foundations Program 2013) then we can prove that (Bool, true)
equals (Bool, false) of type X a:set A. On the other hand, consider
the exact same unification problem (Bool, true) = (Bool, false),
but this time the type of the equation is a non-dependent product
Set x Bool!. In this case it is possible to derive an absurdity.

! As usual, we define A x B as ¥4. g B where x is not free in B.



However, a syntax-directed unification algorithm will never be able
to distinguish between these two cases.

The problem isn’t limited to theories that don’t support UIP,
either. For example, let A be an arbitrary type and Singleton :
A — Set be an indexed data type with one constructor sing :
(z : A) — Singleton z and consider the unification problem
(Singleton s,sing s) = (Singleton ¢, sing ¢). If we allow the
injectivity rule to simplify sing x = sing y to = y then this
problem can be solved with solution y — x. However, this would
allow us to prove injectivity of the type constructor Singleton. In-
jectivity of type constructors is generally an undesirable property, as
it is not only incompatible with univalence but also with impredica-
tivity (Miquel 2010) and with the law of the excluded middle (Hur
2010). In particular, if we allow this application of injectivity of the
sing constructor for A = Set — Set then we can refute the law
of the excluded middle.

The goal of this paper is to give a fully typed account of
unification of dependently typed data, in order to avoid problems
like the ones described above and put unification in type theory back
on a solid theoretical foundation. We do this by treating unification
problems and unification rules as internal to the type theory, rather
than belonging to some external tool. This ensures that we don’t
make use of unspecified assumptions such as uniqueness of identity
proofs or injectivity of type constructors.

First, we represent unification problems as a telescope, a list
of types where each type can depend on values of the previous
types. Each type in this telescope corresponds to one equation of
the unification problem, and the dependencies reflect the fact that
the type of each equation can depend on the solutions of previous
equations. This allows us to keep track of the dependencies between
the equations precisely.

Secondly, we represent unification rules as equivalences between
two telescopes of equations. For example, the injectivity rule for
the constructor suc : N — N is represented by an equivalence
between the equations suc m =y suc n and m =y n. This
equivalence contains not only the substitution needed to go from
one set of equations to the next, but also evidence that the unification
rule is valid. Having this evidence means our unification rules are
guaranteed to be sound with respect to the type theory we’re working
in. This gives us a new formal criterion for the correctness of
a unification rule in a dependently typed setting. Moreover, this
“evidence of unification” is produced internally to the type theory,
so that it is easy to incorporate unification into other parts of the
language.

Finally, we give a novel characterization of the most general
unifier as an equivalence between the original telescope of equations
and the trivial one. It can be constructed by simply composing the
individual unification rules that are used. This definition turns out
to be a stronger requirement than the standard definition of a most
general unifier, yet it is still satisfied by all unification rules that
are used in Agda. The fact that most general unifiers correspond to
equivalences not only gives us a very elegant way to define them,
but it also turns out to be useful for the application we have in
mind: this equivalence can be used directly for specialization by
unification as used in the compiler from dependent pattern matching
to eliminators by Goguen et al. (2006). This makes it also suitable for
languages with a core calculus like Coq (The Coq development team
2012), Epigram (McBride 2005), Lean (de Moura, Kong, Avigad,
van Doorn, and von Raumer 2015), or (potentially) a future version
of Agda.

Contributions.

* We give a representation of unification rules and most general
unifiers in a dependently typed setting as equivalences between
solution spaces represented by telescopic systems of equations.
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This gives a general way to characterize soundness of unification
rules internally to the underlying type theory.

* We rephrase the unification rules of Goguen et al. (2006) in
this framework and show that they conform to our definition of
unification rules.

* We present new unification rules for indexed families of data
types that work on heterogeneous equations and can work on
multiple equations at once, making them more general than the
ones given by Cockx, Devriese, and Piessens (2014).

* We also describe two new unification rules that deal with eta-
equality of values of record type.

* We describe how it can be useful to apply unification rules in the
reverse direction in order to solve problems where the equations
between the indices are not fully general.

* We reimplement the unification algorithm used by Agda (Norell
2007) for pattern matching on indexed families of data types
using our new framework for unification, fixing a number of bugs
in the process and making it more amenable to future extensions.
This new unification algorithm has been released as part of Agda
version 2.5.1%.

The type theory used in this paper is a version of Luo (1994)’s
Unified Theory of Dependent Types (UTT), but our results should be
equally applicable in other intuitionistic type theories with inductive
families such as the Calculus of Inductive Constructions used by
Cog. The basic rules of the type theory are summarized in Figure 1.
We use Greek capitals I", A, . .. for both contexts and telescopes,
capitals T, U, . . . for types, and small letters ¢, u, . . . for terms. The
simultaneous substitution of the terms ¢ for the variables in the
telescope A is written as [A — #]. Throughout the paper, we make
use of concepts from type theory such as the identity type, telescope
notation, and inductive families of data types. We introduce these
concepts as the need for them arises.

We also use concepts from homotopy type theory (HoTT) (The
Univalent Foundations Program 2013) such as an equality “lying
over” another one and the concept of an equivalence between types.
Our notation for telescopic equality is also inspired by cubical type
theory (Cohen, Coquand, Huber, and Mortberg 2015). However,
our unification rules don’t require any axioms on top of basic
intuitionistic type theory (such as the univalence axiom). In fact,
our work can be equally well understood without any knowledge of
HoTT, and is still useful in a setting that assumes entirely different
axioms (e.g. uniqueness of identity proofs, or the law of the excluded
middle).

The rest of this paper is organized as follows. Section 2 shows
how unification problems and most general unifiers can be repre-
sented internally to type theory, and gives an important use of this
internal representation: specialization by unification. Section 3 con-
tinues by giving a number of examples of unification problems and
their solutions, showing how our unification rules work and how
they prevent the problems in untyped unification algorithms. Sec-
tion 4 discusses unification rules in general, and shows how they can
be used as building blocks for constructing the most general unifier.
It also shows how the basic unification rules from Goguen et al.
(2006) can be interpreted in our setting. By representing unifiers as
terms in type theory, they also get a computational behaviour, which
is discussed in Section 5. The basic unification rules are joined by a
number of other rules in Section 6: 7 rules for record types, inverse
unification rules for generalization of data type indices, and an ex-
ample of a unification rule for a higher inductive type: the interval.
Section 7 discusses the implementation of our ideas in the Agda type
checker, and see how it compares to the previous implementation on

2 Available from http://wiki.portal.chalmers.se/agda/.
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+ reflexivity, symmetry, transitivity and congruence rules for =

Figure 1. The core formal rules of UTT, including dependent
function types (z : A) — B, an infinite hierarchy of universes
Set( (= Set), Set, Seto,..., and S-equality.

soundness, complexity, and extensibility. Finally, Section 8 contains
a discussion of related work and Section 9 concludes.

2. Unification Problems and Unifiers

Before we can start thinking about formally correct unification
rules, we first need to specify how we represent the input and the
output of the unification algorithm. Traditionally, the input of a
unification algorithm consists of a set of equations collectively called
the unification problem, while the output can be one of three options:

* either the algorithm finds a substitution called the most general
unifier, and we say that the algorithm succeeds positively,

* or the algorithm detects an absurd equation, in which case we
say the algorithm succeeds negatively,

* or it fails because there is no unification rule that applies.

The third possibility is unavoidable in general because we work in a
higher order language.

These central concepts can be defined internally to type theory:
unification problems can be represented as telescopic equalities
(Sections 2.1 and 2.2), and most general unifiers can be represented
as equivalences (Section 2.3). It is important to construct these most
general unifiers internally to the theory so that they can be used to
apply specialization by unification (Section 2.4).

2.1 Equations as Types

To represent unification problems internally, we need to be able to
express equality between two terms as a type. For this purpose,
we use the propositional equality type x =4 y introduced by
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Martin-Lof (1984). The most basic way to prove an equality is
by reflexivity: refl : x =4 x. We also have functions expressing
symmetry, transitivity, and congruence:

SYM: T =AY > Y=AT

trans : T =AY S Y=4 2 > T =A% (1)
cong: (f:A—=B)—szx=ay—fax=pfy
Terms can be substituted for equal terms by applying subst:
subst: (P: A—Set;)) 2z =ay—Pz—Py (2

More generally, we have the J rule that also allows P to depend on
the proof of z =4 y:

J:(P:(y:A) — x =4y — Set;)

(p: Pxrefl)(y:A)e:xz=ay) > Pye &

In fact, the J rule is powerful enough so that the functions sym,
trans, cong, and subst can readily be defined from it.

The identity type x =4 y only allows equations between ele-
ments of the same type, so we still need a way to represent hetero-
geneous equations. For this purpose, McBride (2000) introduced
a heterogeneous equality type © 4=p y where z : Aandy : B
can be of different types, but z 4= y can only be proven if the
types A and B are actually the same. Using this type, a unification
problem can be represented simply by the (non-dependent) product
of the individual equalities. By maintaining the invariant that the left-
most equation is always homogeneous, the equations can be solved
step by step, from left to right. However, using this heterogeneous
equality type causes a number of problems:

* Turning a heterogeneous equation between elements of the same
type into a homogeneous one requires the K axiom, which is
equivalent to uniqueness of identity proofs (Streicher 1993). So
in a theory where we don’t have access to the general K axiom
(such as HoTT), heterogeneous equalities are worthless.

Using heterogeneous equality causes information about depen-
dencies between the equations to be lost. For example, if we have
two equations Bool set =ser Bool and true poo1poo1 false,
there is no way to see whether the type of the second equation
depends on the first. The example from the introduction shows
that both cases are possible, and that it is essential to know the
difference!

Finally, it is unsound to postpone an equation and continue
with the next one when working with heterogeneous equality,
since this allows us to prove things such as injectivity of type
constructors (see the Singleton example in the introduction).

In order to avoid these problems and keep track of the dependencies
between equations, we use the concept from HoTT of an equality
“laying over” another one. Concretely, if e : s =4 ¢t and P :
(z: A) — Set, then u =% v is the type of equality proofs between
u: P sand v : P tlaying over e. Note that P is the part of the type
that v and v have in common, while e shows where they differ.
There are multiple equivalent ways to define u =% v; for the
sake of simplicity we use the following definition in terms of the
regular homogeneous equality by substituting by e on the left:

@

In practice, the exact definition of v =% v doesn’t have much
impact, but we prefer this one to the more symmetric alternatives
because it doesn’t require large eliminations or auxiliary data types.

We will often write u =p . v instead of u =% v. For example,
if we have e : m =y n and two vectors u© : Vec A m and
v : Vec A n, then we may form the type u =vec a4  v. This
notation is inspired by cubical type theory (Cohen et al. 2015),
where a function f : A — B is automatically lifted to a function

u=pv=(subst Peu)=pqyv



x=ay — fx=p fy.Inour setting it is merely a convenient
abuse of notation.

2.2 Unification Problems as Telescopes

In general, an equality may depend on more than one equation
variable. To keep track of the types P and the equation variables e,
we give a type to the list of equations in the form of a relescope. A
telescope is a list of typed variable bindings where each type can
depend on the previous variables, expressing the fact that the type of
each equation can depend on the previous equations. For example, a
possible telescope is (m : N)(p : m =y zero).

Telescopes can be used as the type of a list of terms. We indicate
a list of terms by a bar above the letter, so we can write for example
t = zero;refl : (m : N)(p : m =y zero). Formally, this means
that we give a semantics to a telescope A as an iterated sigma type
iNE

on=T
[[(z : A)A]] = Xa:n) [[A]]

We also rely on the concept of a function between telescopes,
called a telescope mapping. A telescope mapping f : A — A/
is simply a function from [[A]] to [[A’]]. A telescope mapping f
can be thought of as a substitution: if we have A’ - u : A, then
AR ulA'w fA]:A[A = f A

Now we can define telescopic equality in full generality:

Definition 1. Let A be a telescope and 5, : A. We define
telescopic equality (€ : 5 =a %) inductively on the length of the
telescope by () =(y () = () (where we write () for both the empty
telescope and the empty list of terms) and

(6))

(6)

For example, (e1;€2 @ MU =(zN)(yvec A 2) T;0) stands
for the telescope (e1 : m =n n)(e2 : U =vec ae; v). This
telescope can be thought of as a unification problem consisting
of two equations e; and es.

For each t : A, we define refl : £ = t as refl;...;refl.
We also define telescopic versions of subst and cong;:

(&;€: 88 =@aya tit) =(e:5=a1)(€: 5 =awe] 1)

subst : (P: A —Set;)) >u=aA0—>Pu—P7 e

cong: (f:A—=T)—>ua=av—>fu=rf0v

2.3 Most General Unifiers as Equivalences

Traditionally, a unifier for a unification problem % = ¥ is defined as a
substitution o such that 4o and vo are equal. So how do we translate
this definition to type theory? Suppose we have a unification problem
with free variables coming from a telescope I (also called the flexible
variables) and equations & =a v, where A, @, and v can depend on
the variables from I'. We could represent a unifier as just a telescope
mapping o : I — T satisfying @[’ — o '] = 9[I" — o T'], but
then the correctness property is still external to the theory. Instead,
we use the power of dependent types to express the fact that the
equations are satisfied internally:

Definition 2. Let I and A be telescopes and @ and v be lists of
terms such that I' - @, : A. We define a unifier of 4 and v as a
telescope mapping o : IV — T'(€ : 4 = ¥) for some T".

Note that a unifier ¢ returns not only values for I" but also
evidence that the equations are indeed satisfied by these values.

Usually, if the unification algorithm succeeds positively it doesn’t
output just any unifier but a most general one, i.e. a unifier o such
that any other unifier o’ can be written as o o h for some h. Again,
we should think how to represent this concept internally.

3 In the rest of this paper, the brackets [[-]] will be implicit.
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One way to do this is to translate the definition of most general
unifier directly to a type. However, to do this we need to quantify
over all possible unifiers ¢/, making the definition more unwieldy
than necessary. Instead, we ask that ¢ has a right inverse 7, i.e. a
telescope mapping 7 : I'(é¢ : @ =a ©) — I" such that o o 7 is
the identity function on I'(€ : @ =a ). This allows us to define
h = T1o0’, whichgivesuso o h = 0 o 7 0 ¢’ = o', as we wanted.
Intuitively, 7 allows us to recover the values of the variables in I
for any values of I that satisfy 4 =a 7.

It is often useful to require that the function h is unique, for
otherwise I may contain ghost variables that are not actually used
by o. For example, for a unification problem with I' = (b : Bool)
and a single equation b =go,1 true, we have the most general
unifier o : () — (b : Bool)(e : b =poo1 true). However, if we
don’t require that h is unique, then there may be other most general
unifiers with a non-equivalent choice of I'". For example, we could
also have taken o’ : (b’ : Bool) — (b : Bool)(e : b =poo1 true)
by simply ignoring the argument b’. To exclude solutions like this
where I is unnecessarily large, we require that o also has a left
inverse 7’. If we have two different functions h and h’ such that
¢’ = 0 o h = ¢’ o I then this left inverse allows us to prove that
h=7"o0coh=1000h' =h,sohisunique.

In type-theoretic terms, this means that o is an equivalence
between IV and T'(€ : @ =a o). In general, an equivalence
f + A ~ B consists of a function f : A — B together with
left and right inverses g1, g2 : B — A and proofs

isbinv f:(z: A) > q1 (fz)=acx

isRinv f: (y: B) — f (92 ¥) =B Y ®
In general, the left and right inverses of f can be two different
functions, but they are always the same for the equivalences given
in this paper. In this situation, we write f~* for the common value
of g1 and ga.
This brings us to the following definition of a most general
unifier:

Definition 3. Let I" and A be telescopes and @ and ¥ be lists of
terms such that I" - @, ¥ : A. Then we define a most general unifier
of @ and ¥ as an equivalence f : ['(€ : 4 =a ¥) ~ I for some
telescope I''.

Note that the unifier o : TV — T'(é : @ =a ©) corresponds to
the inverse function f .

This definition doesn’t prevent us from simply choosing I =
I'(é : & =a ¥) and f = id. In fact, this is a valid (if trivial)
most general unifier from a logical point of view. However, current
implementations of dependent pattern matching also require that
f~1 # is of the form @; refl for some @ : I, excluding this kind
of ‘trivial unifier’. This seems to be a limitation of the current
implementation of indexed data types, rather that a necessary
requirement on the computational behaviour of f~1.

In case unification succeeds negatively, we also need some
form of evidence that the equations are indeed impossible. For
this purpose, we make use of the empty type L:

Definition 4. Let I" and A be telescopes and @ and v be lists of
terms such that I" - @, ¥ : A. Then we define a disunifier of 4 and
¥ as an equivalence f : T'(€: 4 =a 7) =~ L.

Note that any function f : A — L is automatically an
equivalence A ~ 1, as the other components of the equivalence
can be constructed by using the eliminator elim; : (A4 : Set;) —
1 — A, expressing the principle of ‘ex falso quodlibet’. So the only
interesting part of the equivalence is the function f.



2.4 Specialization by Unification

Specialization by unification is a very useful and powerful technique
for constructing functions of the formm : (z : I') — (€: 4 =a
U) — T Z e. It can be used as a generic method of constructing
inversion principles (McBride 1998a) and is also a crucial ingre-
dient for translating definitions by dependent pattern matching to
eliminators (Goguen et al. 2006; Cockx et al. 2014). If unification
for the problem 4 =a ¥ with I as flexible variables succeeds either
positively or negatively, then it is straightforward to construct this
function m:

* In case the unification succeeds positively with most general
unifier f : T'(e: 4 =a v) ~ T’, then we generate a ‘sub-
goal’ of constructing a function m’ of type (z' : IT') —
T (f~' #'). Once we have found such an m’, we have
m/ (fze): T (f~* (f Z &), so we can define m by

Z & =subst T (isLinv f Z &) (m’ (f & €))

3

©)
where isLinv f Z & is the proof that f ™' (f Z &) = T &.

* In case the unification succeeds negatively with result the
disunifier f : T'(é : w =a ¥) =~ L, then we can define m by

10)

mzée=elim, (T'Z€)(fTe)
In this case, no subgoal is needed.

For example, we can apply specialization by unification to construct
afunctionm : (k1:N) — suc k =n sucl — T k . As we will
soon see in Example 1, unification succeeds positively with the most
general unifier f of type (k1 : N)(e : suc k =y sucl) ~ (k: N)
satisfying f~! k = k; k;refl. So if we can provide a function
m’ : (k : N) = T k k, then specialization by unification allows us
to construct the function m.

3. Examples

Before we give the general unification rules, we first want to give
an idea of what unification looks like on a few concrete examples.
The general theme of these examples is that it is unsound to naively
apply purely syntactic rules in a dependently typed setting. We
replace these syntactic rules by typed ones that are proven correct
as evidenced by an equivalence. All the rules that are used in this
section are specific instances of the general rules constructed in
Section 4.2: solution, deletion, injectivity, conflict, cycle, and the
indexed variants of the latter three in Section 4.3.

Example 1. We start with an easy example consisting of a single
equation between suc k and suc [. First, we simplify the equation
by applying the equivalence (e : suc k =y sucl) =~ (e: k =n 1),
which is called the injectivity rule for suc. Applying this rule leaves
the two variables k£ and [ unchanged. Next, we apply the solution
rule, which tells us that (I : N)(e : k =y [) ~ (). This leaves only
the single variable & : N. Since there are no more equations left in
the telescope, unification is finished.

(kl:N)(e: suc k =y sucl)

~ (kl:N)(e: k=nl) (11)
~ (k:N)
To get the substitution from (k : N) to (k I : N)(e : suc k =y

suc [) computed by the unification process, we only need to
compose the functions embedded in the equivalences from the
bottom to the top. The solution rule assigns [ — k and e > refl,
and the injectivity rule maps e : k =y [ to cong suc e : suc k =y
suc [, so the complete substitution is k +— k;k;refl (since
cong suc refl = refl).
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Example 2. Consider the sum type A & B (where A, B : Set
are arbitrary types) with two constructors inj; : A - A W B
and inj, : B — A W B (also known as the Either type). An
expression of the form inj; x can never be equal to inj, vy, so any
equality between those two terms is equivalent to L :

(z:A)(y:B)(e:inji z =awp inja y) ~ L (12)

This is called the conflict rule between inj; and inj,.

We should be careful not to apply the conflict rule naively,
though: an equation between the constructors inj; and injs is
not always absurd when they are not fully applied. For example®,
let A= B = 1,then (e:inj: =1 1w.1 inj,) is not equivalent
to L. This is because when we view inj; and inj. as functions of
type L — L W L, they coincide on all possible inputs (i.e. none).
The principle of functional extensionality tells us that these two
functions must then be equal. So if we would consider this equation
to be absurd, we would prohibit ourselves from having functional
extensionality in our language, nevertheless a very desirable property
to have!

Example 3. We continue with a first example involving an indexed
data type: Vec A : N — Set. Remember that its two constructors
are [| : Vec A Oandcons : (n : N) - A — Vec A n —
Vec A (suc n). The injectivity rule for cons gives us the following
equivalence:

(suc m; cons m x T8 =ygz1 Suc n;cons n Y ys) (13)
= (m7 T35 TS =(n:N)(x:A)(zs:Vec A n) T Y; yS)

where we write Vec A for the telescope (n : N)(z : Vec A n).
This rule not only simplifies the equation between the two cons
constructors, but also simplifies the equation between the indices
suc m and suc n simultaneously. The reason for this will become
clear when we consider the injectivity rule in general in Section 4.3.
Now let’s see how this rule works in action:

(mn:N)(zy:A)(zs:Vec Am)(ys: Vec An)

(e1 : suc m =y suc n)

(e2 : cons & IS =yec A ¢, CONS Y YS)

(mn:N)(zy:A)(zs:Vec Am)(ys: Vec An)
(ex:m=nn)lez:z=ay)(e3: TS =vec A e; YS)
(n:N)(z: A)(xs : Vec An)

The first step is an application of the injectivity rule, while the next
steps consists of three applications of the solution rule.

Note that in order to apply injectivity of cons, the type of the
equation cons T % =vyec Ae; cons y v has to be of the form
Vec A e where e refers to a previous equation. This implies
that we cannot apply this rule as it is to an equation of the form
CONS M T TS =vyec A (sucn) CONS N Yy ys where zs : Vec A n
and ys : Vec A n have the same length ‘on the nose’. We discuss
how to solve this deficiency in the special case where the index type
satisfies the K rule (as is the case for N) in Section 4.3 and more in
general in Section 6.2.

(14)

R

Example 4. In the previous example, it was not really necessary to
simplify the equation between the indices together with the equation
between the constructors, as we could also have simplified the
equation suc m =y suc n by appealing to the injectivitysyc
rule. However, sometimes this simplification gives a real increase to
the power of unification. For example, let f : A — B be a (possibly
very complex) function, then in general there is no way to solve
an equation of the form f x =p f y, unless we know something
about f, e.g. that it is injective. Now let Im f : B — Set be a data
type with one constructor image : (z : A) — Im f (f ), then

4 This example is based on the problem described by Dijkstra (2015) on the
Agda bug tracker.




the injectivity rule for image simultaneously solves the equations
e1: fx=p fyandes: image * =1, § ¢, image y:

(zy:A)e: fe=pfy)
eo : image T =1u 5 ¢, image y)
~(zy:A)e:xz=ay)
~ (z:A)
Having an injectivity rule that works in this way is useful when
giving semantics to an embedded language (Danielsson 2015).
Contrast this example with the situation where we have the
unification problem

(xy:A)er:In f (f ) Zsee Im f (f y))

(62 :

15)

. ) (16)
image T =., image y)
Here, we are not allowed to use injectivity on the second equation
since its type is not a data type but a variable. Note that there is no
way to distinguish between these two cases unless we keep track
of the dependency of the type of ez on the equation e;. Wrongly
applying injectivity in situations like this lead to the problems
described by Abel (2015a,c) on the Agda bug tracker.

Example 5. LetD : Bool — Set be an indexed data type with two
constructors tt : D true and £f : D false. Then the conflict rule
between tt and ££ gives us the following equivalence:

(e1 : true =poo1 false)(ez : tt =pe, £f) >~ L 17

On the other hand, we cannot apply the conflict rule if the first
equation is between the types D true and D false:

(e1 : D true =ge¢ D false)(eg : tt =., £f) % L (18)

Allowing the conflict rule to apply in this case would mean that
we have a way to distinguish between D true and D false, which
means that the type constructor D is injective. In particular, this
would be incompatible with the univalence axiom: there is an equiv-
alence between D true and D false under which tt is identified
with ££, so univalence allows us to prove thatD true =s.¢ D false.
Note again that we need information about how the type of e> de-
pends on e; to distinguish between these two cases. Wrongly ap-
plying conflict in situations like this lead to the problems described
by Danielsson (2010) and Vezzosi (2015) on the Agda bug tracker.

4. Unification Rules

Now that we know what the input and the output of a unification
algorithm should be and have seen some examples of unification
rules in action, we can start thinking about unification rules in
general (Section 4.1). We also show the basic unification rules for
simple and indexed data types (Section 4.2 and 4.3 respectively).
Most of the work of constructing these equivalences has already
been done by Cockx et al. (2014), we provide the final piece of the
puzzle (Section 4.4).

By applying unification rules until there are no more equations
left, we construct the most general unifier. We don’t yet give an
explicit strategy on which rule to apply in a specific situation. This
leaves more freedom to the implementation to choose which rule to
try first. In Section 7, we discuss give an example of such a strategy.

4.1 Unification Rules as Equivalences

Since the end result of the unification process (the most general
unifier) is an equivalence f between I'(€ : i =a o) and I, we also
represent unification rules as equivalences:

Definition 5. A positive unification rule is an equivalence of the
formr:T(e:u=a0) =T/ : 4 =a ).

These unification rules can then be chained together by transitiv-
ity of =~ to produce the most general unifier f.
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In addition to unification rules of this form, that transform one
set of equations into another, there are also unification rules that
detect absurd equations like true =g,o1 false.

Definition 6. A negative unification rule is an equivalence of the
formr:T'(€: a4 =a0) ~ L.

Before we go on to construct the basic unification rules, we
give two easy but very useful manipulations on equivalences (and
hence on unification rules): weakening and reordering. These two
principles are used when we want to apply a unification rule, but the
problem contains some additional variables or equations that aren’t
mentioned in the rule. We have already been using these lemmas
in the examples in Section 3, for example in Example 1 to lift the
solution rule over the variable m : N.

Lemma 1. If we have an equivalence f : T' ~ I and a telescope
A possibly containing free variables from T, then we can construct
an equivalence f 1°: TA ~ T A where A" = Al — f71T7).

Lemma 2. If we have a telescope T', and I is a reordering of the
variable bindings in I" that preserves the order of dependencies,
then we can construct an equivalence f : T' ~ T".

Proof. The construction of the equivalence is in both cases very
obvious, relying on J to prove that the functions are mutual inverses.
O

4.2 The Basic Unification Rules

Now we are ready to give (typed versions of) the basic unification
rules given by (McBride 1998b). The first two rules are generic in
the sense that they work for any type A, while the three rules after
that are specific to data types.

Solution. The solution (also called the substitution rule or the
coalescence rule) rule allows us to solve an equation if one side
is a variable. For any type A and term ¢ : A, it is given by the

equivalence
solution: (x: A)le:x=at) ~ () (19)

The function solution™ : () = (z : A)(e: © =4 t) maps () to
t; refl. Note that the variable = should not occur freely in ¢.

1

Deletion. The deletion rule allows us to remove equations where
the left- and right-hand side are definitionally equal. For any type A
that satisfies K> and any term ¢ : A, it is given by the equivalence

(20)

This rule should not be used for types A that don’t satisfy the K
rule (Cockx et al. 2014).

deletion: (e:t=at) ~ ()

Injectivity. The injectivity rule allows us to simplify equations of
the formc z1 ... xp = c y1 ... yn if c is a constructor. For
example, it allows us to simplify the equation suc m = suc n to
m =n. Let c : A; — D be a constructor of the data type D : Set;.
The injectivity rule for c is given by the equivalence

injectivity.: (cZ=p c &) ~ (T =a_ T')

ey

where Z, 7' : A.. Note that the type of the equation on the left
should be exactly D.

Conflict. The conflict rule allows us to detect absurd equations of
the formcy 1 ... &y = c2 Y1 ... Yyn Where ¢4 and c, are two
distinct constructors. For example, it allows us to conclude that an
equation of the form zero = suc y is absurd. Let ¢; : Ay — D and

3 Note that we haven’t given the type of K yet. But in fact, the types satisfying
K are exactly the types for which deletion can be constructed, so we may
as well take that as our definition.



f=t

r<s s<t
ti <cti ... tn fs=<t r <t

Figure 2. The structural order s < ¢ is used to check termina-
tion (Goguen et al. 2006) and to detect cyclical equations.

c> : Az — D be two distinct constructors of the data type D : Set;.
The conflict rule between c1 and ¢, is given by the equivalence

(22)

where Z1 : A and Ts : Ag. Again, the type of the equation should
be exactly D, see Example 2 of what can go wrong otherwise.

conflicte,,c, : (c1 T1 =p C2 T2) >~ L

Cycle. The cycle rule allows us to detect cyclical equations of the
form x = c y1 ... yn where x occurs somewhere in y1, ..., Yn.
For example, it allows us to detect that an equation of the form
n = suc n is absurd. To formalize this rule, we need the structural
order on terms defined in Figure 2.° We say that x occurs strongly
rigidintifx < t.

Let D : Set; be a data type and let z,¢ : D be such that x < t.
The cycle rule for x and ¢ is given by the equivalence

(x=pt)~L
Once again, the type of the equation should be exactly D.

cycleg : (23)

4.3 Unification Rules for Indexed Data Types

The injectivity, conflict, and cycle rules defined in the previous
section all work on regular data types, but unification only be-
comes really interesting once we consider indexed families of data
types (Dybjer 1991). An indexed family D : = — Set; is defined by
a telescope = of indices and a list of constructors c; : A; — D 4,
fori =1,..., k. Where the unification rules that we have seen so
far only have a single equation on the left side, the rules for indexed
data types have a telescope of equations: one equation for each
index, and one final equation for the data type itself (see Examples 3
and 4).

Injectivity (indexed version). Letc : A — D @ be a constructor
of the data type D : = — Set;. The injectivity rule for c is given by
the equivalence
injectivity :
e
(a[A = Z];cT=u[A—T);cT)~(T=aT)
where Z, ' : A and D stands for the telescope (@ : Z)(z : D @).

Conflict (indexed version). Letcy: Ay — D@y and co : Ag —

D @2 be two distinct constructors of the data type D : = — Set;.

The conflict rule between c1 and ¢, is given by the equivalence
conflicte,,c, :

25
(@1[A1 = Z1]; ¢t T1 =p U2[A2 — Ta];co T2) ~ L 25)

where Z1 : A1 and Tz : As.

Cycle (indexed version). LetD : = — Set; be a data type and let

(@; z), (U;t) : D be such that x < ¢. The cycle rule is given by the

equivalence

(u;2 =p v;t) ~ L (26)
Note that for these three rules, the telescope for the equations on

the left-hand side should be exactly D = (@ : Z)(z : D @). This is

very convenient when the equations we start with are of this form

cycleg;: :

6Tt is possible to define 2 < t as a type using a technique similar to the one
used by McBride, Goguen, and McKinna (2006) to define Belowp. However,
this is not necessary as this type doesn’t occur in the construction of cycle,
we only need the type © £ y as defined by McBride et al. (2006).
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because it allows us to simplify all equations at the same time. But
what if the equations are not of this form? For example, we may have
a single equation cons 1 T TS =yec A (suc n) CONS N Y ys without
an accompanying equation between the indices. The example with
the Singleton type from the introduction shows that it is not sound
in general to just apply unification rules if the types don’t correspond
to the form given by the unification rule, but the above rules are
actually overly restrictive. For the conflict and cycle rules at least, it
is possible to generalize them to the case with arbitrary indices:

Lemma 3 (Generalized conflict). Let D : & — Set; be a data
type and c1 : A1 — D U1 and co : As — D 2 two distinct
constructors of D. Let ® furthermore be an arbitrary telescope
with ® - 0 : 5, 51,52 : @, t1 : Ay, and ta : Ay such that
Q_J[CI) — 51} = 1_L1[A1 — 7?1} andﬁ[@ — §2] = ﬂz[Az — 1?2] (both
times a definitional equality).” Then we have

27

While the indices © can be arbitrary (i.e. they don’t have to
be variables like in the standard conflict rule), the type of the final
equation still has to be the data type D applied to indices, in particular
it cannot be a variable itself (otherwise we run into the problem
described in Example 5).

Before we start the actual proof, we first want to show how the
naive proof attempt fails. It goes as follows: to construct a function
(51;¢1 t1 =a(am o) S25¢2 t2) — L, it suffices (by the J rule) to
construct a function ¢; t; =ps co to2 — L. This function can
be constructed easily by calling the indexed conflict rule (25) with
refl for the proof of @1 [A1 + t1] == u2[A2 > t2]. Since any
function to _L is an equivalence, we are done.

Think a moment about what is wrong with this proof. It uses the
J rule to eliminate the equations 51 =¢ 52, but there is no guarantee
that 51 or 32 are in fact variables. Moreover, their structure as a term
may be important for satisfying the assumptions of the lemma. So
the error in this proof attempt stems from a confusion between the
status of 51 and 52 as variables at the meta-level, but they can be
arbitrary terms at the object level!

We work around this issue by using the following easy lemma:

Q, p

(51501 Tt =a@n o) 2562 f2) > L

Lemma 4. For any Z1,Z2 T1

D [® > 1], we have

=¢ T2, and y

subst (AZ.D 9[® — Z]) P Y =p s[orsas) 28)
subst D (cong (AZ.0[® — Z]) D) v

Proof. In contrast to the failed proof above, we can use J on p since
there are no additional constraints on the structure of Z; and Z2.
After using J, the remaining equality becomes y =p j(¢35,] Ys
which can be proven by refl.

Proof (of Lemma 3). We start by expanding the definition of tele-
scopic equality: we have to derive L from

(é1 151 =9 52) B
(e2 : subst (AZ.D 9[® + T]) €1 (c1 1)
=p ay[As—t](C2 t2))

(29)

Substituting by the equality from Lemma 4 gives us that e has type

subst D (cong (AZ.0[® — Z]) €1) (c1 t1) 30)

=D Gp[Ag+1s] (c2 2?2)
So now we can call the conflict rule (25) with the arguments
cong (AZ.0[® — Z]) €1;e2 to get an element of type L. Since
any function to _L is an equivalence, this finishes the proof. O

7 Note that these definitional equalities are always satisfied when the tele-
scope in (27) is well-typed, and vice versa.



Similarly, we can generalize the cycle rule:

Lemma 5 (Generalized cycle). LetD : = — Set; be a data type
and let ® be an arbitrary telescope with ® - v : Z, 51,52 : P,
t1:D 0[® — 51], and t2 : D O[® — 52] such that t1 < to. Then
we have

(51; t1 E@(Z:D v) '§2; t2) ~ 1 (31)

Proof. Analogously to the proof of Lemma 3. O

For injectivity, it isn’t possible to generalize the unification rule
to arbitrary indices like we just did for conflict and cycle. The reason
is that we also have to construct an inverse function and prove that
it is indeed a left and right inverse, while this was trivial for the
two negative rules. In Section 6.2, we describe a general method
for generalizing the indices of D until they are in the correct form
to apply the injectivity rule. However, in the special (but common)
case where the index telescope = satisfies the K rule, it is possible to
construct the generalization, thus avoiding the need for the additional
machinery in Section 6.2:

Lemma 6 (Generalized injectivity). LetD : = — Set; be a data
type with (at least) one constructor ¢ : A — D u, and assume Z
satisfies K, i.e. we have deletionz : (€ : T == &) ~ () for all
T : =. Let ® furthermore be an arbitrary telescope with ® - v : Z,
51,82 : @, t1,t2 : A such that 9[® — 51] = w1 [A — 1] and
U[® > 53] = u2[A > 2] (both times a definitional equality).
Then we have

~

(32)

In the special case that  is the empty telescope (), this general-
ized injectivity rule corresponds to the specialized injectivity’
rule from Cockx et al. (2014), but here we ask that the types of
the indices = satisfy K, instead of asking that the indices u are
self-unifiable.

(815 ¢ T Za(an o) 52; ¢ T2) = (51581 =aa 52;12)

Proof. As for the previous lemma, we expand the definition of
telescopic equality and apply Lemma 4 to get to

(él 151 = 52) ~ B
(e2 : subst D (cong (AZ. 0[P — Z]) €1) (c t1) = (c t2))
(33)
Since E satisfies K and cong (A\Z.9[® — Z|) &1 : 79[ —
51) == 0[® > 52), it follows that (€] : ¥[® — 51] == V[P > 52])

is equivalent to (). So the previous telescope is equivalent to

(é1 181 = §2)
(&} : D[P — 51] == V[® > 352])
(e2 : subst D (cong (A\Z.0[® +— Z]) €1) (c 1) = (c 2))
(34)
Again by K, we have that the proofs cong (AZ. 9[® — Z]) & and
€} of type 0[® +— 51] == 9[® — 352] are equal. Substituting the
latter for the former yields the telescope
(él 151 =a §2)
(€1 : 0[® — 51] == V[P > 52)) (35)
(e2 : subst D &) (c t1) = (c t2))

Finally, we can apply the injectivity rule (24) to prove that the part
of the telescope containing e} and e; is equivalent to t; =a t2, 0O
the whole telescope is equivalent to

(36)
O

(é1 151 =o 52)(52 : fl =A LTQ)

which is what we wanted to prove.

4.4 Construction of the Unification Rules

Construction of solution (19). The construction of the func-
tions solution: (x : A)(x =4 t) — () and isRinv solution :
() = () =¢ () is trivial since they both target an empty telescope.
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The function solution " : () — (z : A)(e: x =4 t) is defined
by solution ' () = t;refl, and isLinv solution : (z : A)(e:
T =at) > t;refl =(2:A)(e:x=4t) T; € 18 a direct application of
the J rule.

Construction of deletion (20). The construction is similar to
the construction of solution, except that we use K instead of J.

Construction of injectivity. (24). The injectivity rule is an
instance of the more general principle of “no confusion” (McBride
et al. 2006) where the left- and right-hand sides have been instanti-
ated to applications of the same constructor c. Cockx et al. (2014)
gave a left inverse noConf ~* to the function noConf, so all that’s
left to do is to prove that it is a right inverse as well.

We do not repeat the full construction of noConf and noConf ~*
here, but merely recall their essential computational properties. First,
the type NoConfusionp : D — D — Sety is constructed such that

(v;ct) =5=a.t
(@;c' 1) =L

NoConfusionp (u;c
(when ¢ # ¢)

_ (37)
Next, noConfp : (Z § : D) — T =5 § — NoConfusionp Z ¥ and

u;c 5)
NoConfusionp (T;c 3)

noConf ~'p : (z g : 5) — NoConfusionp T §y — T =5 y are
defined such that
noConf (@;c 5) (4;c §) refl = refl
noConf " (#; ¢ 5) (@ c 5) refl = refl 8
for all constructors c of D. To construct the proof isRinv that
(Z 7 :D) — (e : NoConfusionp T ) 39)

— noConf Z § (noConf ' Z je) = e

we first apply case analysis on Z and §. In the cases where we have
two distinct constructors c and ¢/, we have e : | so we can conclude
by elim, . In the diagonal cases we have e : § =a_ . Eliminating
these equations with J leaves us with the goal refl =;=; refl,
which we can solve by giving refl.

Construction of conflictc, ., (25). As for injectivity, the con-
struction of conflict., , is just a special case of noConfyp. The
only difference is that the target type is L, so it is automatically an
equivalence.

Construction of cycle, 5+ (26). The construction of cycle, ./
is also given by Cockx et al. (2014). As for the conflict rule, this
function is automatically an equivalence because the target is _L.

5. Computational Behaviour

Until now, we have only been interested in an equivalence represent-
ing a most general unifier insofar that it has the correct type. But as
a term in type theory, it also has a certain computational behaviour.
This computational behaviour may be important for the applications
we have in mind. In particular, when applying specialization by
unification to construct a functionm : (Z: I') — (6 : @ =a 0) —
T % & from the subgoal m’ : (' : TV) — T (f~' Z') we expect
m to have ‘the same’ computational behaviour as m’ in case the
equations & = ? are actually satisfied.

The computational behaviour of unifiers is also important for
practical purposes when implementing dependent pattern matching:
instead of introducing a new symbol m/, the system may ask the user
to define m (f~' Z’). This is the idea behind inaccessible patterns
(also known as dot patterns): the values of these inaccessible patterns
are determined by f . The fact that m (£~ %) evaluates to m’ &’
ensures that the computational behaviour corresponds to the clause
written by the user (Goguen et al. 2006).

To make this idea precise, note that if f : T'(e: 4 =a v) ~ T
is a most general unifier, the arguments of m for which % and ©



are equal are given exactly by the image of f~'. So we need that
m (f~! Z') evaluates to m’ Z’ for any ' : T". By the definition (9)
of m,m (f~* z') is equal to

subst T (isLinv f (f7' @) (m' (f (f7' 7))

This evaluates to m’ Z’ under the following conditions:

(40)

Definition 7. An equivalence f : (€ : @ =a ©) ~ I is a strong
unifier if for any ' : I/, it satisfies the following two computational
properties:

Cf( ) =4
isLinv f (f~' ') = refl

Note that isLinv f (f~! #’) hastype f~* (f (f ' 7)) =
f~1 &', which reduces to f~! #’ = f~' Z’ because of the
first property. So we already know that the type of the equation
is reflexive, the second requirement is only there to ensure that the
proof isLinv f (f~' Z') itself evaluates to ref1 as well.

Even if we had only established so far that f =1 is a left inverse
to f, this first property gives us a very easy way to prove that it is
also a right inverse: we can simply define isRinv f : (z' : A’) —
f(f~' %) =a 7' byisRinv f &’ = refl.

At first sight, it seems natural to require that each unifica-
tion rule satisfies the same conditions on their computational be-
haviour as those for a strong unifier (see Definition 7). However,
it turns out that this requirement is too strong: for example, the
rule injectivitysu : (Suc m =y suc n) ~ (m =y n) doesn’t
satisfy injectivitysu. (injectivitys. €) = e for arbitrary
e :m =y n, since injectivitys. * e only reduces once the
proof e is refl. Instead, we give a different criterion that implies
the criterion in Definition 7 in case the telescope of equations on the
right is empty:

Definition 8. A positive unification rule r : I'(€ : & =a 0) ~

T'(€' : 4 =as ¥') is a strong unification rule if for any ¢ : T’
such that @' [T + t'] = ©'[[ +— '] (definitionally), it satisfies the
following three computational properties:

« =1 ¥ refl is of the form @; refl for some @ : I’

e r (r~' ¥ refl) = #;refl

¢ isLinv r (r~' ¥ refl) = refl

U = ’U) ~ T
., Tn, then f isa

Lemma7. If f =71 07120 ...07,:[(€:
is composed of strong unification rules ri,12, . .
strong unifier.

Proof. We verify the two properties of a strong unifier:

* Since each of the telescope mappings r; ', ..., 7, * satisfy the

first property of a strong unification rule, we know that the
—1 =/

componentof r;* ... (ry' (r7* &' ()))) that has type @ =a 7
evaluates to ref1. Hence we can compute:
FUTE) = (a0 E())))
=71 o (Pam1 (g (e E () @D
=...=71(r]" ¥ refl) = &

To verify the second property of a strong unifier, note that
isLinv f Z € is constructed by composing the individual
proofs isLinv r; (ri41 ... (rn & €)) by transitivity. If we fill
inf '@ =r; ... (r7' @ () for Z; &, then this evaluates
(by the first and second properties of a strong unification rule)
to isLinv r; (r;t (riY, ... (r7" @ ()))). Now we can
apply the third property (again together with the first) to see
that this evaluates to refl indeed. Since refl is the identity
for composition, we have isLinv f (f~! Z') = refl as we
wanted to prove.
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O

Lemma 8. The solution (19) and injectivity (24) rules are strong
unification rules.

Proof. This follows directly from the construction of these rules
(see Section 4.4). O

For the deletion rule (20), the computational behaviour depends
on the type of the equation being eliminated and the construction of
the proof of K. Atleast in a theory with a general K rule, the deletion
rule is also a strong unification rule. Likewise, the computational
behaviour of the generalized injectivity rule given in Lemma 6
depends on the construction of the proof of K for the index types.

6. More Unification Rules

One of the big advantages of having a general notion of ‘unification
rule’ and ‘most general unifier’ is that we have an easy way to
check the correctness of new unification rules. In this section, we
show three examples of unification rules that go beyond the basic
unification rules used by Goguen et al. (2006) and Cockx et al.
(2014): eta rules for record types (Section 6.1), reverse unification
rules (Section 6.2), and an example of a unification rule dealing with
higher inductive types (Section 6.3).

The development of these rules is at the moment of writing
still in various stages of progress: the eta rules are finished and
implemented as part of our new unifier for Agda (see Section 7), the
reverse unification rules are also finished for simple data types but
not yet implemented, and the rules for higher inductive type is only
an example with no general theory so far.

6.1 Eta Rules for Record Types

We start with two simple but very useful unification rules that deal
with n-equality of records. A record type is a type for grouping
values together. Concretely, a record type R : Set; is defined by a
number of fields (or projections):

f1:(r: R) = As
fo:(r:R) — Ay (f17)

(42)
fn~: (r:R)— Ay (f17) ... (fau1 1)

Note that the type A; of each field can depend on the values of the
previous fields £; 7 for j < i. For example, ¥,.4 (B z) can be
defined as a record with two projections fst : Y44 (B z) —» A
andsnd : (p: ¥z.a (B x)) — B (fst p).

To construct an element of the record type from values x; :
Ai,...,xn : An 1 ... Tn_1, We use the syntax record{f; =
Z1;...;fn = zn}. Applying one of the projections to a record
constructed this way gives back the field:

(43)

One of the properties that sets a record type apart from a regular
data type with a single constructor, are the additional laws for
equality of records called n-laws (not to be confused with the n-law
for functions). The n-law for the record R states that for any r : R,
we have

f; (record{f; = x1;...;fn =an}) = x;

(44)

We use this n-law to construct two unification rules. The first
rule applies 7 to expand a variable of record type into its constituent
fields, while the second rule performs a similar expansion on an
equation between two elements of a record type. ®

r =record{f; =fir;...;fn = o 1}

8 A cubical type theorist would say these are two instances of the same rule.



n-expansion of a variable. LetR : Set; be the record type with
fields given by (42). Then the rule nvary is the equivalence:

(fr:A)o(fa: An fi oo fucr)  (45)

Example 6. This rule is especially useful for solving equations
where one side is a projection applied to a variable, for example:

nvarg : (r:R) ~

(p: N x N)(e: fst p =n zero)
~ (z:N)(y: N)(e: z =n zero)
~ (y:N)

where A x B stands for ¥, 4)(Az. B) if B doesn’t depend on .

(46)

The construction of nvary is straightforward: nvar r is defined
by f1 7;...;f, 7, while nvar™* fi ... f, is defined by
record{f:; = fi;...;fn = fn}. The proofs of both isLinv and
isRinv are simply refl: in the former case this is type-correct
because of the n-law (44), and in the latter case because of the
computation rules for projections (43).

The nvar rule also satisfies all the computational properties of
a strong unification rule. The first property is trivial as this rule
does not involve equations. The second property also holds since
record{f; = f; 7;...;f, = £, 7} = r by the n law. Finally,
the third property holds as well since isLinv nvar r is always
definitionally equal to refl.

n-expansion of an equation. LetR : Set; again be a record type
with fields given by (42). Then 7neqg is the equivalence:

(er:f17r =4, f18)...
en_1 o 8)

Example 7. This rule is useful when one side of an equation is of
the form record{...}. For example, if f : N — N x N, then

neq: (e:r =g s) 47)

(en cfar =A, e ...

(zyz:N)(e:z,y =nxn [ 2)
~(xzyz:N)er:z=n1Est (fz))(e
~ (y z:N)(ez2 : y =n snd (f 2))

~ (z:N)

21y =nsnd (f 2))

(48)

To construct neq, we rely on nvar and cong: we define neq e =
cong nvar e and neq ' € = cong nvar ' é. The proofs of
isLinv and isRinv are straightforward applications of J. The
computational behaviour of neq is also trivially correct since neq,

neq ', isLinv neq and isRinv neq all map refl to refl.

6.2 Reverse Unification Rules

In Section 4.3 we noted that the unification rules for indexed data
types require that the type of the final equation is the data type
applied to equation variables. We also saw that this restriction can
be loosened for the conflict and cycle rules (Lemma 3 and 5),
and also for the injectivity rule in case the index types satisfy
K (Lemma 6). But there are plenty of cases where we want to apply
injectivity but the type is not of this form.

Luckily, we can still make progress by first generalizing the
indices in the type of the equation before we apply injectivity. We
do this by applying the solution and injectivity rules in the reverse
direction. This is possible since equivalence is a symmetric relation.
However, it is necessary to check that the reversed rule still has good
computational behaviour as described in Definition 8.

Example 8. Consider the unification problem sing £ =singieton «
sing x where Singleton : A — Set is the data type from
the introduction (with one constructor sing : (z : A) —
Singleton A z). Then we cannot apply injectivitysing since
the index x is a regular variable rather than an equation variable.
To transform the unification problem to the required form, we can
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apply the solution rule (19) in the reverse direction. Instead of
solving an equation, this introduces a new variable y and an equation
€1 T =AY

(z : A)(e: sing & =singleton » Sing )

~ (zy:A)(er:x=4y)(e2: Sing & =singleton e, Singy)
z(xg:A)(g:xEAy)
~ (z: A)

(49)

Example 9. Sometimes, it is necessary to apply injectivity (21)
in the reverse direction as well as solution. For example, if we
have an equation cons 1 & TS =yec A (suc n) CONS N Y ys then we
cannot apply injectivitycons Straight away. Instead, we first apply
the rules solution and injectivitysuc in the reverse direction
to transform the type of this equation:

(n:N)(zy:A)(zsys:Vec An)

(e:cons n T T8 =yec A (suc n) CONS N Y YS)

mn: N)(ﬂc y: A)(zs: Vec Am)(ys: Vec An)

e1:m=nn)

€2 1 CONS M T TS =yec A (suc e;) CONS N Y YS)
N)(z y: A)(zs: Vec Am)(ys:Vec An)

suc m =y suc n

CONS M T TS =yec A e; CONS N Y YS)

mn:
€1
€9

(50)

1

(
(e
(
(
(
(e2

(mn:N)(zy:A)(zs:Vec Am)(ys:Vec An)
(ex:m=nn)(ez: o =ay)(es: TS =vec A ey Y5)
(n:N)(z: A)(xs: Vec An)

~
~

Here is a general strategy for applying reverse unification rules:

If an index is a regular variable = : A instead of an equation
variable, we ‘duplicate’ the variable by applying solution in
reverse. This introduces an additional variable y : A and an
equatione : x =4 y.

If an index is a constructor c of a simple data type, first make
sure that all the arguments of this constructor are equation
variables (by applying this strategy recursively), and then apply
injectivity. in reverse.

If an index is not a variable or a constructor, or all indices are
variables but they are not distinct, then we give up.

The injectivity rule for constructors of indexed data types (24) is
much harder to apply in the reverse direction.

Example 10. Let f : A — B be afunctionand IM f : (z : A) —
Im f (f x) — Set be a data type with one constructor IMAGE :
(z: A) — IM A z (image x) (This type characterizes the graph of
the constructor image). Then we can apply the injectivityinage
rule in reverse to solve the following unification problem:

(zy:A)(er:z=ay)

( P IMAGE & =1 f (f eq) (image e;) IMAGE y)
zy:A)ler: fr=afy)

€2 : image & = f ., image y)

(

( (51
(e3: IMAGE =y f ¢, ¢, IMAGE y)

(

(

12

zy:A)(e:z=ay)

z:A)

In general, it may be difficult to apply the injectivity rule for
constructors of indexed data types automatically as we need to
match the indices in the type of the equation against the indices in
the type of the constructor.

~



6.3

Higher inductive types are an interesting new concept from HoTT.
They are defined like regular inductive types, except that they can
also have path constructors that introduce additional equalities be-
tween elements of the type. This means that they do not necessarily
satisfy the injectivity, conflict, and cycle rules anymore. But it is
possible to construct new unification rules for higher inductive types
on a case-by-case basis.

Unification for Higher Inductive Types

Example 11. The interval I is a higher inductive type with two
point constructors O : I and 1 : I and one path constructor
line : 0 = 1. We have the following equivalence:

contract: (e: 0= 1) ~() (52)

Note that contract ™" () = line, so if we use this equivalence
as a unification rule, we won’t get a strong unification rule as a
result. Maybe it is possible to weaken this requirement a bit by not
requiring refl as such, but merely some canonical form. But this
means that we also need computation rules for functions applied to
higher constructors, which is still an open problem. So for now, we
have to settle for a weaker kind of unification rules that don’t have
the proper definitional behaviour, but still produce an equivalence
of the correct type.

More generally, any equivalence constructed by the encode-
decode method (Licata and Shulman 2013; McKinna and Forsberg
2015) could in principle be used as a unification rule. However, be
aware that these custom unification rules can introduce additional
variables, for example the rule for the circle introduces a variable of
type Z! It is not yet clear how to extend the syntax of definitions by
pattern matching in order to deal with these variables, so we see this
as an interesting direction for future work.

7. Implementation

As we mentioned in the introduction, our main motivation for study-
ing unification in a dependently typed setting is for typechecking
definitions by dependent pattern matching, and especially to get a
workable and sound approach for dealing with heterogeneous equa-
tions. So how does an algorithm based on unifiers as equivalences
work out in practice? We rewrote the unification algorithm used by
the Agda language according to the ideas presented in this paper.
This resulted in both a number of bugfixes (Section 7.1) and a much
cleaner implementation than before (Section 7.2).

7.1 Impact on the Agda User

From the point of view of a user of Agda, unification is something
that happens behind the scenes while checking definitions by pattern
matching, so a different algorithm doesn’t impact the syntax of the
language directly. Instead, the main criterion a user of Agda should
judge the unification algorithm by is that it accepts the definitions
that should be accepted, and rejects the definitions that should be
rejected. That our implementation satisfies the latter can be seen
from the fact that our implementation directly resulted in a fix
for issue #1408 (Vezzosi 2015) on the Agda bug tracker’, dealing
with an incompatibility between heterogeneous equations and the
—without-K option. Equally important, our implementation provides
a much more principled solution to issues #292 (Danielsson 2010)'°,
#1071 (Danielsson 2014), #1406 (Abel 2015a)"', #1411 (Abel
2015b), and #1427 (Abel 2015¢)"*. All these issues are fixed without
introducing special cases in the code and without limiting the power

9 See Example 5 in Section 3 for a simplified description of this issue.
10 See Example 5 in Section 3.
11 See Example 4 in Section 3.

12 See Example 4 in Section 3.
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of the unification algorithm in any significant way, as can be seen
from the fact that Agda’s test suite and standard library are still
typechecked correctly. This is in contrast to the previous ad-hoc
fixes to some of these issues, which broke the unification algorithm
in some useful cases, see for example issue #1435 (Danielsson
2015).

The addition of the new unification rules for n-equality of record
values also significantly improved the way Agda handles records. In
particular, the addition of these rules fixed the issues #635 (Peebles
2012) and #1613 (Abel 2015d), and provides a more principled
solution to issue #473 (Danielsson 2011).

There is still a small number of cases where our implementation
fails to apply the injectivity rule, since we haven’t yet implemented
the reverse unification rules described in Section 6.2. Luckily,
these cases only occur when the —without-K option is enabled, for
otherwise we can apply Lemma 6. Still, we would like to implement
these reverse unification rules as well in the future.

7.2 Impact on the Agda Codebase

For the further development of Agda, it is important that the
unification machinery is robust and easily extensible with further
rules. For this reason, we separated it into two logical parts: a
unification strategy and the unification engine. Both parts make use
of the same data structures for representing the unification state and
unification rules, as shown in Figure 3. The unification strategy takes
a unification state as an argument and produces a list of unification
rules to try (see Figure 4), while the unification engine tries to apply
these rules one by one until one succeeds (see Figure 5).

A big difference between our implementation and Agda’s previ-
ous unification algorithm is that our version explicitly manipulates
telescopes of free variables (varTel) and equations (eqTel) as well
as explicit substitutions between these telescopes, while previously
these had to be reconstructed after unification was finished. This
change resulted in a significant simplification of the code for check-
ing left-hand sides and coverage of definitions by pattern matching
(the parts of Agda that use the unification algorithm).

An important choice when constructing a unification strategy
is whether to start on the leftmost or the rightmost equation. It
seems sensible to start on the left in order to avoid heterogeneous
equations as much as possible, and this was also the preferred
method for the old algorithm. However, our unification rules for
indexed data types actually benefit from having unsolved equations
in the telescope, so a unification algorithm that starts from the
right has more opportunities to apply these rules. For this reason,
our current implementation uses a right-to-left strategy, although
plugging in a different strategy would be trivial.

In terms of code size, the old version of the unification algorithm
consisted of 989 source lines of code (sloc), while the new version
has 893 sloc. Overall, the entire patch containing the unifier and
all necessary changes to other parts of the codebase consists of
1,840 insertions and 1,760 deletions. While the length of the code
didn’t change significantly, we believe the new code is clearer, more
maintainable, and easier to extend.

8. Related Work

Unification is a large area of research that we cannot hope to cover
here. We refer the interested reader to Jouannaud and Kirchner
(1990) and Baader and Snyder (2001) for a general overview of
the subject. Most extensions to unification that are discussed, such
as higher-order unification and E-unification, are orthogonal to the
work in this paper, although it would be interesting to see how they
fit within our framework.

Goguen (1989) takes a categorical view on unification, represent-
ing most general unifiers as equalizers in a category of types and
substitutions. It shouldn’t be surprising that many of the category-



data UnifyState = UState

{ varTel :: Telescope
, flexVars :: FlexibleVars
, eqTel :: Telescope
, eqLHS [Term]
, eqRHS [Term]
}

data UnifyStep
= Deletion { .}
| Solution {...1}
| Injectivity {...}
| Conflict {...1}
| Cycle {...}
| EtaExpandVar {...}
| EtaExpandEquation {...}
| LitConflict {...}
| StripSizeSuc {...}
| SkipIrrelevantEquation { ... }
| TypeConInjectivity {...}

Figure 3. The data types used for representing unification states
and unification rules closely follow the theory. In addition to the
unification rules presented in this paper, Agda also has unification
rules for dealing with literals, sized types (Abel 2010) and irrelevant
equations (Abel 2011), features not discussed in this paper. There is
also a rule for injective type constructors that is only used when this
is enabled explicitly by the user.

type UnifyStrategy =
UnifyState -> ListT TCM UnifyStep

skipIrrelevantStrategy basicUnifyStrategy
dataStrategy literalStrategy etaExpandVarStrategy
etaExpandEquationStrategy injectiveTypeConStrategy
simplifySizesStrategy checkEqualityStrategy

:: Int -> UnifyStrategy

Figure 4. A unification strategy takes a unification state and pro-
duces a list of unification steps to try in order. For constructing
unification strategies, we provide a number of basic strategies that
can be combined in any order.

unifyStep :: UnifyState -> UnifyStep
-> UnifyM (UnificationResult’ UnifyState)
unify :: UnifyState -> UnifyStrategy

-> UnifyM (UnificationResult’ UnifyState)

Figure 5. The unification engine consists of an auxiliary function
unifyStep that tries to apply one unification step, resulting in either
a new state, an absurdity (e.g. for the conflict and cycle rules), or a
failure, and the main function unify that tries all steps suggested by
a given strategy, and continues until either the unification problem
is solved (i.e. the equation telescope is empty) or there are no more
rules left to try.
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theoretic notions are very analogous to the type-theoretic ones pre-
sented in this paper. For example, giving an explicit type to the do-
main of substitutions helps to avoid problems with non-uniqueness
in the definition of a most general unifier in other presentations.
Compared to the category-theoretical presentation of unification,
our work adds support for indexed data types, and it also differs in
the fact that type theory allows an internal representation of equa-
tions as (telescopic) equality types.

The idea to represent unification problems at the object level by
using the identity type stems from McBride (1998b). In McBride’s
paper, the types of equations are limited to simple (non-dependent)
types, and the injectivity rule is likewise limited to simple data
types. McBride (2002) solves this by introducing a heterogeneous
identity type. However, the K axiom is needed to turn heterogeneous
equalities back into homogeneous ones. Additionally, postponing
equations is not supported, as heterogeneous equations can only
be turned into homogeneous ones if the types are equal. Cockx
et al. (2014) solve the problem of requiring the K axiom, but the
unification rules still only work on the first equation in a telescope.
As a consequence, they have to limit the injectivity, conflict, and
cycle rules to work only in homogeneous situations, while we can
use them in their fully general form.

Our approach is closely related to the notion of inversion of an
inductive hypothesis (Cornes and Terrasse 1995; Monin 2010). The
usual approach to inversion works by crafting a special-purpose di-
agonalizer that is used as the motive for an eliminator. Alternatively,
unification can also be used for proving inversion lemmas (McBride
1998b). The advantage of the diagonalizer approach is that it moves
most of the work to the type level, potentially improving perfor-
mance of the resulting function. The process of constructing diago-
nalizers has recently also been automated (Braibant 2013). However,
it requires that the indices of the inductive hypothesis we are invert-
ing can be written as a pattern, which is not always the case (e.g.
they may be non-linear), so the approach based on unification seems
to be more general. It would be interesting to try to implement an
inversion tactic based on the unification algorithm in this paper to
see how the two approaches compare in power.

Type checkers of dependently typed languages typically have
some facility for meta-variables that are solved by higher order
pattern unification. This is not directly related to the work in this
paper as the requirements on the unification algorithm are very
different. For example, these unification algorithms suppose all
rigid symbols (including type constructors) to be ‘injective’ for
the purpose of unification. Some algorithms even consider defined
functions to be rigid (Ziliani and Sozeau 2015) or make use of
user-provided hints to choose one solution over the other (Asperti,
Ricciotti, Coen, and Tassi 2009), thereby giving up on finding most
general unifiers in favour of finding solutions more often. In this
case, the only problem is that the solution to the metavariable may
not be what the user intended. In contrast, our algorithm produces
evidence of unification internal to the theory we’re working in, and
it is actually important that the unifier found by the algorithm is
indeed the most general one (otherwise we might lose e.g. coverage
of functions by pattern matching). Still, it would be an interesting
line of research to further investigate the similarities and differences
between these two unification algorithms.

9. Conclusion and Future Work

The main advantage of a dependently typed language over a simply
typed one is the possibility to express and enforce correctness
properties in the language itself, rather than externally. In this
paper, we apply this idea to unification by demanding evidence
of unification in the form of an equivalence between telescopic
equalities. This concept of unifiers as equivalences allows us to give
a precise correctness criterion for unification rules, and guides us



in the implementation of a cleaner and more correct version of the
unification engine used for dependent pattern matching in Agda.

In this work, we focus on one application, namely specialization
by unification and its role in the compilation of dependent pattern
matching. However, we believe firmly that it could also be applied
elsewhere, for example for metaprogramming, tactic systems, or
perhaps even dependently typed logic programming.

In the future, it would be interesting to further explore the corre-
spondence between unification rules and new features of type theory.
For example, it seems that E-unification (unification modulo a set of
equations) corresponds to new unification rules for higher inductive
types. As another example, higher-order (pattern) unification could
correspond to functional extensionality as a unification rule. And
since the univalence axiom is itself an equivalence, maybe it could
be seen as a unification rule as well?

Another interesting prospect is to put the power of unification in
the hands of the user by allowing them to define custom unification
rules in the form of hints (Asperti et al. 2009). For example, if the
user can provide a proof of (f  =p f y) ~ (x =a y) for some
function f : A — B, then this could be used as an injectivity rule
for f by the unifier.

Finally, there is the question if we can internalize even more of
the unification algorithm: not just unification problems and their
solutions, but also the unification engine and unification strategy
described in Section 7. This would definitely be a big step towards a
verified typechecker for a dependently typed language implemented
in the language itself.
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