
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

Dependent pattern matching
and proof-relevant unification

Jesper Cockx

Dissertation presented in partial
fulfilment of the requirements for the

degree of Doctor of Engineering
Science (PhD): Computer Science

June 2017

Supervisors:
Prof. dr. ir. F. Piessens
Dr. D. Devriese

Dependent pattern matching
and proof-relevant unification

Jesper COCKX

Examination committee:
Prof. dr. ir. H. Hens, chair
Prof. dr. ir. F. Piessens, supervisor
Dr. D. Devriese, supervisor
Prof. dr. ir. G. Janssens
Prof. dr. ir. B. Jacobs
Prof. dr. ir. T. Schrijvers
Prof. dr. P. Wadler
(University of Edinburgh)

Prof. dr. A. Abel
(Chalmers University)

Dissertation presented in partial
fulfilment of the requirements for
the degree of Doctor of Engineering
Science (PhD): Computer Science

June 2017

© 2017 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Jesper Cockx, Celestijnenlaan 200A box 2402, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

Preface

Acknowledgements. Thank you to my promotors Frank and Dominique for
your advice and constant support. This thesis would never have existed without
you, obviously.

Thank you to the jury members who did an excellent job at reading everything
in this thesis critically and providing very useful feedback. It may be a cliché,
but I think the text really improved a lot thanks to you.

Thank you to the FWO for giving me the opportunity to work on this fascinating
subject during these four years.

Thank you to Andreas, Ulf, Nils, Andrea, Guillaume, James, Víctor, Fredrik, and
all the other Agda developers and regular attendants of the Agda Implementor’s
Meeting. These meetings are always a lot of fun and were a great source of
inspiration for this thesis.

Thank you to my office mates Mathy and Raoul, for respectively not hacking
my devices1 and coming out of your enclave occasionally2. We certainly had a
lot of fun and interesting discussions during these four years. Just try not to
quarrel too much when not there.

Of course also thanks to everyone in our lunch group (past and present): Frédéric,
Milica, Pieter, Rula, Jan Tobias, Marco, Raoul, Mathy, Gitte, Neline, Andreas,
Jo, Sven, Dimitri, Kobe, Stelios, Lau, and Vera. Our mission to make lunch
great again was a big triumph.

Thank you to the secretaries and the DistriNet business office for helping me
with all kinds of practical matters and making the department such a nice place
to work.

1Unless you did hack them and you didn’t tell me.
2Also thanks for the moelleux.

i

ii PREFACE

The members of Visionary Investments deserve my sincere gratitude for the
excellent coffee. I don’t know whether I would have survived four years on bad
coffee. Jonathan also deserves special thanks for all the interesting coffee breaks
during the day and whisky tastings at night.

Thanks also to Kristof, Rinde, Emad, Tung, and Jonathan for the fun at the
after-work LAN parties. When do you have time for another one?

Last and perhaps most of all, thanks to my parents for their love, support,
encouragement, and help during the last four years as well as all the years
before. You’re the best.

Abstract

Dependent type theory is a powerful language for writing functional programs
with very precise types. It is used to write not only programs but also
mathematical proofs that these programs satisfy certain properties. Because of
this, languages based on dependent types – such as Coq, Agda, and Idris – are
used both as programming languages and as interactive proof assistants.

While dependent types give strong guarantees about your programs and proofs,
they also impose equally strong requirements on them. This often makes it
harder to write programs in a dependently typed language compared to one with
a simpler type system. For this reason certain techniques have been developed,
such as dependent pattern matching and specialization by unification. These
techniques provide an intuitive way to write programs and proofs in dependently
typed languages.

Previously, dependent pattern matching had only been shown to work in
a limited setting. In particular, it relied on the K axiom – also known as
the uniqueness of identity proofs – to remove equations of the form x = x.
This axiom is inadmissible in many type theories, particularly in the new and
promising branch known as homotopy type theory (HoTT). As a result, programs
and proofs in these new theories cannot make use of dependent pattern matching
and are as a result much harder to write, modify, and understand. Additionally,
the interaction of dependent pattern matching with small but practical features
such as eta-equality for record types and postponing of unification constraints
was poorly understood, resulting in subtle bugs and inconsistencies.

In this thesis, we develop dependent pattern matching and unification in a
general setting that does not require the K axiom, both from a theoretical
perspective and a practical one. In particular, we present a proof-relevant
unification algorithm, where each unification rule produces evidence of its
correctness. This evidence guarantees that all unification rules are correct by

iii

iv ABSTRACT

construction, and also gives a computational characterization to each unification
rule.

To ensure that these techniques are sound and will stay so in face of future
extensions to type theory, we show how to translate them to more basic primitive
constructs, i.e. the standard datatype eliminators. During this translation, we
pay special attention to the computational content of all constructions involved.
This guarantees that the intuitions from regular pattern matching carry over to
a dependently typed setting.

Based on our work, we implemented a complete overhaul of the algorithm
for checking definitions by dependent pattern matching in Agda. Our new
implementation fixes a substantial number of issues in the old implementation,
and is at the same time less restrictive than the old ad-hoc restrictions. Thus it
puts the whole system back on a strong foundation. In addition, our work has
already been used as the basis for other implementations of dependent pattern
matching, such as the Equations package for Coq and the Lean theorem prover.

The work in this thesis eliminates all implicit assumptions introduced to the
type theory by pattern matching and unification. In the future, we may also
want to integrate new principles with pattern matching, for example the higher
inductive types introduced by HoTT. The framework presented in this thesis
also provides a solid basis for such extensions to be built on.

Beknopte samenvatting

Afhankelijke typetheorie is een krachtige taal voor het schrijven van functionele
programma’s met zeer precieze types. In deze taal kunnen niet alleen
programma’s geschreven worden, maar ook wiskundige bewijzen dat deze
programma’s voldoen aan bepaalde eigenschappen. Om deze reden worden
talen gebaseerd op typetheorie – zoals Coq, Agda, en Idris – zowel gebruikt als
programmeertalen alsook als interactieve bewijsassistenten.

Hoewel afhankelijke types sterke garanties geven over programma’s en bewijzen,
stellen ze evenzeer zware eisen in het gebruik. Dit maakt het dikwijls moeilijker
om programma’s te schrijven in een afhankelijk getypeerde taal dan in een taal
met een eenvoudiger typesysteem. Om deze reden zijn bepaalde technieken
ontwikkeld, zoals afhankelijke patroonherkenning en specialisatie door middel
van unificatie. Deze technieken maken het veel intuïtiever om programma’s en
bewijzen te schrijven in afhankelijk getypeerde talen.

Afhankelijke patroonherkenning was voorheen echter niet algemeen toepasbaar.
Het hing met name af van het K-axioma – ook bekend als de uniciteit van
identiteitsbewijzen – om vergelijkingen van de vorm x = x af te handelen. Dit
axioma is ontoelaatbaar in vele varianten van typetheorie, in het bijzonder in
een nieuwe en veelbelovende stroming genaamd homotopietypetheorie (HoTT).
Bijgevolg kunnen programma’s en bewijzen in zulke varianten geen gebruik
maken van afhankelijke patroonherkenning, waardoor ze moeilijker zijn om
te schrijven, aan te passen, en te begrijpen. Bovendien begreep men
onvoldoende de interactie tussen afhankelijke patroonherkenning en kleine maar
praktische eigenschappen zoals eta-gelijkheid voor record types en uitgestelde
unificatieproblemen, wat resulteerde in subtiele fouten en inconsistenties.

In deze thesis ontwikkelen we afhankelijke patroonherkenning en unificatie zowel
vanuit een theoretisch als een praktisch perspectief, zonder te vertrouwen op het
K-axioma. We geven hiervoor een bewijs-relevant unificatiealgoritme, waarbij
elke unificatieregel een getuigenis produceert van zijn eigen correctheid. Deze

v

vi BEKNOPTE SAMENVATTING

getuigenis garandeert dat alle unificatieregels correct zijn per constructie, en
geeft daarnaast een computationele interpretatie aan elke unificatieregel.

Om ervoor te zorgen dat deze technieken consistent zijn en dat ook zullen blijven
bij toekomstige uitbreidingen, tonen we hoe deze vertaald kunnen worden naar de
basisprincipes van de typetheorie, i.e. de standaard datatype-eliminatoren. In de
loop van deze vertaling besteden we bijzondere aandacht aan de computationele
inhoud van elke constructie. Op deze manier garanderen we dat de intuïties
uit reguliere patroonherkenning overgedragen kunnen worden naar afhankelijke
patroonherkenning.

Op basis van ons werk geven we een volledig nieuwe implementatie van
het unificatiealgoritme dat Agda gebruikt om definities met afhankelijke
patroonherkenning te controleren. Onze nieuwe implementatie lost een
substantieel aantal problemen op in de oude implementatie, en is bovendien
minder restrictief dan de oude ad-hoc beperkingen. Ons werk is daarnaast
reeds gebruikt als de basis voor andere implementaties van afhankelijke
patroonherkenning, zoals het Equations-pakket voor Coq en de bewijsassistent
Lean.

Het werk in deze thesis elimineert alle impliciete veronderstellingen die
geïntroduceerd werden door patroonherkenning en unificatie. In de toekomst
willen we ook nieuwe principes integreren met patroonherkenning, zoals
bijvoorbeeld hoger-inductieve types uit HoTT. Deze thesis geeft een solide
fundament om zulke uitbreidingen op te bouwen.

Contents

Abstract iii

Contents vii

1 Introduction 1

1.1 Type theory . 3

1.2 Pattern matching and unification 9

1.3 Homotopy type theory . 16

1.4 Desugaring pattern matching 19

1.5 Three recurring themes . 21

1.6 Overview and contributions . 27

2 Dependent pattern matching 33

2.1 Agda Lite: a minimal language with dependent pattern matching 34

2.2 Checking definitions by dependent pattern matching 45

2.3 Pattern matching without K . 53

2.4 Related work . 61

3 Proof-relevant unification 65

3.1 Unification in dependent type theory 67

vii

viii CONTENTS

3.2 Unification rules . 75

3.3 Computational behaviour of unification rules 82

3.4 Higher-dimensional unification 87

3.5 Implementation . 98

3.6 Related work . 102

4 Back to eliminators 105

4.1 Basic constructions on constructors 106

4.2 Two useful techniques . 116

4.3 From pattern matching to eliminators 119

5 Conclusion 127

5.1 Discussion and future work . 128

Index 137

Bibliography 141

Curriculum 149

List of publications 151

Chapter 1

Introduction

The Wheel of Time turns, and Ages come and pass, leaving
memories that become legend. Legend fades to myth, and even myth
is long forgotten when the Age that gave it birth comes again. In
one Age, called the Third Age by some, an Age yet to come, an Age
long past, a wind rose in the Mountains of Mist. The wind was
not the beginning, there are neither Beginnings nor Endings to the
turning of the Wheel of Time. But it was a beginning.

— Robert Jordan (1990)

Programming is hard. This is proven again and again by the numerous bugs,
vulnerabilities, and other weird behaviours in the software we use every day.
Tests, code reviews and better methodologies can catch some of these problems,
but never eliminate all of them. Languages based on dependent type theory,
such as Coq (The Coq development team, 2016), Agda (The Agda development
team, 2016) and Idris (The Idris community, 2017), promise a way out of this
mess by allowing us to write proofs that a program matches its specification.
The typechecker can check these proofs automatically, thus guaranteeing with
absolute certainty that the program works as intended.

Compared to other tools for program verification, dependently typed languages
are unique in the fact that they combine both programs and proofs in the same
language. This means the same language can be used both as a programming
language and as an interactive proof assistant. In particular, the same techniques
that are used for writing programs can also be used for writing proofs about
these programs.

1

2 INTRODUCTION

Dependent pattern matching is a powerful example of such a technique for
writing programs and proofs in dependently typed languages (Coquand, 1992).
It combines the intuitive notation of pattern matching from functional languages
such as Haskell and ML with the mathematical techniques of case analysis and
induction. Concretely, it allows you to define a function simply by stating a
number of equalities that it should satisfy. Hence the computational meaning
of a function defined by dependent pattern matching is immediately obvious
from its definition.

Compared to other, more primitive notions to define functions in dependent
type theory, dependent pattern matching automates many steps that can be
performed purely mechanically. In particular, during case analysis there are
certain equations that have to be solved in each subcase. Dependent pattern
matching relies on a unification algorithm to solve these equations automatically.
This means definitions by dependent pattern matching are often much shorter
and easier to read compared to the more primitive techniques.

However, the original formulation of dependent pattern matching by Coquand
only works in a limited setting. In particular, it is incompatible with new
versions of dependent type theory such as homotopy type theory (HoTT) (The
Univalent Foundations Program, 2013). The source of this limitation lies in the
unification algorithm that is employed for case splitting, which relies implicitly
on two axioms – the K axiom and the injectivity of type constructors – that
are incompatible with HoTT.

This thesis removes all implicit assumptions from dependent pattern matching
and puts it on a solid theoretical basis. To do so, we1 present a proof-relevant
unification algorithm that produces for each unifier it produces an accompanying
proof of its correctness. In this chapter, we introduce the main topics of this
thesis. Section 1.1 gives a general overview of the setting: type theory and
dependent types. Section 1.2 then zooms in on dependent pattern matching
and specialization by unification. Section 1.3 highlights some of the problems
that occur when using the original formulation of dependent pattern matching
together with HoTT. To get to the root of this problem, Section 1.4 show how to
translate definitions by pattern matching to the more basic datatype eliminators.
Section 1.5 rounds out the introduction by discussing three recurring themes of
this thesis: proof relevance, axiomatic freedom, and computational behaviour.
Finally, Section 1.6 gives an overview of the rest of the thesis and lists its main
technical contributions.

1Throughout this thesis, I use ‘I’ only for the Contributions section; elsewhere I prefer to
use ‘we’. If you want, you can think of it as an adventure we go on together.

TYPE THEORY 3

1.1 Type theory

Beware of bugs in the above code; I have only proved it correct,
not tried it.

— Donald Knuth (1977)

A type system is a discipline imposed on computer programs to rule out some
class of programs that don’t make sense while keeping those that do. For
example, a type system ideally allows you to write 1 + 1, but will yell at you
if you write something like 1 + “one”. It does so by assigning types to certain
parts of a program, such as Int for integers or String for strings.

If some program part a has type T , then it is written:

a : T (1.1)

For example, 1 : Int and “one” : String.

Type systems are used in more programming languages and in more varieties
than would be feasible to name here. One thing they have in common is that
they are conservative: they always rule out some ‘good’ programs together
with the bad ones. One of the main driving forces behind the development of
new type systems is then to increase their power so they recognize more ‘good’
programs while still ruling out the bad ones.

At this point, it may seem that type systems are only there to put increasingly
strict requirements on what programs you’re allowed to write. This is indeed
why type systems were added to programming languages in the first place: to
prevent bugs. However, people have discovered that type systems are good for
more than just ruling out errors from their programs:

• Types serve as documentation to your programs, describing the meaning
and intention of each piece of code.

• Types give a clear interface to your programs, allowing you to easily
compose software components.

• Types restrict the possible inputs of a program, so the compiler can
optimize your code more heavily for those specific inputs.

• Types give more structure to your programs, so programming environments
can use this structure to help you with refactoring a piece of code.

All of these goals benefit from having expressive types that give as much
information as possible about their terms.

4 INTRODUCTION

1.1.1 The simply typed lambda calculus

Even before the first programming language was invented, type systems were
already studied by mathematicians. One of the first of such systems is the
simply typed lambda calculus (STLC) by Church (1940), which he used to
rule out the paradoxes in the untyped lambda calculus. Since then, STLC
has been used by computer scientists as a simple model of a typed functional
programming language. Because it is so easy to extend, it has been used as
a basis for studying many other type systems, including the dependent type
theory used in this thesis.

The main power of STLC comes from its simplicity. It has only one way to
construct types: the function type A → B, where A and B can be arbitrary
types (including other function types). If we have a function f : A → B and
some value u : A, then we can apply f to u to get f u : B. Conversely, if we
have some v : B in which there may occur some variable x : A, then we can
construct the lambda-abstraction λx. v : A→ B.

Any function in STLC is necessarily total: it is defined for all possible inputs and
evaluating it is guaranteed to terminate. It is possible to waive this restriction
by introducing a fixpoint combinator. In this thesis (and in dependent type
theory in general) we keep this restriction and instead extend the language in
different ways while keeping the guarantee that all functions are total.

Usually, STLC is extended with one or more base types, such as the type Bool
of booleans true and false and the type N of unary natural numbers zero,
suc zero, suc (suc zero), . . . Other examples are the unit type > consisting of
the single element tt and the empty type ⊥ with no elements at all (whose use
will become apparent in the next section). STLC can also be extended with
other type constructors besides the function arrow, such as the product type
A × B consisting of pairs (x, y) where x : A and y : B, and the sum type A] B
consisting of elements left x for x : A and right y for y : B.

All these types are examples of (algebraic) datatypes. A datatype is a type
inductively defined by a number of constructors. For example, Bool is defined
by the two constructors true and false, and N has the two constructors zero
and suc. The fact that datatypes are defined inductively is what makes it
possible to do pattern matching on them (Section 1.2).

1.1.2 Propositions as Types

Curry (1934) and Howard (1969) noted a curious correspondence between
functions in the simply typed lambda calculus and implication in (intuitionistic)

TYPE THEORY 5

propositional logic: types can be seen as propositions, and an element of a
type can be seen as a proof of the corresponding proposition. Under this
correspondence, a function type A→ B corresponds to an implication A⇒ B,
and any function f : A→ B corresponds to a proof of the implication A⇒ B.
Indeed, a function from A to B gives us exactly a way to transform an arbitrary
proof of A into a proof of B. Moreover, there is a similar correspondence
between other types and propositions:

• The product type A × B corresponds to the conjunction A ∧B.

• The sum type A] B corresponds to the disjunction A ∨B.

• The unit type > corresponds to the trivial proposition true.

• The empty type ⊥ corresponds to the absurd proposition false.

In particular, the type A→ ⊥ corresponds to the negation ¬A.

This remarkable idea, now known as the propositions-as-types principle, the
proofs-as-programs principle, or the Curry-Howard(-de Bruijn) correspondence,
allows us to use a type checker also as a proof checker: a correct proof corresponds
to a well-typed program, so we can use the typechecker to check whether any
given proof is correct.

It is essential that all functions are total for the propositions-as-types principle
to be valid: a function that’s only partially defined or that doesn’t terminate
isn’t worth anything as a proof. So by restricting our language to total functions,
we have gained the ability to use well-typed functions as valid mathematical
proofs.

There is a third component to the Curry-Howard correspondence besides
propositions-as-types and proofs-as-programs: evaluation of a program
corresponds to a simplification of the proof. This means that evaluation can
turn an indirect proof into a direct one. For example, if we have proofs a : A
and b : B, then we can prove A by first constructing the pair (a, b) : A × B
and then applying the function fst : A×B → A to it. But of course there is a
simpler proof of A: a itself. So by evaluating fst (a, b) to a, we have turned an
indirect proof into a direct one.

When viewed through the lens of propositions-as-types, STLC is an intuitionistic
logic in the sense of Brouwer (1923). This means certain laws such as the
excluded middle (for all A, we have A ∨ ¬A) fail to hold. The reason is the
decidedly constructive character of our logic: a proof of A ∨B (i.e. an element
of type A] B) can be evaluated to get either an element of type A or of type
B. In particular, an element of type A] (A → ⊥) gives us an effective way

6 INTRODUCTION

to decide whether the type A is inhabited. Hence the removal of the excluded
middle is not as a limitation of the theory, but rather a broadening of the scope:
we can talk about arbitrary types, not just the ones with decidable equality (i.e.
the ones for which the excluded middle holds)!

The propositions-as-types principle runs both much deeper and much broader
than the link between simply typed lambda calculus and intuitionistic
propositional logic. Since its discovery, many other links between logics on
the one hand and type systems on the other have been discovered. Wadler
(2015) gives an excellent survey of the subject. For the purpose of this thesis
in particular, we are interested in one powerful extension: the correspondence
between predicate logic and dependent types.

1.1.3 Dependent types

If we look at predicate logic (i.e. the kind of logic with ‘for all’ and ‘there exists’
quantifiers) through the lens of propositions-as-types, we get dependent types.
These dependent types were first discovered by Howard (1969) and de Bruijn
(1970) and developed into a full system by Martin-Löf (1972), now known as
Martin-Löf type theory (MLTT).

As the name suggests, dependent types are types that depend on some value.
The classic example of a dependent type is the type Vec A n of vectors consisting
of exactly n elements of type A, where n is an arbitrary expression denoting a
natural number such as 3 or 1 + 2 ∗ k.

Dependent function types. The dependent function type (x : A)→ B x is a
generalization of the regular function type where the result type B x can depend
on the argument x. A function f : (x : A)→ B x can be applied to an element
a : A to get an element f a of type B a. For example, (n : N)→ A→ Vec A n
could be the type of a function replicate that returns a vector consisting of n
copies of the same element of A.

Under propositions-as-types, a dependent function type corresponds to a
universal quantification: a function of type (x : A) → B x corresponds to
a proof that for all x : A, the property B x holds. For example, let m ≤ n
be a type that expresses the usual order on natural numbers m,n : N, then a
function of type (n : N)→ zero ≤ n is a proof that zero is less than or equal
to any natural number.

If a function has multiple arguments of the same type, we write its type as
(x y : A) → B x y instead of (x : A) → (y : A) → B x y. For example, a

TYPE THEORY 7

function of type (m n : N)→ m ≤ n→ suc m ≤ suc n is a proof that for any
m and n such that m ≤ n, we have suc m ≤ suc n as well.

Dependent pair types. The dependent pair type Σx:A (B x) consists of pairs
(a, b) where a : A and b : B a. Under propositions-as-types, this corresponds
to an existential quantification: an element of type Σx:A (B x) is a proof that
there exists some x : A such that B x holds.

Indexed datatypes. Inductive families of datatypes (or indexed datatypes
for short) are families of dependent types inductively defined by a number of
constructors (Dybjer, 1991). For example, N is a datatype with two constructors
zero and suc:

data N : Set where
zero : N
suc : N→ N

(1.2)

As the name suggests, indexed datatypes can also have indices. For example,
Vec A n is a datatype with one index n : N and two constructors nil and cons:

data Vec A : N→ Set where
nil : Vec A zero
cons : (n : N)→ A→ Vec A n→ Vec A (suc n)

(1.3)

In contrast to n, the type A a parameter rather than an index. In particular,
this means the type A is the same for all constructors, while the value of the
index n can depend on the choice of constructor and its arguments.

Because of the propositions-as-types principle, we can also define new predicates
as indexed datatypes. For example, we define the datatype m ≤ n with two
indices m,n : N by the two constructors lz and ls:

data _ ≤ _ : N→ N→ Set where
lz : (n : N)→ zero ≤ n
ls : (m n : N)→ m ≤ n→ suc m ≤ suc n

(1.4)

The constructors lz and ls are the two basic proof principles we can use to
prove inequalities; the fact that ≤ is an inductive family means that it is the
least predicate on natural numbers satisfying these two principles.

Universes. An important feature of type theory is the ability to define functions
that manipulate and return types. For example, λA. Vec A 3 is a function
that takes as argument a type A and returns the type Vec A 3. To give a type
to such functions working on types, we use a universe Set, i.e. a type whose

8 INTRODUCTION

elements are themselves types. In particular, Set consists of all base types
Bool, N, . . . , as well as (x : A)→ B x and Σx:A (B x) whenever A and B x are
themselves elements of Set.

Although Set is itself a type, it is inconsistent to allow Set to have type
Set itself (Girard, 1972; Coquand, 1986). Instead we can have a hierarchy
of universes Set0 : Set1, Set1 : Set2, Set2 : Set3, . . .Most of the time, one
universe is sufficient so we use Set = Set0.

Definitional and propositional equality. In (intentional) type theory, there
are two distinct notions of equality. On the one hand, two terms s and t are
definitionally equal (or convertible) if they both compute to the same term.
For example, (λx. suc zero) zero and (λx. suc x) zero are definitionally
equal because both compute to suc zero. We reserve the equality sign = for
definitional equality. Since definitional equality can be checked automatically
by the typechecker, definitionally equal terms can be used interchangeably in
most contexts.

On the other hand, the identity type x ≡A y expresses the property that x and
y are equal elements of type A (Martin-Löf, 1984). If x and y are definitionally
equal, it has a term refl : x ≡A y (short for reflexivity); for example refl is
a proof of zero ≡N zero. On the other hand, if x and y are provably unequal
then x ≡A y is an empty type; for example zero ≡N suc zero is a type with no
elements. If we have a term of type u ≡A v, then we call u and v propositionally
equal.

The identity type comes equipped with a number of useful reasoning principles:

• refl : {x : A} → x ≡A x expresses the reflexivity of propositional
equality.2

• sym : {x y : A} → x ≡A y → y ≡A x expresses the symmetry of
propositional equality.

• trans : {x y z : A} → x ≡A y → y ≡A z → x ≡A z expresses the
transitivity of propositional equality.

• cong : (f : A → B) → {x y : A} → x ≡A y → f x ≡B f y expresses
congruence: applying a function to equal arguments gives equal results.

2As in Agda, we use curly brackets {} to indicate implicit arguments. The values of these
arguments can always be deduced from the types of the other arguments, so we omit them
when applying the function. For example, we write sym e instead of sym x y e. In case we do
want to make these arguments explicit, we write them between curly brackets as well, for
example sym {x} {y} e.

PATTERN MATCHING AND UNIFICATION 9

• subst : (P : A → Set`) → {x y : A} → x ≡A y → P x → P y expresses
substitution: if two types are equal up to some propositionally equal
terms, then we can transport elements from one type to the other.

• coerce : {X Y : Set`} → (X ≡Set Y) → X → Y allows us to coerce a
term from one type to another if the types are propositionally equal.

Two definitionally equal terms are always propositionally equal, as expressed
by refl. On the other hand, two terms can be propositionally equal without
being definitionally equal. For example, it is possible to construct a term of
type m+n ≡N n+m for arbitrary m,n : N, proving that + on natural numbers
is commutative. However, if m and n are variables then m + n and n + m
will never evaluate to the same result no matter how hard we try, so they are
not definitionally equal. For the types we have seen so far, the two notions of
equality coincide on closed terms (i.e. ones that don’t contain any free variables).
But even this ceases to be true once we move on to homotopy type theory
(Section 1.3).

1.2 Pattern matching and unification

That is the very purpose of declarative programming — to make
it more likely that we mean what we say by improving our ability to
say what we mean.

— Conor McBride (2003)

Dependent type theory as presented in the previous section is a powerful type
system for both programs and proofs. But how do we actually write these
programs and proofs? So far, we have only seen a few basic constructions such
as function application, lambda abstraction, and basic constructors such as
true, false, zero, suc, . . . But real programs do more than construct values
and pass them around: they can analyse values and recurse on them, producing
new values based on the results. Similarly, to write proofs we need some way to
do case analysis and induction on a given value.

In Martin-Löf type theory, these programs and proofs are written by using the
elimination principles for each type, or eliminators for short. These eliminators
are powerful enough to write any program or proof we want, but they are difficult
to use and to read. In effect, these eliminators are the assembly language of
type theory.

10 INTRODUCTION

To make it easier to write dependently typed programs, people have developed
higher-level techniques that can be translated to eliminators behind the scenes.
In this thesis, we study two of these techniques in detail: dependent pattern
matching and specialization by unification. There are other possible techniques
besides these two: Coq for example makes heavy use of tactics, scripts that
generate low-level type-theoretic code.

1.2.1 Pattern matching = case analysis + recursion

Pattern matching is the basic way to write functions on algebraic datatypes
in functional programming languages such as Haskell and ML. A definition by
pattern matching consists of a set of equalities called clauses that the function
has to satisfy. It can be adapted directly to type theory to provide a convenient
way to define functions on simple datatypes such as Bool and N. Because
pattern matching is such a central topic in this thesis, we introduce it here by
plenty of examples. A general definition can be found in Chapter 2.

The most fundamental feature of pattern matching is that it allows us to define
functions by case analysis.

Example 1.1. We define the function not by pattern matching as follows:

not : Bool→ Bool
not true = false
not false = true

(1.5)

This definition consists of a type signature not : Bool → Bool and the two
clauses not true = false and not false = true. The left-hand side of each
clause consists of the function being defined applied to some arguments called
the patterns. For example, the patterns of not are true and false.

Aside from constructors, patterns can also contain pattern variables.

Example 1.2. We define the function is-zero on natural numbers by pattern
matching:

is-zero : N→ Bool
is-zero zero = true
is-zero (suc m) = false

(1.6)

The second clause defines is-zero for any number of the form suc m such as
suc zero, suc (suc zero), . . .

Patterns are required to consist of constructors and variables only, and each
variable may occur only once in a pattern. This is to avoid having to compare

PATTERN MATCHING AND UNIFICATION 11

arbitrary terms when evaluating a function by pattern matching. Additionally,
since all functions are required to be total there has to be a clause for each
constructor.

There can also be recursive calls to the function being defined on the right-hand
side of a clause.

Example 1.3. We define the function half on natural numbers by recursion:

half : N→ N
half zero = zero
half (suc zero) = zero
half (suc (suc n)) = suc (half n)

(1.7)

This example also shows that we can make further case distinctions by using
nested patterns such as suc zero and suc (suc m).

Functions defined by pattern matching may have multiple arguments, and we
can do case analysis on any of them.

Example 1.4. We define addition on natural numbers as follows:

_ + _ : N→ N→ N
zero + n = n
(suc m) + n = suc (m+ n)

(1.8)

We borrow the notation for infix functions from the Agda language: _ + _
stands for the function adding together two arguments; the underscores tell us
where the arguments go. More precisely, m+ n is equivalent to (_ + _) m n.

If the return type of a function is dependent on one of the arguments, then the
type of the right-hand sides of the clauses can be different for each clause.

Example 1.5. We define the function replicate as follows:

replicate : (n : N)→ A→ Vec A n
replicate zero x = nil
replicate (suc m) x = cons m x (replicate m x)

(1.9)

The type of the first clause is Vec A zero, and the type of the second clause
is Vec A (suc m). This would be impossible in a language without dependent
types.

Under propositions-as-types, a function corresponds to a proof of an implication,
so we can use pattern matching to write proofs as well as programs.

12 INTRODUCTION

Example 1.6. We prove a lemma (named not-not here) that negating a
boolean twice always gives back the same boolean we started with:

not-not : (b : Bool)→ not (not b) ≡Bool b
not-not true = refl
not-not false = refl

(1.10)

The type of the first refl is not (not true) ≡Bool true, and similarly the type of
the second refl is not (not false) ≡Bool true. The constructor refl : x ≡A x
has the correct type to be used here because not (not true) is definitionally
equal to true. If they were only propositionally equal, then we wouldn’t be
able to write refl here.

For the empty type ⊥ there are no constructors, so we can do a case analysis
on it using zero cases. Instead of writing no clauses at all, we use the absurd
pattern () to indicate that there are no constructors.

Example 1.7. We define a function absurd that expresses the principle of ‘ex
falso quodlibet’: from a false assumption we can derive anything.

absurd : (A : Set`)→ ⊥→ A
absurd A () (1.11)

We can write proofs by induction as recursive functions.

Example 1.8. From the definition of +, it follows that zero + n = n, but
we don’t get that n + zero = n. Using pattern matching, we prove that
n+ zero ≡N n for any n : N:

plus-zero : (n : N)→ n+ zero ≡N n
plus-zero zero = refl
plus-zero (suc m) = cong suc (plus-zero m)

(1.12)

The recursive call plus-zero m has type m + zero ≡N m, which can be
transformed into an element of type suc m + zero ≡N suc m by applying
cong suc to it. The argument m of the recursive call is strictly smaller than the
pattern suc m on the left-hand side. Were this not the case, then the recursion
would go on forever and the proof would be invalid.

1.2.2 Matching on indexed datatypes

Things get more complicated when we define functions by pattern matching
on an indexed datatype such as Vec A n or m ≤ n. This is called dependent
pattern matching (Coquand, 1992).

PATTERN MATCHING AND UNIFICATION 13

Example 1.9. As a first example, we define the concatenation of two vectors
as follows:

concat : (m n : N)(xs : Vec A m)(ys : Vec A n)→ Vec A (m+ n)
concat .zero n nil ys = ys
concat .(suc m) n (cons m x xs) ys = cons (m+ n) x (concat xs ys)

(1.13)

In the first clause, the argument m : N is required to be equal to zero for the
pattern nil to be well-typed. This is indicated by the dot in the inaccessible
pattern .zero. Similarly, the inaccessible pattern .(suc m) in the second clause
witnesses the fact that suc m is the only type-correct argument that can occur
in that position. The variable m occurs twice on the left-hand side in the
clause for cons. This is ordinarily not allowed, but it is fine here because one
occurrence is inside an inaccessible pattern.

When evaluating the function concat, the arguments corresponding to these
inaccessible patterns can be safely ignored because the type system guarantees
that they must have the specified value. For example, whenever we have a
well-typed application of the form concat m n nil ys, the argument m is
guaranteed to be equal to zero.

Dependent types allow us to work around the limitations of a total language by
restricting the type of the input in such a way that the function becomes total.
For example, it is possible that there is no way that a particular constructor
can be used in a well-typed manner. In that case, we skip the corresponding
clause.

Example 1.10. We define a tail function on vectors as follows:

tail : (n : N)→ Vec A (suc n)→ Vec A n
tail .m (cons m x xs) = xs (1.14)

It is allowed to skip the clause for nil : Vec A zero because there is no way
that suc n can be equal to zero. This is all the better because there is no way
to take the tail of an empty vector!

In some cases it is even possible that all cases can be skipped. In such cases we
again use the absurd pattern ().

Example 1.11. We prove that a natural number of the form suc n can never
be less than or equal to zero:

not-less : (n : N)→ suc n ≤ zero→ ⊥
not-less n () (1.15)

14 INTRODUCTION

Neither lz nor ls can be used in a well-typed manner at type suc n ≤ zero,
so both cases can be skipped.

By first doing a case analysis on one argument, we can learn something about
the type of another argument. This information can then be used to exclude
some of the cases for that second argument.

Example 1.12. We prove antisymmetry of the relation ≤ on natural numbers
as follows:

antisym : (m n : N)→ m ≤ n→ n ≤ m→ m ≡N n
antisym .zero .zero (lz .zero) (lz .zero) = refl
antisym .(suc k) .(suc l) (ls k l x) (ls .l .k y) =

cong suc (antisym k l x y)

(1.16)

In the first clause, matching with the constructor lz on the argument of
type m ≤ n teaches us that m is equal to zero (this is expressed by the first
inaccessible pattern .zero). By instantiating m to be zero, the type n ≤ m of
the final argument becomes n ≤ zero, so we exclude the case for the constructor
ls : (m n : N)→ m ≤ n→ suc m ≤ suc n. Similarly, in the second clause we
exclude the case for the constructor lz because m and n have been instantiated
to suc k and suc l respectively.

The identity type x ≡A y can be seen as an indexed datatype with one
constructor refl. This allows us to write proofs about propositional equality
by pattern matching on this constructor. Matching on an argument of type
x ≡A y with refl causes x to be unified with y, forcing them to be equal.

Example 1.13. We define the functions sym, trans, cong, and subst by
pattern matching on refl:

sym : {x y : A} → x ≡A y → y ≡A x
sym refl = refl (1.17)

trans : {x y z : A} → x ≡A y → y ≡A z → x ≡A z
trans refl refl = refl (1.18)

cong : (f : A→ B){x y : A} → x ≡A y → f x ≡B f y
cong f refl = refl (1.19)

subst : (P : A→ Set){x y : A} → x ≡A y → P x→ P y
subst P refl p = p

(1.20)

coerce : {X Y : Set} → (X ≡Set Y)→ X → Y
coerce refl x = x

(1.21)

PATTERN MATCHING AND UNIFICATION 15

Interpreting the identity as an inductive type with the single constructor refl
has implications on what we can prove about it, and by extension on the
nature of the type theory as a whole. If we’re not careful, these implications
conflict with other interpretations of the identity type, such as the one given by
homotopy type theory (see next section).

1.2.3 Specialization by unification

When splitting on a type from an inductive family, the typechecker needs to
determine which constructors can occur in a given position and how the variables
need to be instantiated for the pattern to be well-typed. To do this, it applies
unification to the indices of the datatype in question. Unification is the process
of searching for unifiers, i.e. substitutions that make the left- and right-hand side
of an equation (definitionally) equal. If unification determines that there can be
no such substitution, then we can skip the case for the corresponding constructor.
This method of solving equations to either gain more information about the
type of the right-hand side or to derive an absurdity is called specialization by
unification (Goguen, McBride, and McKinna, 2006).

Example 1.14. In the definition of tail (Example 1.10), the typechecker has to
determine whether there should be a case for the constructor nil : Vec A zero
for the argument of type Vec A (suc n). To do this, it tries to unify zero
with suc n. In this case unification detects an absurdity because zero can
never be equal to suc n; this is called the conflict rule. On the other hand,
for the constructor cons : (m : N)(x : A)(xs : Vec A m) → Vec A (suc m),
unification of suc m with suc n succeeds by substituting m for n; this is called
the injectivity rule.

Example 1.15. In the definition of antisym (Example 1.12), it is allowed to
skip the two cases where one of the arguments is lz n and the other is ls l k
because zero can never be of the form suc k (by the conflict rule). In the
second clause, the first argument of the second ls is replaced by .l because of
the injectivity rule, and similarly its second argument is replaced by .k.

In this thesis, we present two different unification algorithms that can be used
to check definitions by dependent pattern matching. The first one is a simple
untyped unification algorithm that is very similar to the one used by McBride
(2000), but it has three additional restrictions that make it useable in any
version of Martin-Löf type theory (Section 2.2.3 and Section 2.3). The second
one is a more powerful typed unification algorithm and is the main subject of
Chapter 3. It includes all the rules of the first algorithm and adds more general
rules for indexed datatypes and record types.

16 INTRODUCTION

1.3 Homotopy type theory

Homotopy type theory is a programming language for which we
don’t yet know how to run the programs. Most mathematicians are
quite blasé about this, but computer scientists feel somehow irritated
by this fact.

— Thorsten Altenkirch

From what we’ve seen so far, the nature of the identity type x ≡A y is still
somewhat mysterious: we know some of its properties such as reflexivity,
symmetry, transitivity, congruence, and substitutivity, but we don’t know much
about its structure like we do about a type like A] B. For example, what can
we tell about the type f ≡A→B g when the functions f and g are pointwise
equal but not definitionally so? And what about the type A ≡Set B when A and
B are isomorphic yet unequal types? One possible answer to these questions
(and many more) is given by an emerging field called homotopy type theory
(HoTT) (The Univalent Foundations Program, 2013).

Homotopy type theory is based on a new interpretation of types, different
from the two we have already seen. Instead of viewing types as sets of values
or as propositions, this interpretation views types as topological spaces (such
as an interval, a circle, or a torus). Under this interpretation, a term u : A
corresponds to a point in the topological space A, and an element of type u ≡A v
corresponds to a continuous path in A from u to v. Any function f : A → B
maps not only points in A to points in B, but also paths of type u ≡A v to
paths of type f u ≡B f v by cong (1.19), so any well-typed function represents
a (path)-continuous map between topological spaces.

1.3.1 The univalence axiom

One of the core elements of HoTT is the univalence axiom proposed by Vladimir
Voevodsky. It gives a surprising yet natural interpretation of the identity type
A ≡Set B as the type of equivalences between the two types A and B. To state
it precisely, we first need to define what we mean by an equivalence.

In mathematics, an equivalence is usually defined as a function f : A → B
that has an inverse g : B → A, meaning that g (f x) = x for all x : A and
f (g y) = y for all y : B. For technical reasons, homotopy type theory uses a
definition that is at first sight a bit more liberal (The Univalent Foundations
Program, 2013, Definition 4.3.1):

HOMOTOPY TYPE THEORY 17

Definition 1.16 (Equivalence). A function f : A→ B is an equivalence if we
have two functions g1 : B → A and g2 : B → A that are respectively a left and
a right inverse of f (i.e. we have terms of type (x : A) → g1 (f x) ≡A x and
(y : B)→ f (g2 y) ≡B y). Two types A and B are equivalent if there exists an
equivalence from A to B. The type of all equivalences f : A→ B is written as
A ' B.

If f : A ' B is an equivalence, then we also write f for the function f : A→ B.
We write linv f for the function g1 (for the left inverse of f), and isLinv f
for the proof of (x : A)→ linv f (f x) ≡A x. Similarly, rinv f stands for the
function g2 and isRinv f for the proof of (y : B)→ f (rinv f y) ≡B y.

While the left and right inverse of an equivalence are allowed to be different,
their results are always propositionally equal.

Lemma 1.17. If f : A ' B is an equivalence, then we can construct a proof
of (y : B)→ linv f y ≡A rinv f y.

Construction. Let y : B. By isRinv f y, we have f (rinv f y) ≡B y, hence by
cong, we have linv f (f (rinv f y)) ≡A linv f y. By isLinv f , we also have
linv f (f (rinv f y)) ≡A rinv f y. Putting these proofs together with sym
and trans, we get that linv f y ≡A rinv f y, as we wanted to prove.

For many equivalences, linv f and rinv f are actually definitionally equal. In
that case we write f−1 for their common value.

Formally, the univalence axiom states that equality between types is equivalent
with equivalence, i.e. for any two types A and B we have an equivalence:

ua : (A ' B) ' (A ≡Set B) (1.22)

Moreover, for any concrete equivalence f : A ' B, coercing by ua f is the same
as applying f directly:

coerce (ua f) x = f x (1.23)
Univalence captures the common mathematical practice of informal reasoning
“up to isomorphism” in a nice and formal way. It also has a number of useful
consequences, such as functional extensionality:

Theorem 1.18 (Functional extensionality). Assume the univalence ax-
iom (1.22). For any two functions f, g : A→ B we have an equivalence:

funext : ((x : A)→ f x ≡B g x) ' (f ≡A→B g) (1.24)

Proof. See The Univalent Foundations Program (2013, Section 4.9).

18 INTRODUCTION

However, from the point of view of type theory as a programming language there
is a big problem with the univalence axiom: the fact that it is an axiom. This
means that it is a term without any computational behaviour, i.e. a program
for which we don’t know how to run it. For several years, it remained an
open problem how to give a computational interpretation to univalence, until
it was finally solved by Cohen, Coquand, Huber, and Mörtberg (2016) in the
form of cubical type theory. This is a new version of Martin-Löf type theory
with additional primitive constructions that allow us to prove univalence, thus
turning it from an axiom into a theorem. So cubical type theory allows us to
reap the benefits of homotopy type theory without losing the computational
nature of the older dependent type theories.

In this thesis, we use concepts from homotopy type theory such as equivalence
and equalities “lying over” another equality. The notation for telescopic equality
used in Chapter 3 is also inspired by cubical type theory. However, our work
doesn’t require any primitives on top of basic intuitionistic type theory (such
as univalence). In fact, our work can be equally well understood without any
knowledge of HoTT, and is still useful in a setting that assumes entirely different
axioms (such as the law of the excluded middle from classical logic).

1.3.2 Pattern matching in HoTT

Many basic constructions in HoTT can be written elegantly using pattern
matching, for example sym (1.17) corresponds to the reversal of a path,
trans (1.18) corresponds to the composition of two paths, and cong (1.19) is a
proof that all functions in HoTT are (path-)continuous.

However, the original version of dependent pattern matching by Coquand (1992)
is incompatible with the univalence axiom. Consider an arbitrary type A and
a path e : A ≡Set A from A to itself. By pattern matching on refl, we prove
that coercing along this path is the identity function:

coerce-id : (e : A ≡Set A)(x : A)→ coerce e x ≡A x
coerce-id refl x = refl (1.25)

On the other hand, the function not : Bool → Bool (Example 1.1) is both
its own left and right inverse (Example 1.6), so it is an equivalence. By
univalence, we get an equality proof ua not : Bool ≡Set Bool such that
coerce (ua not) true = false and vice versa. But this is a contradiction
with coerce-id, which says that coerce (ua not) true ≡Bool true! So having
both dependent pattern matching and univalence together leads to an unsound
system.

DESUGARING PATTERN MATCHING 19

This incompatibility has forced people working in homotopy type theory to
avoid using pattern matching, instead writing their programs and proofs using
the cumbersome eliminators. One of the main contributions of this thesis is a
new version of dependent pattern matching that is safe to use together with
univalence (Section 2.3).

1.4 Desugaring pattern matching

Any sufficiently advanced technology is indistinguishable from
magic.

— Arthur C. Clarke (1962)

Designers of a dependently typed language face a difficult dilemma: on the one
hand, programs and proofs should be as easy and intuitive as possible to write.
On the other hand, they should satisfy strict requirements, lest they violate
important properties of type theory such as logical consistency and decidable
type checking. This dilemma manifests itself when we compare dependent
pattern matching to the standard eliminators. On the one hand, proofs by
dependent pattern matching are typically much shorter and more readable than
ones that use eliminators. On the other hand, dependent pattern matching
as given by Coquand is incompatible with other useful assumptions such as
univalence.

Example 1.19. As an example of the difficulty of using eliminators compared
to pattern matching, Figure 1.1 gives an alternative definition of antisym
(Example 1.12) that only uses eliminators. In this definition, elim≤ is the
standard eliminator for the datatype ≤ (Definition 4.2) and noConfN is the “no
confusion” property for the N type (Lemma 4.16). This “no confusion” property
can be constructed from eliminators as well, but expanding this construction
here would make the proof even longer.

This proof by eliminators is more complex than the proof by pattern matching
in Example 1.12. All the equational reasoning that was done automatically
in the definition by pattern matching now has to be done explicitly. The
proof by eliminators also requires considerable work for the construction of the
first argument of each eliminator (called the motive), while this can be done
automatically in many cases (McBride, 2002). So it is clearly preferable to use
pattern matching for this proof.

A way to go around this dilemma is to provide high-level features to the user,
but guarantee that any definition can be translated to an equivalent one that

20 INTRODUCTION

antisym : (m n : N)→ m ≤ n→ n ≤ m→ m ≡N n
antisym = elim≤ (λm;n; _ . n ≤ m→ m ≡N n)

(λn; e. elim≤ (λn;m; _ . m ≡N zero→ m ≡N n)
(λn; e. e)
(λk; l; _;_; e. absurd (suc l ≡N suc k) (noConfN (suc l) zero e))
n zero e refl)

(λm;n; _;H; q. cong suc (H
(elim≤ (λk; l; _ . k ≡N suc n→ l ≡N suc m→ n ≤ m)

(λ_; e; _. absurd (n ≤ m) (noConfN zero (suc n) e))
(λk; l; e; _;x; y. subst (λn. n ≤ m)

(noConfN (suc k) (suc n) x)
(subst (λm. k ≤ m) (noConfN (suc l) (suc m) y) e))

(suc n) (suc m) y refl refl)))
(1.26)

Figure 1.1: This definition of the function antisym is more complex than the
one by pattern matching (Example 1.12).

only uses simple, well-understood primitives. McBride (2000) and Goguen et al.
(2006) applied this idea to dependent pattern matching: they show that any valid
definition by dependent pattern matching can be translated to one that only
uses eliminators. However, in this translation they depend on a non-standard
eliminator for the identity type called the K rule. So if we want to understand
why the original version of dependent pattern matching is incompatible with
univalence, we first have to understand this K rule.

The standard eliminator for the identity type x ≡A y is called the J rule:

J : (P : (y : A)→ x ≡A y → Set)(p : P x refl)(y : A)(e : x ≡A y)→ P y e
(1.27)

This rule is a generalization of subst where the type P is allowed to depend on
the given equality proof. Using only J, it is possible to define sym, trans, cong,
and subst, and coerce, but not coerce-id.

Where the J rule allows us to prove properties of a general equality proof of
x ≡A y, the K rule tells us something more specific about proofs of reflexive
equations x ≡A x:

K : (P : x ≡A x→ Set)(p : P refl)(e : x ≡A x)→ P e (1.28)

The K rule is equivalent with the uniqueness of identity proofs principle (UIP),
which states that any two proofs of x ≡A y are equal. This is clearly incompatible
with the interpretation of types as topological spaces: any topological space

THREE RECURRING THEMES 21

with a hole in it (such as the circle) has infinitely many distinct paths between
any two given points.

Coquand (1992) already observed that it is easy to prove K by pattern matching:

K : (P : a ≡A a→ Set)(p : P refl)(e : a ≡A a)→ P e
K P p refl = p

(1.29)

On the other hand, it is impossible to define K by only using J (Hofmann and
Streicher, 1994). This is a good thing: it means we might still use J if we
assume axioms that are incompatible with K.

As mentioned before, translating a definition by dependent pattern matching to
eliminators in general requires the K rule.

Example 1.20. To translate the definition of the function (1.25) to eliminators,
we need to make use of K:

coerce-id = λe. λx. K (λe. coerce e x ≡Bool x) refl e (1.30)

Without K, it would be impossible to define coerce-id in terms of eliminators.

In Chapter 4 we show how definitions by dependent pattern matching as
described in this thesis can be translated to eliminators without making use of
the K rule. This translation guarantees that dependent pattern matching can
be used together with univalence, as well as with any other addition to type
theory (that is compatible with the standard eliminators).

1.5 Three recurring themes

Classical mathematics [. . .] is lacking neither truth nor sense
but only imagination.

— Charles McCarty

Before we proceed to the main body of this thesis, we want to draw your
attention to three important themes that will occur again and again. These
themes may be surprising to some and obvious to others, but in either case they
are important considerations during the work on this thesis and drove many of
the design decisions in it. The three themes are the following:

1. We consider proofs to be relevant, i.e. proofs are themselves interesting
mathematical objects that can have a certain algorithmic content.

22 INTRODUCTION

2. We aim for our work to be compatible with all axioms consistent with
Martin-Löf type theory, without requiring any one of them in particular.

3. All constructions in this thesis are given not just to have the correct type
but also to have the right computational behaviour.

1.5.1 Proof relevance and homotopy type theory

The propositions-as-types principle tells us that a proposition can be represented
as a type, and a proof of the proposition as a term of that type. But this
doesn’t yet tell us anything about the structure of those proofs. Do they contain
any information besides the bare fact that the proposition is true? In Coq, all
types that live in the universe Prop (including the standard identity type) are
considered computationally irrelevant, i.e. they can be erased when compiling
the program. But in a constructive logic, it can make sense to not always erase
proofs. For example, a proof of (m n : N)→ (m ≤ n)] (n ≤ m) can be used
as a procedure to decide which of two numbers is bigger, and can be used as
part of a sorting algorithm. As another example, a proof that a version of type
theory is strongly normalizing can be used as a normalization algorithm for that
theory, which is an essential part of a typechecker. For this reason, we radically
consider all proofs to be relevant, so we may make use of their algorithmic
content when we have a need for it.

Homotopy type theory is a particularly nice example of proof relevance, because
it considers equality proofs to be paths in a topological space. This means
there can be many different equality proofs between two given terms, we may
consider equality of equality proofs, etc. The crown jewel of HoTT is of course
the univalence axiom, which allows us to use a proof of equality of two types as
an algorithm for translating between these two types, and vice versa. None of
these things would be possible if we didn’t consider proofs to be relevant.

On the other hand, choosing proof relevance doesn’t mean we cannot consider
bare proofs without further structure if we want to. Homotopy type theory
equips us with the tool of propositional truncations, which allows us to erase
the computational contents from a type (The Univalent Foundations Program,
2013, Section 3.7). So proof irrelevance is just a special case of proof relevance.

Our quest for proof relevance becomes particularly apparent in Chapter 3,
where we describe a proof-relevant unification algorithm. We give a proof-
relevant interpretation of the concept of a most general unifier as an equivalence
between two sets of equations. Such an equivalence tells how to instantiate each
variable, and also gives evidence that this instantiation indeed defines a most
general unifier. The fact that this evidence is proof relevant is important for

THREE RECURRING THEMES 23

the translation of functions by dependent pattern matching to eliminators in
Chapter 4.

A practical consequence of this proof-relevant approach is that many of the
proofs in this thesis are labelled as ‘Construction’ instead of ‘Proof’. This is the
case for those proofs that are given as terms in the type theory we work in. On
the other hand, metatheoretical proofs about the type theory are still labelled
as ‘Proof’ as normal. This is particular the case when we prove that two terms
are definitionally equal.

1.5.2 The blessing and the curse of axiomatic freedom

On its own, Martin-Löf type theory is a rather minimal language with only a
small number of language constructs. As in all sound logical systems, there
are many statements that it can neither prove nor refute. So it makes sense to
extend it with additional principles, depending on your needs or philosophical
convictions. We have already mentioned a good number of these principles:

• The law of the excluded middle states that every type is decidable.

• The principle of uniqueness of identity proofs (i.e. the K rule) states that
any two proofs of the same equality are equal.

• The principle of proof irrelevance states that any two proofs of the same
proposition are equal.

• The univalence axiom states that equivalence is equivalent with equality.

The blessing of axiomatic freedom given to us by MLTT is that we can freely
choose which of these axioms we want to use. This means the same language
with only small additions can be used for very different purposes.

However, using too many of these principles together blows up the whole
theory, making it inconsistent. This is the curse of axiomatic freedom: all of
the different dialects of MLTT can never be united into one language. For
example, univalence is incompatible with the uniqueness of identity proofs. As
another example, univalence is also incompatible with the law of the excluded
middle (The Univalent Foundations Program, 2013, Corollary 3.2.7).

Designers of a dependently typed language face a difficult choice: they can
either choose a particular set of principles and build them into the language, or
provide only a basic type theory and leave the choice up to the user. The former
choice is made by NuPRL (Kreitz, 2002), where any principle that holds in a

24 INTRODUCTION

specific preferred model can be proven in the language. On the other hand, Coq
and Agda take the latter choice and let the user decide by adding postulates
to the language. This allows for experimentation with many different (even
incompatible) extensions of type theory within the same framework. Because
improving the pattern matching in Agda is one of our main motivations, this is
also the choice we make in this thesis.

As another example of the curse of axiomatic freedom, dependent pattern
matching can be made more powerful by allowing the unification algorithm used
to check case splits to postpone and reorder equations. However, doing so allows
one to prove a principle called injectivity of type constructors (Example 3.3).
This principle allows us for example to deduce from List A ≡Set List B that
A ≡Set B. This principle is syntactic in nature and is incompatible with both
univalence and the excluded middle:

Theorem 1.21. MLTT extended with univalence and injective type constructors
is inconsistent.

The proofs of this theorem and the next one are not essential for the rest of
this thesis. However, to our knowledge there is no easy reference for them and
we think they are interesting enough to mention here.

Proof. Let D : Set → Set be an inductive family with no constructors. Then
D > ' ⊥ ' D ⊥, so D > ≡Set D ⊥ by univalence. But if D is injective, this means
that > ≡Set ⊥, which is clearly a contradiction.

Theorem 1.22. MLTT extended with the excluded middle and injective type
constructors is inconsistent.

Proof. This proof is based on the proof given by Hur (2010).

Assume the datatype D : (Set → Set) → Set is injective (it doesn’t matter
what the constructors of D are). We define a right inverse E of D as follows:
if A is equal to D F for some F : Set → Set, then E A is defined to be
that F , otherwise it is λ_.⊥. Formally, E is defined by case analysis on
excluded-middle (Image D A), where Image D is a datatype with a single
constructor image : (F : Set → Set)→ Image (D F).

We have
E (D F) ≡Set→Set F (1.31)

for any F : because D F is certainly in the image of D, we know that E (D F)
must be equal to G for some G with D G ≡Set D F , but then this G must be
equal to F by injectivity of D.

THREE RECURRING THEMES 25

Now we construct by diagonalization a C : Set → Set that is not in the
image of E, thus leading to a contradiction. C A is defined by case analysis
on excluded-middle (E A A ≡Set ⊥): if E A A is equal to ⊥, then C A = >,
otherwise C A = ⊥.

To come to the contradiction, consider the term B = E (D C) (D C). By 1.31, we
have B ≡Set C (D C). Is B equal to ⊥ or not? By the excluded middle, there are
two cases:

B ≡Set ⊥: then we have B ≡Set C (D C) ≡Set > by definition of C, but this is a
contradiction with B ≡Set ⊥.

(B ≡Set ⊥)→ ⊥: then we have B ≡Set C (D C) ≡Set ⊥ again by definition of C,
but this is a contradiction with (B ≡Set ⊥)→ ⊥.

We have constructed an element of ⊥ in the empty context, so we conclude that
MLTT extended with the excluded middle and injective type constructors is
inconsistent.

In Chapter 3, we show how to postpone and reorder equations during unification
without relying on the injectivity of type constructors (see in particular
Lemma 3.18, Lemma 3.19, and Lemma 3.20).

1.5.3 On the importance of computation

One of the main advantages of type theory over other foundational systems
such as set theory is the fact that it is a computational theory. This means
that each term (and hence also each type) has associated computation rules.
These give us a built-in way to automatically evaluate a term to its simplest
form. Evaluating a term preserves definitional equality: if a (well-typed) term u
evaluates to u′, then u = u′. So to decide whether two terms are definitionally
equal, we can first evaluate the two terms to normal form and then compare
the normal forms.

In practice, the fact that terms can be evaluated is essential because the
typechecker can do it for us. This implies we don’t have to do any work to
prove a definitional equality; we can just write refl. We already saw this when
proving that not (not b) ≡Bool b (1.6). After a case analysis on b, the two goal
types are not (not true) ≡Bool true and not (not false) ≡Bool false. Since
not (not true) evaluates to true and not (not false) evaluates to false, we
can prove the goal with refl in both cases. The fact that definitional equality

26 INTRODUCTION

can be checked automatically is one of the reasons why a proof assistant based
on type theory is often easier to work with than one based on set theory.

Since computation is a core aspect of a proof assistant, it is important to
pay special attention at the computation rules of functions defined by pattern
matching. For example, we can define the boolean conjunction _ && _ :
Bool→ Bool→ Bool by spelling out its four cases:

_ && _ : Bool→ Bool→ Bool
true && true = true
true && false = false
false && true = false
false && false = false

(1.32)

Alternatively, we can define it more compactly with two clauses:

_ && _ : Bool→ Bool→ Bool
true && b = b
false && b = false

(1.33)

Not only is this definition shorter, it also gives rise to additional definitional
equalities, such as true && b = b. For the first definition, this equality would
only be propositional.

Writing definitions by pattern matching makes it easy to see the computation
rules of a function at a glance: each clause is a computation rule. In contrast,
it would be less easy to see whether true && b = b had we defined && by
eliminators as elimBool (Bool→ Bool) (λb. b) (λb. false). Because definitions
by pattern matching follow the principle of ‘what you see is what you get’, the
user can be confident which equalities hold by definition and which ones he has
to prove himself.

When translating definitions by pattern matching to eliminators, we have to
make sure that the translated definition still satisfies the same computation rules.
This is not at all straightforward: at each step of the translation (Section 4.3)
there is a risk that we translate one construct to a different one that has the
same type but not the same computation rules. In particular, the most general
general unifier computed by the unification algorithm in Chapter 3 needs to have
the right computational behaviour. If this is the case, we call it a strong unifier
(Definition 3.45). For each of the unification rules except the deletion rule, we
prove that they are strong (Lemma 3.43, Lemma 3.44, and Lemma 3.61).

OVERVIEW AND CONTRIBUTIONS 27

1.6 Overview and contributions

In the previous sections, we touched on many of the subjects in this thesis
concerning dependent pattern matching and proof-relevant unification. Here
follows an overview of the contents of the remaining chapters.

Chapter 2 presents Agda Lite, a minimal dependently typed language with
indexed datatypes and dependent pattern matching. It describes how to
check definitions by dependent pattern matching by translating them to a
structurally recursive case tree. In particular, it presents a simple first-order
unification algorithm to check case splits on elements of indexed datatypes. The
main contribution of this chapter consists of three new criteria on definitions
by dependent pattern matching that, when satisfied, ensure that dependent
pattern matching is conservative over standard type theory. The untyped
unification algorithm in this chapter with these three restrictions is a conservative
approximation of the proof-relevant unification algorithm in Chapter 3, but
it has the advantage that it is easier to understand and simpler to add to an
existing implementation of dependent pattern matching without replacing the
whole unification algorithm.

Chapter 3 presents a new typed and proof-relevant unification algorithm that
can be used in place of the untyped algorithm in the previous chapter for
checking definitions by dependent pattern matching. Our main innovation is
to represent a most general unifier as an equivalence between two unification
problems, serving as evidence of its correctness. These unification problems
are represented as telescopic equalities where each equation can depend on the
previous ones, which has the following three advantages:

• We avoid the use of heterogeneous equality by McBride (2000), which
requires the K axiom to use.

• We can give more general unification rules for indexed datatypes that
solve multiple equations at once.

• Because we keep track of dependencies between equations, we can safely
postpone and reorder them without running into paradoxes.

To guarantee good computational properties of the unifiers produced by our
unification algorithm, we introduce the notion of a strong unification rule. We
show that all the unification rules used by our algorithm are strong ones, except
for the deletion rule.

We give two extensions to the unification algorithm: a simple one to deal with
η-equality of record types, and a more involved one to deal with injectivity of

28 INTRODUCTION

constructors of indexed datatypes in general, which we call higher-dimensional
unification. We also describe our implementation of this unification algorithm
that replaces the old algorithm used by Agda for checking definitions by
dependent pattern matching, eliminating the previous ad-hoc restrictions and
fixing a number of bugs in the process.

Chapter 4 makes good on the promises in the previous two chapters by showing
how everything in them can be implemented in terms of standard datatype
eliminators. In particular, we present the five basic constructions of McBride,
Goguen, and McKinna (2006): case analysis, structural recursion, injectivity,
disjointness, and acyclicity; using homogeneous telescopic equalities rather
than heterogeneous ones. We also present two techniques that are useful when
applying these constructions: basic analysis and specialization by unification.
In the proof of our main theorem (Theorem 4.27) we apply these techniques
to translate an arbitrary valid definition by dependent pattern matching to
eliminators. Moreover, if all the rules used by the unification algorithm are
strong, we can guarantee that all clauses are preserved as definitional equalities
during this equation (Theorem 4.29).

Finally, Chapter 5 wraps up the thesis and looks forward to the future of
dependent pattern matching with a number of possible directions for further
research.

In more detail, I make the following technical contributions:

• I present a set of three restrictions to dependent pattern matching as
described by Coquand (1992) that make it safe to use in any (consistent)
extension of MLTT. These restrictions are strictly more general than
previous attempts. In contrast to previous attempts, it is not based on a
syntactic check, but on a restriction to the unification algorithm used for
pattern matching (Section 2.3).

• I implement these three restrictions as a patch to Agda. I compare it
to the old criterion offered by Agda for pattern matching without K
on the grounds of adequacy, soundness, and generality. As of Agda
version 2.4.0, my implementation replaces the old version of --without-K
(Section 2.3.3).

• I give a new representation of unification rules and most general unifiers
in a dependently typed setting as equivalences between solution spaces
represented by telescopic systems of equations. This gives a general way
to characterize soundness of unification rules internally to the underlying
type theory (Section 3.1).

OVERVIEW AND CONTRIBUTIONS 29

• I phrase the unification rules of Goguen et al. (2006) as equivalences and
show how to implement them in terms of eliminators (Section 3.2).

• I present new unification rules for indexed families of data types that
work on heterogeneous equations and can solve multiple equations at once,
making them more general than the ones in our previous work (Cockx,
Devriese, and Piessens, 2014b) (Section 3.2.2).

• I describe new unification rules that deal with eta-equality of values
of record type and show how they fit in the framework of unifiers as
equivalences (Section 3.2.3).

• I define the notion of a strong unification rule, a unification rule which
has certain good computational properties as a term in type theory. I
also prove that all of the unification rules in this thesis are in fact strong,
except for the deletion rule (Section 3.3).

• I show how to make the injectivity rule for indexed datatypes more general
by generalizing over the indices in the type of the equation, generating new
equations between equality proofs (called higher-dimensional equations)
in the process (Section 3.4.2).

• I show how to apply regular unification rules to higher-dimensional
equations by lifting them to a higher dimension (Section 3.4.3).

• I show how higher-dimensional unification formalizes the concept of forced
constructor arguments, a heuristic that allows unification to skip certain
constructor arguments if they are determined by the type of the constructor
(Corollary 3.56).

• I reimplement the unification algorithm used by Agda for pattern matching
on indexed families of data types based on my framework for proof-relevant
unification, fixing a number of bugs in the process and making it more
amenable to future extensions. This new unification algorithm has been
released as part of Agda version 2.5.13 (Section 3.5).

• I give a formal proof that definitions by pattern matching that have been
checked using our unification algorithm are conservative over MLTT by
translating them to eliminators in the style of Goguen et al. (2006), but
without relying on K (Section 4.3).

• I also prove that in case the unification algorithm produces strong unifiers,
then the translated function still satisfies the same computation rules as
the original (Section 4.3.1).

3Available from http://wiki.portal.chalmers.se/agda/.

http://wiki.portal.chalmers.se/agda/

30 INTRODUCTION

Most of these results were already presented in our earlier work (Cockx, Devriese,
and Piessens, 2014b, 2016a,b; Cockx and Devriese, 2017), of which I was the
main author and contributor. My contributions over the previously published
versions of this work are the following:

• I give a more general restriction to the injectivity rule in the criterion
for pattern matching without K that allows skipping the unification of
forced constructor arguments (Definition 2.29). In particular, this allows
Example 2.31 to be accepted, which was not possible with the previous
version of the restriction (Section 2.3.1).

• I give a formal proof that (a suitably internalized notion of) most general
unifiers is really equivalent to equivalences (Lemma 3.11 and Lemma 3.12
in Section 3.1.2).

• I give a new definition of a strong unifier (Definition 3.45). Compared the
previous definition (Cockx et al., 2016a), this definition is more natural to
work with and allows me to prove Theorem 4.29, while it is still satisfied
by all the unification rules (Section 3.3).

• I prove that lifting a strong unifier results again in a strong unifier
(Lemma 3.61 in Section 3.3).

• I give a more detailed proof of Theorem 4.29, in particular I prove
Lemma 4.13 about the computational behaviour of the function belowD
used in the translation (Section 4.1.2).

• The presentation of many examples, definitions, lemmas and theorems
was improved compared to the paper versions.

Our work has already made a significant impact on other people working with
dependent types:

• Our work is used on a daily basis by all users of Agda, one of the most
popular dependently typed programming languages currently in existence.

• Our work has heavily influenced the development of the new version of
Equations, a plugin for using dependent pattern matching in Coq (Mangin
and Sozeau, 2017).

• The authors of the Lean theorem prover developed at Microsoft Research
cite our work as an important source of inspiration for the implementation
of the Lean system (de Moura, Kong, Avigad, van Doorn, and von Raumer,
2015).

OVERVIEW AND CONTRIBUTIONS 31

To our knowledge, the latter two systems are based on the older version of our
work (Cockx et al., 2014b) and do not yet include newer improvements such as
higher-dimensional unification (Section 3.4).

Chapter 2

Dependent pattern matching

The universe has a pattern. The further we push ourselves to
transcend our limitations, the greater we perceive that pattern to
be. It’s as though it was all a great game, but you only discover the
rules by playing. . .

— Sarah Newton (2016)

Dependent pattern matching is an intuitive way to write programs and proofs
in dependently typed languages. It is reminiscent of both pattern matching
in functional languages and case analysis in on-paper mathematics. However,
the original version of dependent pattern matching by Coquand (1992) is
incompatible with new type theories such as homotopy type theory. As a
consequence, it cannot be used in those theories so their proofs are typically
harder to write and to understand. The source of this incompatibility is the
reliance of dependent pattern matching on the K rule – also known as the
uniqueness of identity proofs – which is inadmissible in HoTT.

In this chapter, we propose a criterion for checking whether a given definition
by pattern matching is safe to use in a theory without K, thus bringing the
benefits of dependent pattern matching to languages such as HoTT. To study
dependent pattern matching we introduce Agda Lite, a minimal dependently
typed language with support for dependent pattern matching (Section 2.1). We
also show how definitions by dependent pattern matching in Agda Lite can be
checked by translating them to a case tree (Section 2.2). The main contribution
of this chapter is a general criterion for dependent pattern matching without K
(Section 2.3). Finally, we discuss related work (Section 2.4).

33

34 DEPENDENT PATTERN MATCHING

2.1 Agda Lite: a minimal language with dependent
pattern matching

In this section, we introduce Agda Lite, a minimal version of Martin-Löf type
theory extended with inductive families of datatypes and dependent pattern
matching. The purpose of this language is to be as simple as possible for the
study of dependent pattern matching, while still being a valid subset of the
full Agda language. The goal is not to give a full description of a possible core
language for Agda, though such as effort would be worthwhile on its own.

2.1.1 Basic syntax, typing, and evaluation rules

The basis of Agda Lite is Martin-Löf’s Intuitionistic Theory of Types with
dependent function types, inductive families, and universes (Martin-Löf, 1972;
Martin-Löf, 1984). However, the results in this thesis should be equally
applicable in other type theories with inductive families such as the Unified
Theory of Dependent Types (UTT) by Luo (1994) or the Calculus of Inductive
Constructions (CIC) used by Coq. The main reason we don’t use these more
expressive calculi is because we don’t need their additional features, and not
using them means our results are applicable to any type theory that includes at
least the typing rules of Martin-Löf type theory.

Syntax of Agda Lite

Types and terms share the same syntactic class. As a convention, types
are indicated by capital letters A, B, . . . and other terms by small letters
u, v,. . . Aside from the standard type-theoretic constructs, the syntax includes
data types D, constructors c, and defined functions f.

Definition 2.1 (Types and terms).

A,B, u, v ::= x (variables)
| u v (application)
| λx. u (lambda abstraction)
| (x : A)→ B (dependent function type)
| Set` (universe `)
| D (datatype)
| c (data constructor)
| f (defined function)

(2.1)

AGDA LITE: A MINIMAL LANGUAGE WITH DEPENDENT PATTERN MATCHING 35

Definition 2.2 (Free and bound variables). An occurrence of a variable x is
bound if it occurs in u in an expression of the form λx. u or in B in an expression
of the form (x : A)→ B, otherwise it is free. A variable is bound (respectively
free) in an expression if at least one of its occurrences is bound (respectively
free). The set of variables that occur freely in u is indicated by FV (u).

As a convention, we never distinguish terms if they are equal up to α-renaming
of bound variables.

Definition 2.3 (Simultaneous substitution). Substitutions σ, τ , . . . are of the
form [x1 7→ v1, . . . , xn 7→ vn]. The empty substitution is written as [] and
the composition of two substitutions is written as σ; τ (first apply σ, then τ).
Simultaneous substitution u[x1 7→ v1, . . . , xn 7→ vn] is defined by simultaneously
replacing all free occurrences of x1, . . . , xn in u by v1, . . . , vn, avoiding variable
capture by renaming bound variables when necessary.

A context contains the names and types of the free variables in an expression.
Contexts are indicated by Greek capitals Γ,∆, . . .

Definition 2.4 (Context).

Γ ::= () (empty context)
| Γ(x : A) (context extension) (2.2)

The syntax () for an empty context is usually omitted unless it occurs on its
own. If (x : A) occurs somewhere in Γ, then we write (x : A) ∈ Γ.

Basic typing rules

As standard in type theory, we present the type system of Agda Lite in the
style of natural deduction, i.e. by giving typing rules of the form

J1 . . . Jn
J

where J1, . . . , Jn and J are judgements representing the hypotheses and the
conclusion of the rule. A judgement is a meta-level statement about the language
under study, in this case Agda Lite. The primary forms of judgement of Agda
Lite are the following:

Γ context , meaning Γ is a valid context.

36 DEPENDENT PATTERN MATCHING

() context

Γ ` A : Set` x /∈ FV (Γ)
Γ(x : A) context

Figure 2.1: The rules for valid contexts in Agda Lite.

Γ ` u : A , meaning that the term u has type A in context Γ.

Γ ` u1 = u2 : A , meaning that u1 is definitionally equal to u2 of type A in
context Γ.

Some rules also contain side conditions next to their hypotheses, such as
x 6∈ FV (Γ) in the rule for context extension. We write u : A for Γ ` u : A if Γ
is clear from the context and u1 = u2 for Γ ` u1 = u2 : A if both Γ and A are
clear from the context.

The basic rules for context validity, typing, and definitional equality are given
in Figure 2.1, Figure 2.2, and Figure 2.3 respectively. These rules contain
metavariables Γ for contexts and A,B, u, v, . . . for types and terms. Replacing
these metavariables by actual contexts and terms respectively results in an
instance of the rule. A judgement is derivable if it occurs as the conclusion of
such an rule instance, and all of the hypotheses of the rule instance are derivable
as well.

Telescopes

A telescope is a list of typed variable bindings where each type can depend on
the previous variables.

Definition 2.5 (Telescope). Telescopes are defined by the following grammar:

∆ ::= () (empty telescope)
| (x : A)∆ (telescope extension) (2.3)

Like for contexts, we usually skip the syntax () for an empty telescope unless it
occurs on its own. For example, (m : N)(p : m ≡N zero) is a telescope of length
2.

Telescopes are much like contexts in the sense that they consist of a sequence
of variable typings of the form (x : A). However, they are used for different

AGDA LITE: A MINIMAL LANGUAGE WITH DEPENDENT PATTERN MATCHING 37

Γ context x : A ∈ Γ
Γ ` x : A

Γ ` u : A1 Γ ` A1 = A2 : Set`
Γ ` u : A2

Γ context
Γ ` Set` : Set`+1

Γ ` A : Set` Γ(x : A) ` B : Set`′
Γ ` (x : A)→ B : Setmax(`,`′)

Γ(x : A) ` u : B
Γ ` λx. u : (x : A)→ B

Γ ` f : (x : A)→ B Γ ` u : A
Γ ` f u : B[x 7→ u]

Figure 2.2: The core typing rules of Agda Lite, including dependent function
types (x : A)→ B and an infinite hierarchy of universes Set0, Set1, Set2,. . .

purposes so it is best to keep the two concepts separate. While contexts grow
to the right, telescopes grow to the left. One way to think about a telescope is
as the tail of a context: while a context must always be closed, a telescope can
contain free variables from an ambient context, and the telescope can be added
to that context to produce a new, extended context.

If there are multiple variables of the same type after each other, then we usually
only write the type once. For example, (x y z : A) stands for the telescope
(x : A)(y : A)(z : A).

Telescopes are used as the type of a list of terms. A list of terms is indicated by
a bar above the letter, for example t̄ = (zero; refl) : (m : N)(p : m ≡N zero).
We also write () for the empty list of terms. The typing rules for telescopes and
lists of terms are given in Figure 2.4.

Telescopes are useful for various other purposes: a telescope can be used

. . . as an extension to the context: Γ∆ is defined by Γ() := Γ and
Γ((x : A)∆) := (Γ(x : A))∆. In particular, if ∆ is a valid telescope
in the empty context then ∆ can be used as the context ()∆.

38 DEPENDENT PATTERN MATCHING

Γ(x : A) ` u : B Γ ` v : A
Γ ` (λx. u) v = u[x 7→ v] : B[x 7→ v]

Γ ` u : A
Γ ` u = u : A

Γ ` u1 = u2 : A
Γ ` u2 = u1 : A

Γ ` u1 = u2 : A Γ ` u2 = u3 : A
Γ ` u1 = u3 : A

Γ ` u1 = u2 : A1 Γ ` A1 = A2 : Set`
Γ ` u1 = u2 : A2

Γ ` A1 = A2 : Set` Γ(x : A1) ` B1 = B2 : Set`′
Γ ` (x : A1)→ B1 = (x : A2)→ B2 : Setmax(`,`′)

Γ(x : A) ` u1 = u2 : B
Γ ` λx. u1 = λx. u2 : (x : A)→ B

Γ ` f1 = f2 : (x : A)→ B Γ ` u1 = u2 : A
Γ ` f1 u1 = f2 u2 : B[x 7→ u1]

Figure 2.3: The rules for definitional equality in Agda Lite, including rules
for β-equality, reflexivity, symmetry, transitivity, and congruence.

. . . as the names of the variables of a parallel substitution: u[∆ 7→ v̄] is
defined by substituting the values v̄ for the variables of ∆ in u.

. . . as the argument types of an iterated function type: ∆→ B is defined by
()→ B := B and (x : A)∆→ B := (x : A)→ (∆→ B).

. . . in the definition of an iterated lambda abstraction: λ∆. u is defined by
λ(). u := u and λ((x : A)∆).u := λx. (λ∆. u).

. . . as a list of the variables in the telescope: f ∆ is defined by f () := f and
f ((x : A)∆) := (f x) ∆.

These various interpretations of telescopes can be used together. For example,
if Γ ` f : ∆→ B then we have Γ∆ ` f ∆ : B.

AGDA LITE: A MINIMAL LANGUAGE WITH DEPENDENT PATTERN MATCHING 39

Γ context
Γ ` () telescope

Γ ` A : Set` Γ(x : A) ` ∆ telescope
Γ ` (x : A)∆ telescope

Γ context
Γ ` () : ()

Γ ` u : A Γ ` ū : ∆[x 7→ u]
Γ ` (u; ū) : (x : A)∆

Figure 2.4: The typing rules for telescopes. The substitution ∆[x 7→ u]
substitutes u for x in the types of ∆, not the variables.

If t̄ : ∆1∆2∆3 then t̄|∆2 stands for the sublist of t̄ corresponding to the telescope
∆2. If Γ ` t̄ : ∆1∆2∆3, then we have Γ ` t̄|∆2 : ∆2[∆1 7→ t̄|∆1].

A function between telescopes is called a telescope mapping. A telescope mapping
f : ∆→ ∆′ maps variables of type ∆ to values of type ∆′. Telescope mappings
generalize the concept of a (non-dependent) function to multiple inputs and
multiple outputs. They could be encoded as normal functions by representing
a telescope by an iterated Σ-type, but we find it useful to define them as a
first-class concept.

Another way to view a telescope mapping f : ∆ → ∆′ is as a typed variant
of a substitution. In particular, if we have a term u : A with free variables
coming from ∆′, then we can apply the substitution [∆′ 7→ f ∆] to it, replacing
the variables from ∆′ by the values given by f ∆, to get a term u′ with free
variables coming from ∆.

Example 2.6. Suppose ∆ = (k : N) and ∆′ = (m n : N) and let f k =
(zero; suc k). We have ∆′ ` m + n : N, so applying the substitution [∆′ 7→
f ∆] = [m 7→ zero;n 7→ suc k] gives us ∆ ` zero + suc k : N.

When we use a telescope mapping f : ∆→ ∆′ as a substitution, the substitution
goes in the ‘opposite’ direction: it takes terms with free variables ∆′ to terms
with free variables ∆. In this case, the type of f is often written as ∆ ` f : ∆′.
However, since in this thesis we use telescope mappings mainly as functions
rather than as substitutions, we stick to the notation f : ∆→ ∆′.

40 DEPENDENT PATTERN MATCHING

Declarations

An Agda Lite program consists of a sequence of declarations. A declaration
is either a datatype declaration with zero or more constructor declarations
(Section 2.1.2) or a function declaration with one or more clauses (Section 2.1.3).

Definition 2.7 (Declaration).

decl ::= data D Γ : Ξ→ Set` where con∗ (datatype declaration)
| f : A cls+ (function declaration)

con ::= c : ∆→ D ū (constructor declaration)

cls ::= f pat∗ = u (clause)
| f pat∗ t x (absurd clause)

(2.4)

An absurd clause f pat∗ t x allows the right-hand side to be skipped if the type
of the variable x is empty. In the full Agda language, the concrete syntax for
an absurd clause is f p̄ where the pattern variable x in p̄ has been replaced by
an absurd pattern ().

Definition 2.8 (Pattern, underlying term).

pat ::= x (pattern variable)
| c pat∗ (constructor pattern)
| .u (inaccessible pattern)

(2.5)

For each pattern p, we also define the underlying term dpe as follows:

dxe = x
dc p1 . . . pne = c dp1e . . . dpne
d.ue = u

(2.6)

2.1.2 Inductive families of datatypes

Inductive families of datatypes are (dependent) types inductively defined by
a number of constructors (Dybjer, 1991). Inductive families can also have
parameters and indices.

Example 2.9. N is defined as an inductive datatype with the constructors
zero and suc:

data N : Set where
zero : N
suc : N→ N

(2.7)

AGDA LITE: A MINIMAL LANGUAGE WITH DEPENDENT PATTERN MATCHING 41

Example 2.10. A] B is an inductive datatype with two parameters A and
B and two constructors left and right:

data A] B : Set where
left : A→ A] B
right : B → A] B

(2.8)

Example 2.11. Vec A n is an inductive family with one parameter A : Set,
one index n : N, and two constructors nil and cons:

data Vec A : N→ Set where
nil : Vec A zero
cons : (n : N)→ A→ Vec A n→ Vec A (suc n)

(2.9)

Example 2.12. The type m ≤ n is an inductive family with two indices and
two constructors lz and ls:

data _ ≤ _ : N→ N→ Set where
lz : (n : N)→ zero ≤ n
ls : (m n : N)→ m ≤ n→ suc m ≤ suc n

(2.10)

Example 2.13. The identity type x ≡A y can also be defined as an inductive
family. We follow the definition of the identity type by Paulin-Mohring (1993),
as an inductive family with two parameters A : Set` and x : A, one index y : A,
and one constructor refl:

data x ≡A _ : A→ Set` where
refl : x ≡A x

(2.11)

In the original definition of indexed families by Dybjer (1991), parameters
are required to occur uniformly everywhere in the definition of the datatype,
while indices can vary from constructor to constructor. Agda is less restrictive
and also allows parameters to occur non-uniformly in the types of recursive
constructor arguments, but not in their return types. The work in this thesis
is valid for the more liberal definition used by Agda, and hence also for the
original definition.

Definition 2.14 (Datatype validity). Consider a (well-scoped) declaration
with parameters ∆ and indices Ξ of the form

data D ∆ : Ξ→ Set` where
c1 : ∆1 → D ū1

...
cn : ∆n → D ūn

(2.12)

This datatype declaration is valid on the following conditions:

42 DEPENDENT PATTERN MATCHING

• ∆ is a valid context.

• Ξ is a valid telescope in context ∆.

• For each i = 1, . . . , n, ∆i is a valid telescope in context ∆, assuming
D : ∆→ Ξ→ Set`.1

• All types in ∆i are of level ` or lower.

• For each i = 1, . . . , n, ūi is of the form x̄; ū′i where x̄ are the variables
bound in ∆ and ū′i is of type Ξ in context ∆∆i.

• D occurs strictly positively in the type of the arguments of each constructor,
i.e. for each i and each (xij : Bij) ∈ ∆i, Bij either doesn’t contain D or is
of the form Φ→ D v̄ij where Φ doesn’t contain D.

• None of the types in ∆i are dependent on the recursive variables in ∆i,
i.e. those variables with a type of the form Φ→ D v̄ij .

For a valid data declaration of the form above, we add the following typing
rules:

Γ context
Γ ` D : ∆→ Ξ→ Set`

Γ ` r̄ : ∆
Γ ` ci : ∆i[∆ 7→ r̄]→ D r̄ ūi[∆ 7→ r̄]

These typing rules can be used to type the subsequent declarations of the Agda
Lite program.

The values of the parameters r̄ are not arguments to the constructor c, not
even implicitly. This is intentional: requiring constructors to remember their
parameters is impractical from an implementation perspective, so we make sure
they are never needed for the algorithms described in this thesis.

When we say something about a generic datatype D in this thesis, we will
consider D to be already applied to its parameters ∆, so we have D : Ξ→ Set`.
For example, we consider D to stand for Vec A rather than just Vec.

We write D for the telescope (ū : Ξ)(x : D ū), for example Vec = (n : N)(x :
Vec A n).

Mutually defined datatypes are not supported directly by Agda Lite but can be
encoded as a single datatype with an additional index.

1If we only assume D ∆ : Ξ→ Set` here, we get the more restrictive version of datatypes
where parameters must occur uniformly everywhere.

AGDA LITE: A MINIMAL LANGUAGE WITH DEPENDENT PATTERN MATCHING 43

Example 2.15. Consider two mutually defined indexed datatypes Even and
Odd defined as follows:

data Even : N→ Set where
even-zero : Even zero
even-suc : (n : N)→ Odd n→ Even (suc n)

data Odd : N→ Set where
odd-suc : (n : N)→ Even n→ Odd (suc n)

(2.13)

In Agda Lite, these can be encoded as a single datatype as follows:

data EvenOdd : Bool→ N→ Set where
even-zero : EvenOdd true zero
even-suc : (n : N)→ EvenOdd false n→ EvenOdd true (suc n)
odd-suc : (n : N)→ EvenOdd true n→ EvenOdd false (suc n)

(2.14)
where Even = EvenOdd true and Odd = EvenOdd false.

On the other hand, inductive-recursive datatypes (Dybjer, 2000) and inductive-
inductive datatypes (Forsberg and Setzer, 2010) go beyond the scope of this
thesis.

In most presentations of inductive datatypes in type theory, each datatype
is equipped with a datatype eliminator. This eliminator allows us to define
functions by case analysis and induction on elements of the datatype. Agda
Lite instead allows the user to define functions by dependent pattern matching.
This allows the user to define their own induction principles. In particular, the
standard datatype eliminator can be defined by pattern matching.

2.1.3 Definitions by dependent pattern matching

Dependent pattern matching is a way to define new functions by specifying a
number of clauses the function has to satisfy. The behaviour of a function by
pattern matching when applied to some term u is determined by matching u
against the patterns of each of the clauses. The definitions in this section are
based on the ones given by Goguen et al. (2006).

Definition 2.16 (Pattern matching). Matching a term u against a pattern p can
either produce a substitution σ for the pattern variables of p (match(p, u)⇒ σ),
produce a conflict (match(p, u)⇒ ⊥), or it can get stuck. See Figure 2.5 for
the rules involving matching.

44 DEPENDENT PATTERN MATCHING

match(x, t)⇒ [x 7→ t]

match(p̄, t̄)⇒ σ

match(c p̄, c t̄)⇒ σ

match(p̄, t̄)⇒ ⊥
match(c p̄, c t̄)⇒ ⊥

c1 6= c2

match(c1 p̄, c2 t̄)⇒ ⊥

match((), ())⇒ []

match(p, t)⇒ σ match(p̄, t̄)⇒ σ′

match((p; p̄), (t; t̄))⇒ σ;σ′

match(p, t)⇒ ⊥
match((p; p̄), (t; t̄))⇒ ⊥

match(p̄, t̄)⇒ ⊥
match((p; p̄), (t; t̄))⇒ ⊥

Figure 2.5: Rules describing the pattern matching algorithm.

Consider a (well-scoped) function definition of the form

f : ∆→ T
cl1
...
cln

(2.15)

where each clause cli is either of the form f p̄i = ui or f p̄i t x. For this
definition to make sense, it needs to satisfy at least the following properties:

• ∆→ T is a valid type in the empty context.

• For each clause f p̄i = ui or f p̄i t x, there exists some telescope ∆i such
that ∆i ` dp̄ie : ∆.

• Each variable in ∆i occurs exactly once in an accessible position in p̄i.

• For each regular clause f p̄i = ui, we have ∆i ` ui : T [∆ 7→ dp̄ie].

• For each absurd clause f p̄i t x, the type of x in ∆i is an empty type.

Aside from these requirements, there are also a number of global requirements
on the clauses for the definition of f to be valid:

CHECKING DEFINITIONS BY DEPENDENT PATTERN MATCHING 45

Completeness For each list of closed terms s̄ : ∆, there must be a pattern p̄
such that s̄ matches p̄. This is required to have canonicity, i.e. that any
closed normal form of an inductive family is constructor-headed.

Termination There can be no s̄ : ∆ such that there is an infinite sequence
of evaluation steps starting from f s̄. This is required to have strong
normalization, i.e. that any sequence of evaluation steps starting from a
well-typed term eventually ends in a normal form.

Confluence If s̄ matches more than one pattern in the definition of f, any
choice of which clause to apply should lead to the same result. This is
required to have the Church-Rosser property, i.e. all normal forms of a
term are definitionally equal.

In the next two sections, these three requirements will be strengthened further.
For now, suppose that the definition of f is valid, then we add the following
typing rule:

Γ valid
Γ ` f : ∆→ T

and for each non-absurd clause f p̄i = ui of f the rule

Γ ` v̄ : ∆ match(p̄i, v̄)⇒ σ

Γ ` f v̄ = uiσ : T [∆ 7→ v̄]

2.2 Checking definitions by dependent pattern
matching

At first sight, the three properties of functions by pattern matching we required
above (completeness, termination, and confluence) seem to be everything needed
to guarantee the ‘good’ properties of type theory, in particular consistency of
the theory and decidability of typechecking. However, there are at least three
reasons to impose stricter requirements:

• The typechecker needs to check whether these properties hold of a given
definition. This is not straightforward to do for their current formulation.

• When new axioms are added to the theory, these three properties are
no longer enough to guarantee soundness. For example, the definition
of K (1.29) is complete, terminating, and confluent, but it is unsound in
combination with univalence.

46 DEPENDENT PATTERN MATCHING

• To evaluate functions by pattern matching efficiently, we need a fast way
to determine which clause matches a particular combination of arguments.
This is especially important when the number of clauses becomes large.

For the three reasons outlined above, definitions by pattern matching are usually
represented as a case tree (Augustsson, 1985). If a function can be represented
by a case tree, its clauses are automatically complete and non-overlapping, so
it satisfies completeness and confluence. A case tree also allows us to evaluate
the function efficiently, without looking at each clause in sequence. Finally and
most importantly for the purposes of this thesis, functions representable by a
case tree can be translated to datatype eliminators, thus guaranteeing their
conservativity over a more basic type theory. This is the subject of Chapter 4.

In this section, we show how to check definitions by dependent pattern matching
in Agda Lite. First, we show how case trees are built from successive case
splits (Section 2.2.1). We also give a simple termination criterion: functions
should be structurally recursive (Section 2.2.2). To deal with case splitting on
indexed datatypes, we apply unification to the indices (Section 2.2.3). None of
the content of this section is novel, all these algorithms can also be found for
example in the work of Norell (2007).

2.2.1 Case splitting

A case tree for a function f is a tree where each node corresponds to a case
split and each leaf corresponds to a clause of f.
Example 2.17. Remember the definition of the function half from Ex-
ample 1.3:

half : N→ N
half zero = zero
half (suc zero) = zero
half (suc (suc n)) = suc (half n)

(2.16)

It can be represented by a case tree as follows:

[(n : N)] n

 [] zero 7→ zero

[(m : N)] (suc m)
{

[] (suc zero) 7→ zero
[(k : N)] (suc (suc k)) 7→ suc (half k)

(2.17)
At each internal node, the variable on which the case split is performed is
underlined.

We define case splitting here for simple datatypes; Section 2.2.3 extends it to
indexed datatypes.

CHECKING DEFINITIONS BY DEPENDENT PATTERN MATCHING 47

Definition 2.18 (Pattern specialization, simply-typed version). Let p̄ be a list
of patterns of type ∆ with pattern variables Φ, i.e. Φ ` dp̄e : ∆. If (x : D) ∈ Φ
for some datatype D and c : ∆c → D is a constructor of D, then we write
p̄⇒x

c p̄[x 7→ c ȳ] where ȳ are fresh variables of type ∆c.

Definition 2.19 (Case splitting, simply-typed version). Let p̄ be a list of
well-typed patterns with pattern variables Φ and let (x : D) ∈ Φ. A splitting
(also called a direct covering) of p̄ is the set of patterns p̄i such that p̄⇒x

ci
p̄i

where c1, . . . , cn are the constructors of D.

Definition 2.20 (Case tree). A case tree for a function f : ∆ → T is either
an internal node or a leaf node. Each node has a label of the form [Φ]p̄ where
Φ is a telescope and p̄ is a list of patterns of type ∆ with free variables from
the telescope Φ. The root node of a case tree has label [∆]x̄ where x̄ are fresh
variables.

• An internal node with label [Φ]p̄ is of the form

[Φ]p̄

 ct1
. . .
ctn

(2.18)

where ct1, . . . , ctn are again case trees with labels [Φ1]p̄1, . . . , [Φn] p̄n and
p̄1, . . . , p̄n form a splitting of p̄.

• A leaf node with label [Φ]p̄ is of the form [Φ]p̄ 7→ u where Φ ` u : T [∆ 7→
dp̄e].

Most of the time we don’t write down the telescope [Φ] because it can easily be
reconstructed from p̄ and ∆.

Example 2.21. An absurd clause in a definition by pattern matching
corresponds to an internal node with zero subtrees in the case tree. For
example, the case tree for the function absurd (Example 1.7) is given as follows:

[(A : Set`)(x : ⊥)] A;x { (2.19)

In this case, we may also write [(x : ⊥)] x t x to make it clear the splitting is
empty.

To construct a case tree from a given set of clauses, in each node one pattern
variable is chosen on which to split the pattern. This variable must be a
blocking variable: in at least one of the function clauses, there has to be a
constructor pattern in the position of this variable. More precisely, a variable x

48 DEPENDENT PATTERN MATCHING

in the pattern p̄ is blocking if either there is a given clause f q̄ = t such that
match(p̄, dq̄e)⇒ σ and the value assigned to x by σ is a constructor form; or
there is a given clause f q̄ t y such that match(p̄, dq̄e) ⇒ σ and the value
assigned to x by σ is equal to the variable y.

When a blocking variable has been found, the pattern is split on that variable
and a subtree is constructed for each of the patterns in the splitting. This
process is repeated until there are no more blocking variables, at which point
the leaf node is filled in by the right-hand side of the corresponding function
clause.

Not all definitions by pattern matching can be represented as a case tree. In
particular, the patterns could overlap or be otherwise not obtainable by a
sequence of case splits.

Example 2.22. Consider a function minimum defined as follows:

minimum : N→ N→ N
minimum zero y = y
minimum x zero = x
minumum (suc x) (suc y) = suc (minimum x y)

(2.20)

There is no case tree that corresponds precisely to this definition: if the first case
split is on the variable x then the second clause will fail to hold definitionally,
but if the first case split is on y then the first one will fail to hold.

In cases like this, Agda uses the first-match semantics construct an approxima-
tion of clauses by a case tree. However, this can produce unexpected results
for the user of the language. For example, the second clause of the definition
of minimum will fail to hold definitionally. In our previous work, we explored
whether it is possible to allow overlapping patterns (Cockx, Devriese, and
Piessens, 2014a). In Agda Lite, we avoid the problem by disallowing definitions
that cannot be presented as a case tree. The same behaviour can be obtained
in the full Agda language by enabling the --exact-split option.

2.2.2 Structural recursion

To guarantee termination of functions by pattern matching, they are required
to be structurally recursive. This means that the arguments of recursive calls
should be structurally smaller than the pattern on the left-hand side. For
functions with multiple arguments, the function should be structurally recursive
on one of its arguments, i.e. there should be some k such that sk ≺ pk for each
clause f p̄ = t and each recursive call f s̄ in t.

CHECKING DEFINITIONS BY DEPENDENT PATTERN MATCHING 49

Γ ` c t1 . . . tn : D ū Γ ` ti : Φ→ D v̄ Γ ` (s1; . . . ; sk) : Φ
ti s1 . . . sk ≺ c t1 . . . tn

s ≺ ti Γ ` c t1 . . . tn : D ū Γ ` ti : D v̄
s ≺ c t1 . . . tn

Figure 2.6: The structural order ≺ is used to check termination and to detect
cycles during unification. In the first rule, ti can be any argument t1, . . . , tn
which is a recursive argument of the constructor c. The additional arguments
s1, . . . , sk are required to deal with higher-order constructor arguments and
can be ignored for the most of the datatypes in this thesis.

The structural order ≺ is defined in Figure 2.6. In both rules, the constructor c
must be fully applied. Additionally, in both rules ti is required to be a recursive
argument of c, i.e. the type of the i’th argument of c must be of the form
Φ→ D v̄, and it must be applied to arguments of type Φ.

This definition is somewhat different from the one given by Abel and Altenkirch
(2002) which is used by Goguen et al. (2006). Our definition describes the
same relation in case the left- and right-hand sides are elements of the datatype
D, but it enforces that the left- and right-hand sides are actually elements of
the datatype. This prevents odd structural orders that are allowed by the
original definition. For example, if we have a datatype D with a constructor
c : (A→ D)→ D, then the definition by Goguen et al. allows us to derive for
any f : A → D that f ≺ c f ≺ c, even though f doesn’t occur in c. While
we couldn’t find an example where this definition causes an actual problem,
using a definition that prevents this kind of spurious orderings helps us in
the translation of pattern matching to eliminators (in particular Lemma 4.8,
Lemma 4.13 and Lemma 4.18).

It is possible that a function is not structurally recursive but can still be
seen to be terminating according to a more complex criterion such as size-
change termination (Lee, Jones, and Ben-Amram, 2001). Such more complex
termination criteria fall outside the scope of this thesis.

2.2.3 Unification of datatype indices

When doing a case split on a variable of an indexed datatype, the typechecker
must decide which constructors can be used to construct a term of a particular
type, and under which constraints. For example, consider the inductive family
m ≤ n with constructors lz and ls (Example 2.12). To do a case split on a

50 DEPENDENT PATTERN MATCHING

x 6∈ FV (v)

(x ?= v)Θ [x 7→v]===⇒ Θ[x 7→ v]

y 6∈ FV (u)

(u ?= y)Θ [y 7→u]===⇒ Θ[y 7→ u]

Γ ` u = v : T
(u ?= v)Θ []=⇒ Θ

(c ū ?= c v̄)Θ []=⇒ (ū ?= v̄)Θ

c1 6= c2

(c1 ū
?= c2 v̄)Θ conflict=====⇒ ⊥

u ≺ v
(u ?= v)Θ cycle===⇒ ⊥

v ≺ u
(u ?= v)Θ cycle===⇒ ⊥

Γ ` u = u′ : A Γ ` v = v′ : A (u ?= v)Θ σ=⇒ Θ′

(u′ ?= v′)Θ σ=⇒ Θ′

Figure 2.7: These unification transitions are used for case splitting on a
variable of an indexed datatype.

variable of type n ≤ zero as in the definition of antisym (Example 1.12), the
typechecker has to decide for what arguments the two constructors produce a
result of the form n ≤ zero. The constructor lz can only be used at this type
in case n = zero, and ls cannot be used at all because suc n can never be
equal to zero.

In general, to check whether a constructor c : ∆→ D v̄ can be used at type D ū,
the typechecker has to unify ū with v̄. It constructs the unification problem
Θ, where Θ is a list of equations ū ?= v̄, and applies the following unification
transitions to simplify the problem step by step (Figure 2.7):

CHECKING DEFINITIONS BY DEPENDENT PATTERN MATCHING 51

() []=⇒∗ ()

Θ τ=⇒ Θ′ Θ′ σ=⇒∗ ()
Θ τ ;σ==⇒∗ ()

Θ conflict/cycle=========⇒ ⊥
Θ⇒∗ ⊥

Θ τ=⇒ Θ′ Θ′ ⇒∗ ⊥
Θ⇒∗ ⊥

Figure 2.8: The unification algorithm applies the unification transitions of
Figure 2.7 until it finds a most general unifier, it ends in a conflict or cycle, or
no more transition applies.

Solution. The solution rule (also called the substitution rule or the coalescence
rule) solves an equation x ?= v if one side is a variable. This rule cannot
be applied if x occurs free in v.

Deletion. The deletion rule removes equations where the left- and right-hand
side are definitionally equal.

Injectivity. The injectivity rule simplifies equations of the form c x1 . . . xn
?=

c y1 . . . yn if c is a constructor. For example, this rule allows us to
simplify suc m ?= suc n to m ?= n.

Conflict. The conflict rule refutes absurd equations of the form c1 x1 . . . xm
?=

c2 y1 . . . yn where c1 and c2 are two distinct constructors. For example,
it allows us to conclude that an equation of the form zero ?= suc y is
absurd.

Cycle. The cycle refutes detects cyclical equations of the form x
?= c y1 . . . yn

where x occurs rigidly in y1, . . . , yn. For example, it allows us to detect
that an equation of the form n

?= suc n is absurd. To formalize this rule,
we use the structural order ≺ (Figure 2.6).

Exhaustively applying these rules whenever they are applicable terminates by
the usual argument, with three possible outcomes (Jouannaud and Kirchner,
1990):

52 DEPENDENT PATTERN MATCHING

Positive success: All equations have been solved, yielding a most general
unifier σ. In this case, we write Θ σ=⇒∗ ().

Negative success: Either the conflict or the cycle rule applies, meaning
that there exist no unifiers, i.e. this case is absurd. In this case, we write
Θ⇒∗ ⊥.

Failure: An equation is reached for which no transition applies, meaning that
the problem is too hard to be solved by this unification algorithm.

The third outcome can occur for example when the unification algorithm
encounters an equation between two functions. Nevertheless, the algorithm is
complete for constructor forms: if both ū and v̄ are built from constructors and
variables only, then unification never results in a failure.

In the next chapter, we describe unification in a dependently typed setting
in general and give an extended and proof-relevant version of the algorithm
presented here. Now we extend the definitions of pattern specialization and
case splitting to indexed datatypes.

Definition 2.23 (Pattern specialization, general version). Let p̄ be a list of
patterns of type ∆ with pattern variables Φ and let (x : D ū) ∈ Φ for some
datatype D and c : ∆c → D v̄ be a constructor of D. If (ū ?= v̄) σ=⇒∗ (), then we
write p̄⇒x

c p̄σ
′[x 7→ c (∆cσ

′)] where σ′ substitutes a pattern variable z for an
inaccessible pattern .(zσ) for any z in the domain of σ. On the other hand, if
(ū ?= v̄)⇒∗ ⊥ then we write p̄⇒x

c ⊥.

Example 2.24. Let ∆ = (n : N)(x : Vec A n) and p̄ = (n;x) and consider
the constructor nil : Vec A zero. We have (n ?= zero) [n 7→zero]=====⇒ (), so
(n;x)⇒x

nil (.zero; nil).

Definition 2.25 (Case splitting, general version). Let p̄ be a list of well-typed
patterns with pattern variables Φ and let (x : D ū) ∈ Φ. Suppose that for every
constructor ci : ∆i → D v̄i we either have p̄⇒x

ci
p̄i or p̄⇒x

ci
⊥. Then a splitting

(also called a direct covering) of p̄ is the set of patterns p̄i such that p̄⇒x
ci
p̄i.

It is possible for a case split to be empty, even if the datatype has more than
zero constructors. In this case it is possible to have internal node of the case
tree with no subtrees, this corresponds to an absurd clause of the function.

The definition of a valid case tree remains unchanged from the simply-typed
version, provided we use the new definitions of pattern specialization and case
splitting. Now we define what we mean by a valid definition by pattern matching.

PATTERN MATCHING WITHOUT K 53

Definition 2.26 (Pattern matching validity). A definition by pattern matching
is valid if the following conditions are satisfied:

• The (non-absurd) clauses of the definition arise as the leaf nodes of a case
tree for f.

• The absurd clauses of the definition arise as the internal nodes of the
same case tree for which there are no subtrees.

• There is an index i such that the clauses of f are structurally recursive
on their ith argument.

Example 2.27. We build a case tree for the function antisym (Example 1.12).
The case tree is given in Figure 2.9. The first case split on the argument of
type m ≤ n results in two cases: either lz n or ls k l x. The second case split
on the argument of type n ≤ zero is more interesting:

• For the lz constructor, unification tells us that n must be equal to zero:

n
?= zero,

zero ?= k

[n 7→zero]=====⇒ zero ?= k
[k 7→zero]=====⇒ () (2.21)

We renamed the argument n of lz to k to avoid a name conflict with the
argument n of antisym.

• For the ls constructor, unification ends in a conflict, as zero cannot be
equal to something of the form suc k :

n
?= suc k,

zero ?= suc l

[n 7→suc k]======⇒ zero ?= suc l conflict=====⇒ ⊥ (2.22)

As in the previous case, we renamed the arguments m and n of ls to k
and l.

This is reflected in the upper subtree of the case tree, where there is only a case
for the constructor lz, and none for ls. Similarly, the second subtree only has
a case for the ls constructor, not for lz.

2.3 Pattern matching without K

In the previous sections, we have seen how to define functions in Agda Lite
by dependent pattern matching. If we check that all definitions by pattern

54 DEPENDENT PATTERN MATCHING

m n x y


.zero n (lz .n) y{

.zero .zero (lz .zero) (lz .zero) 7→ refl
.(suc k) .(suc l) (ls k l x) y{

.(suc k) .(suc l) (ls k l x) (ls .l .k y)
7→ cong suc (antisym k l x y)

Figure 2.9: A representation of the function antisym (Example 1.12) by a
case tree. While there are two subtrees for the case split on x, each split on y
only has a single subcase due to the constraints on the type of y.

matching are valid (or let a typechecker do it for us), then we can trust that
the language satisfies canonicity, strong normalization, and the Church-Rosser
property. Together, these properties imply that our language is consistent, i.e.
that there can be no term of type ⊥ in the empty context. However, this is no
longer true once we add extra axioms such as univalence. In particular, we can
prove K by pattern matching (1.29), which together with univalence implies an
inconsistency.

It is exactly this K rule that is responsible for the incompatibility between
univalence and dependent pattern matching. This was shown by Goguen et al.
(2006): definitions by pattern matching can be translated to ones that only use
the standard datatype eliminators and the K rule. Intuitively, this makes sense
because HoTT (and univalence in particular) allows us to encode important
information in equality proofs, while K is exactly the assertion that there is no
such information.

One of our main goals is to formulate a version of dependent pattern matching
that doesn’t have these problems and can hence be used in many more settings,
in particular in HoTT. For this, we need to use a different unification algorithm
in the definition of pattern specialization (Definition 2.23). This new unification
algorithm is the subject of the next chapter. In addition, we need to make a
small change to the definition of structural recursion.

In this section, we present three additional restrictions to definitions by
dependent pattern matching that, when used together, guarantee that it is
impossible to prove K or any of its consequences. This allowing pattern matching
to be used together with axioms from HoTT (Section 2.3.1). We also discuss
the implementation of our criterion in Agda and compare it to the old criterion
offered by Agda (Section 2.3.3).

The first two of these three restrictions are meant merely to ensure that
the untyped unification algorithm from this chapter computes a conservative
approximation of the more expressive, typed unification algorithm in the next

PATTERN MATCHING WITHOUT K 55

chapter. However, we think it is useful to first see how the existing definitions
have to be restricted in order to remove the dependency on K before extending
them in other ways. In addition, these restrictions may be useful for someone
who wants to implement dependent pattern matching but does not want to deal
with the complexity of a typed unification algorithm.

2.3.1 Three restrictions for avoiding K

For function definitions that match only on simple types, like the function
half (Example 1.3), each case split corresponds exactly to one application of
the standard eliminator for N, hence the K rule is not needed. However, the
unification algorithm used for case splitting on an inductive family depends
crucially on the K rule, so it has to be restricted to remove this dependence.

The first restriction

As the first and most important restriction, we prohibit the use of the deletion
step of the unification algorithm. According to this restriction, the definition of
K by pattern matching (1.29) is not allowed, as case splitting on the argument
of type a ≡A a produces a unification problem a

?= a, which fails without the
deletion step of the unification algorithm. In contrast, the definition of J (1.27)
is still allowed since it only uses the solution rule. Likewise, the definitions of
sym, trans, cong, subst (Example 1.13), and antisym (Example 1.12) in the
introduction are also still accepted.

If unification still results in a success (a positive or negative one) then the
original rules would have given the same result. Where the original algorithm
was complete for constructor forms, the version without the deletion rule is
only complete for linear constructor forms (i.e. ones where each variable occurs
only once).

The second restriction

Example 2.28. As an example of why a further restriction is needed, consider
the following weaker variant of K:

weakK : (P : refl ≡a≡Aa refl→ Set)→
(p : P refl)(e : refl ≡a≡Aa refl)→ P e

weakK P p refl = p
(2.23)

56 DEPENDENT PATTERN MATCHING

The type of weakK says that any proof e of refl ≡a≡Aa refl is equal to refl.
In the HoTT interpretation of identity proofs as paths, this would mean that
there are no non-trivial paths between paths, i.e. all spaces have a dimension of
at most 1. Like the regular K, this weakK does not follow from the standard
rules of type theory and is incompatible with univalence (Kraus and Sattler,
2015).

The second restriction limits the injectivity rule to be applicable only to
certain constructors, excluding for example refl. To formulate it, we first need
to introduce some additional terminology.

Definition 2.29 (Forced constructor argument, rigid occurrence). A variable
x occurs rigidly in a term t if either t = x or t is of the form c t1 . . . tn where
x occurs rigidly in one of the ti and ti is not a forced argument of c.

An argument of a constructor c : ∆→ D ū is forced if it occurs rigidly in one of
the indices ū.

As an example, the argument (n : N) is a forced argument of cons : (n :
N)(x : A)(xs : Vec A n)→ Vec A (suc n). The concept of a forced constructor
argument was introduced by Brady, McBride, and McKinna (2003) for efficiently
compiling dependently typed programs. We use it here to describe when it is
safe to apply the injectivity rule.

Definition 2.30 (Invertible constructor). A constructor c : ∆ → D ū is
invertible if the indices ū consist only of invertible constructors and variables
bound in ∆, and no variable from ∆ occurs more than once in a non-forced
position in ū.

In particular, constructors of non-indexed datatypes such as N are always
invertible. Likewise, the constructor cons : (n : N)(x : A)(xs : Vec A n) →
Vec A (suc n) is invertible. In contrast, refl : u ≡A u is not an invertible
constructor unless u consists itself completely of invertible constructors: refl :
zero ≡N zero is invertible, but refl : n ≡N n for variable n : N is not.

The second restriction to the unification algorithm is specified as follows: when
applying the injectivity step on the equation c s̄ ?= c t̄, the constructor c has
to be invertible. This prevents the definition of weakK because the constructor
refl : a ≡A a is not invertible. This restriction is a conservative approximation
of the more general principle of higher-dimensional unification, as described in
the next chapter (Section 3.4).

With the definition of forced constructor arguments, we can also relax the
first restriction a bit. In particular, when applying injectivity to an equation

PATTERN MATCHING WITHOUT K 57

c s̄
?= c t̄, it is safe to skip unification of the forced arguments of c. This

allows us to avoid some situations where unification would otherwise require
the deletion rule.

Example 2.31. Let Fin n be the type of natural numbers strictly less than n.
It can be defined as an indexed datatype as follows:

data Fin : N→ Set where
fzero : (n : N)→ Fin (suc n)
fsuc : (n : N)→ Fin n→ Fin (suc n)

(2.24)

Consider the ≤Fin relation on Fin:

data _ ≤Fin _ : (n : N)→ Fin n→ Fin n→ Set where
lz : (n : N)(y : Fin (suc n))→ fzero n ≤Fin y
ls : (n : N)(x y : Fin n)→ x ≤Fin y → fsuc n x ≤Fin fsuc n y

(2.25)

When case splitting on an argument of type i ≤Fin i where i : Fin n, the
unification algorithm applies injectivity to the equation fsuc n x ?= fsuc n y.
Since the first argument of the constructor fsuc is forced, the corresponding
equation n ?= n can be skipped. Otherwise, the deletion rule would be needed
to solve this equation.

The third restriction

One important but easily overlooked detail in the translation of dependent
pattern matching to eliminators by Goguen et al. (2006) is that the type of the
argument on which the function is structurally recursive must be a datatype.
When working in a theory without the K rule, this restriction becomes very
important.

Example 2.32. When we allow recursion on an argument of variable type, we
can refute univalence.2 Let One : Set be a datatype with a single constructor
wrap : (⊥ → One) → One. Since wrap is a constructor and hence injective, it
gives rise to an equivalence between One and ⊥ → One. By univalence, we have
a proof iso = ua wrap : One ≡Set (⊥ → One). Now we define a function noo by
pattern matching as follows:

noo : (X : Set)→ (One ≡Set X)→ X → ⊥
noo .One refl (wrap f) = noo (One→ ⊥) iso f (2.26)

2This example has been adapted from the ones given by Maxime Dénès and Conor
McBride on the Agda mailing list (see https://lists.chalmers.se/pipermail/agda/2014/
006252.html).

https://lists.chalmers.se/pipermail/agda/2014/006252.html
https://lists.chalmers.se/pipermail/agda/2014/006252.html

58 DEPENDENT PATTERN MATCHING

First, noo pattern matches on the proof of One ≡Set X, forcing X to be equal
to One. Next, it proceeds by induction on its third argument, which first had
type X but is now of type One.

Once we have noo, we can prove ⊥ as follows:

false : ⊥
false = noo (One→ ⊥) iso (absurd One) (2.27)

According to the naive interpretation, the function noo is structurally recursive
on its third argument. However, the type of this argument changes from One in
the argument position to ⊥ → One in the recursive call. In effect, the definition
of noo first strips the wrap constructor from its third argument to fool the
termination checker, only to apply it again via a backdoor using the equality
iso.

The kind of recursion used in the above example is not allowed by the eliminator
for the One type, and is in fact incompatible with univalence as made evident by
the proof false of ⊥. So we need to be careful to disallow this kind of recursion,
both in the proof and in the implementation of the criterion. In general, the
type of the argument on which the function is structurally recursive must be of
the form D ū where D is a datatype.

2.3.2 Soundness of the criterion

These three restrictions rule out a direct definition of K (1.29) or a weaker form
of it (2.23), as well as other undesired definitions such as noo (Example 2.32).
To be certain that this is enough, we prove that any definition by pattern
matching satisfying this criterion could as well be written in a simpler language
without dependent pattern matching but only datatype eliminators, like Goguen
et al. (2006) did for pattern matching with K. In addition, we also prove that
the definition by eliminators still has the same computation rules as the one by
pattern matching. Formally, we prove the following:

Corollary 2.33. Let f : (t̄ : ∆)→ T be a function given by a valid case tree,
adhering to the following three restrictions:

• When case splitting on a variable of an indexed datatype, it is not allowed
to use the deletion step of the unification algorithm, except when unifying
forced constructor arguments.

• When applying the injectivity step on the equation c s̄
?= c t̄, the

constructor c has to be invertible.

PATTERN MATCHING WITHOUT K 59

• When checking termination of a function by pattern matching, the type of
the argument on which the function is structurally recursive must be of
the form D ū where D is a datatype.

Then we can construct a term f’ : (t̄ : ∆) → T constructed from eliminators
only. Moreover, define {e}f7→f’ by replacing all occurrences of f by f’ in e.
Then f’ satisfies f’ t̄ = {u}f7→f’ whenever f t̄ = u, i.e. it has the same reduction
behaviour as f.

Proof. This is a special case of the results in Chapter 4, in particular
Theorem 4.27 and Theorem 4.29. To show that the injectivity rule for indexed
datatypes as given in this chapter is valid, we also need Corollary 3.56.

This result gives us more than just the assurance that we cannot prove anything
we couldn’t prove with just the basic rules of type theory: it also gives us
an effective method to compile definitions by pattern matching to datatype
eliminators. Agda currently only guarantees that this compilation could be
performed in theory, but the Equations package for Coq by Sozeau (2010) takes
this idea into practice by actually performing the translation.

2.3.3 Comparison with the old criterion

We implemented the criterion for pattern matching without K as an optional
flag for Agda 2.4.0 and later called --without-K, replacing an older version of
--without-K. In older versions of Agda, it attempted to detect definitions by
pattern matching that make use of the K rule by means of a syntactic check. It
is described as follows by Norell, Abel, and Danielsson (2012):

If the flag is activated, then Agda only accepts certain case-splits.
If the type of the variable to be split is D pars ixs, where D is a
data (or record) type, pars stands for the parameters, and ixs the
indices, then the following requirements must be satisfied:

• The indices ixs must be applications of constructors (or literals)
to distinct variables. Constructors are usually not applied to
parameters, but for the purposes of this check constructor
parameters are treated as other arguments.

• These distinct variables must not be free in pars.

This old criterion has been criticized many times, for being too restrictive
(Sicard-Ramírez, 2013), for having unclear semantics (Reed, 2013), and for

60 DEPENDENT PATTERN MATCHING

permitting definitions that are not equivalent to ones that only use datatype
eliminators (Altenkirch, 2012; Cockx, 2014). These errors allowed one to prove
(weaker versions of) the K rule, such as Example 2.28. One reason to prefer
our criterion is that we can prove it doesn’t contain such errors (Section 4.3).
However, we should also compare the generality of the two criteria, i.e. what
kind of definitions are still allowed by each.

On the one hand, the old criterion implies that the deletion rule is never used
during unification. It guarantees that all unification problems generated by
pattern matching are of the form ū

?= v̄i where ū consists of constructors applied
to free variables and each variable occurs only once in ū. Moreover, since new
constructors introduced by case splitting are applied to fresh variables, the
variables in ū are not free in v̄i. Both the solution and the injectivity step
preserve these three properties, hence unification never reaches an equation of
the form x

?= x.

On the other hand, the old criterion does not imply that the second or third
restrictions were satisfied. But this is actually a defect, allowing one to prove a
weaker version of the K rule (Cockx, 2014), similar to Example 2.28. Likewise,
the old criterion fails to forbid the definition of noo (Example 2.32). So the fact
that our criterion is more restrictive in this case is actually a good thing.

Apart from these two extra necessary restrictions, our criterion is in fact
strictly more general than the old one. For example, the old criterion allows
us to pattern match with refl on an argument of type k + l ≡N m (where
k, l,m : N are previous arguments), but not on an argument of type m ≡N k+ l.
This asymmetry is created by a technical detail in the standard definition of
propositional equality as an inductive family: the first argument is a parameter
(so it can be anything), while the second one is an index (so it must consist
of constructors applied to free variables). In contrast, our criterion allows
both variants because we look at the unifications that are performed instead
of syntactical artefacts like the distinction between a parameter and an index.
Similarly, the old criterion does not allow us to pattern match on an argument
of type n ≤ n because the variable n occurs twice, while it is allowed by our
criterion.

Another advantage of our criterion is that it does not put any requirements
on the datatype parameters. This is useful when injectivity is needed for a
constructor of a parametrized datatype. For example, the old criterion does
not allow case splitting on an argument of type cons x xs ≡List a cons y ys
where cons : A→ List A→ List A is the list constructor, since the type A of
x and y is a parameter and the constructor cons is considered to be applied to
this parameter. Our criterion has no such problems. This is especially useful
in Agda since module parameters are also considered to be parameters of the

RELATED WORK 61

datatypes defined inside that module (Norell, 2007, chapter 4). So with the old
criterion, moving a definition to another module can cause an error, but with
our criterion this is no longer the case.

The criterion presented here is also more general than the one presented in
the previously published versions of this work (Cockx et al., 2014b, 2016a).
For example, Example 2.31 was rejected both by the old implementation of
--without-K and by the previous version of our criterion, but is now accepted.

One limitation of our criterion arises when an equation cannot be solved right
away, and is instead postponed until later. As the types of later equations may
depend on the solution of these postponed equations, this may cause the types
of both sides of an equation to be different. In the next chapter, we extend the
unification algorithm so it can deal with such postponed equations.

2.4 Related work

Most implementations of dependent pattern matching in the style of Coquand
(1992) assume K. Examples include Agda (when --without-K is not enabled),
Epigram (McBride and McKinna, 2004; McBride, 2005), Idris (Brady, 2013), the
pattern matching construct for Coq described by Barras, Corbineau, Grégoire,
Herbelin, and Sacchini (2009), and the Equations package for Coq described
by Sozeau (2010).

In an unpublished paper, McBride (1998a) used homogeneous equality and
observes like us that the innocent-looking deletion rule turns into the rather less
innocent K. However, the published version of this work uses the heterogeneous
equality, thus making it rely on K. This resulted in a significant simplification
by avoiding dependency on equality proofs. In our current work, this extra
complexity becomes a feature.

Coq also support a more primitive notion of pattern matching via the match
construct in Gallina (The Coq development team, 2016). The full version of
this construct is

match e as x in D ū return P with
| c1 ȳ1 ⇒ e1
| . . .
| cn ȳn ⇒ en

end

(2.28)

Coq also allows skipping the parts labelled by as, in, and return, in which
case it attempts to construct the motive P automatically. The motive P must

62 DEPENDENT PATTERN MATCHING

be fully generalized over the indices ū, ensuring that no unification is necessary.
Hence this kind of matching also prevents us from proving K. However, it
is closer to datatype eliminators than it is to the kind of pattern matching
described in this thesis, because it requires the user to give each case split
explicitly, and does not perform any unification.

Forcing is a compiler optimization for dependently typed programming languages
that erases constructor arguments that are fully determined by the type of
the constructor (Brady et al., 2003). For example, the argument (n : N) of
the cons constructor of Vec can be erased because it is fully determined by
the type of the constructor. During unification, it is intuitively clear that
forced arguments can safely be skipped. This intuition is justified by higher-
dimensional unification (Section 3.4). In particular, Corollary 3.56 tells us
exactly that forced constructor arguments can be skipped during unification.
So higher-dimensional unification justifies the heuristic that ‘forced arguments
need not be unified’. As far as we know, is this the first formalization of forcing
for the purpose of unification.

Lean is a new dependently typed language that also supports dependently
typed pattern matching by a translation to eliminators (de Moura et al., 2015).
Lean can be used with two instantiations of its core theory: one based on the
Calculus of Inductive Constructions that allows proving K, and a second one
based on homotopy type theory that doesn’t. So using this second instantiation
also allows one to use dependent pattern matching without relying on K. The
authors cite our work (Cockx et al., 2014b) as an important source of inspiration
for the implementation of the Lean system.

Recently, a new version of the Equations package for Coq has been developed that
also supports pattern matching without assuming K (Mangin and Sozeau, 2017),
based on our earlier work (Cockx et al., 2014b). Similarly to our translation
in Chapter 4, it uses a generalization of homogeneous telescopic equality to
achieve compilation of pattern matching definitions without K. In contrast
to the implementation of our criterion in Agda, the Equations package also
performs the actual translation of definitions by pattern matching to eliminators.
It also allows the use of the deletion rule in some cases that are non-dependent
or justified by user-provided instances of K.

In his thesis, Boutillier (2014) describes an algorithm for compiling definitions
by pattern matching to eliminators in Coq. The criterion he uses is similar
to the old criterion used by Agda: to perform a case distinction on a variable
of an inductive family, the indices need to be constructors applied to distinct
variables, and those variables must not occur in the parameters. To this, he
adds a preprocessing step where indices are erased if they are not used in the
return type or if they are determined by the type of the other indices. For the

RELATED WORK 63

translation, he constructs a diagonalizer based on the skeleton of the indices,
encoding the induction principle for a particular subset of the inductive family.
Compared to our work, Boutillier doesn’t give a closed criterion for when a
definition by pattern matching is acceptable in a theory without K. Instead,
he provides a desugaring of which the result still has to be checked by Coq. In
our opinion, this is bad practice because it requires the user to be aware of the
desugaring to predict whether a definition will be accepted. In contrast, our
criterion only requires the user to know the unification algorithm to predict its
behaviour. The computational behaviour of the desugaring also seems more
like an afterthought in Boutillier’s work, while it is an essential part of ours.
Nevertheless, by analysing whether an argument is actually used, either in
the type of a later argument or in the return type, he manages to allow some
definitions that are rejected by our criterion. This gives a good heuristic for
preprocessing pattern matching definitions to remove superfluous uses of K, so
it might be used complementary to our criterion.

Chapter 3

Proof-relevant unification

Humankind cannot gain anything without first giving something
in return. To obtain, something of equal value must be lost. That is
Alchemy’s First Law of Equivalent Exchange.

— Hiromu Arakawa (2001)

Unification is a generic method for solving symbolic equations algorithmically.
It is a fundamental algorithm used in many areas in computer science, such as
logic programming, type inference, term rewriting, automated theorem proving,
and natural language processing. In particular, it is used to check definitions
by dependent pattern matching, as we saw in the previous chapter.

In a language that has dependent pattern matching as a primitive (such as
Agda), the particularities of the unification rules used become crucial for the
language’s notion of equality. Indeed, we can match on a proof of u ≡A v with
the constructor refl precisely when the unification algorithm is able to unify u
with v. For example, if the unification algorithm uses the deletion rule to remove
reflexive equations, then this allows us to prove K by pattern matching. This
chapter contains some additional examples of what goes wrong if we naively
add postponing to the unification algorithm.

Because of the problems with unification, in the previous chapter we required
a number of ad hoc restrictions to preserve soundness, such as removing the
deletion rule if the theory doesn’t support K. We also saw that it is unsound
in general to apply the injectivity rule for constructors of indexed datatypes:
it is necessary to restrict it to certain constructors. However, these ad hoc

65

66 PROOF-RELEVANT UNIFICATION

restrictions make the unification algorithm hard to prove correct, modify, or
extend.

The goal of this chapter is to give a fully typed account of unification in dependent
type theory, in order to solve the problems with untyped unification in general
and put unification in type theory back on a solid theoretical foundation. We
do this by treating unification problems and unification rules as internal to the
type theory, rather than belonging to some external tool. This ensures that we
don’t make use of unspecified assumptions such as uniqueness of identity proofs
or injectivity of type constructors.

First, we represent unification problems as a telescope, a list of types where each
type can depend on values of the previous types. Each type in this telescope
corresponds to one equation of the unification problem, and the dependencies
reflect the fact that the type of each equation can depend on the solutions of
previous equations. This allows us to keep track of the dependencies between
the equations precisely.

Secondly, we represent unification rules as equivalences between two telescopes
of equations. For example, the injectivity rule for the constructor suc : N→ N
is represented by an equivalence between the equations suc m ≡N suc n and
m ≡N n. This equivalence contains not only the substitution needed to go from
one set of equations to the next, but also evidence that the unification rule is
valid. This gives us a new formal criterion for the correctness of a unification
rule in a dependently typed setting.

Finally, we give a novel characterization of the most general unifier as an
equivalence between the original telescope of equations and the trivial one.
It can be constructed by simply composing the individual unification rules
that are used. This definition turns out to be a stronger requirement than
the standard definition of a most general unifier, yet it is still satisfied by all
unification rules that are used in Agda. The fact that most general unifiers
correspond to equivalences not only gives us a very elegant way to define them,
but it also turns out to be useful the translation of definitions by dependent
pattern matching to eliminators Goguen et al. (2006); Cockx et al. (2016b).
This makes it also suitable for languages with a core calculus like Coq (The Coq
development team, 2016), Epigram (McBride, 2005), Lean (de Moura et al.,
2015), or (potentially) a future version of Agda.

We start this chapter with a general description of our framework for reasoning
about unification in a dependently typed setting (Section 3.1). We phrase the
basic unification rules in this framework and show how our algorithm can easily
be extended by adding more unification rules (Section 3.2). We pay special
attention to the computational behaviour of unification rules when viewed as

UNIFICATION IN DEPENDENT TYPE THEORY 67

terms of the type theory (Section 3.3). To augment the power of the unification
rules for indexed datatypes, we introduce a new technique called higher-
dimensional unification (Section 3.4). We finish the chapter with a discussion
of the implementation of our unification algorithm in Agda (Section 3.5).

3.1 Unification in dependent type theory

When dependently typed terms become the subject of unification, it is possible
that the unification algorithm encounters heterogeneous equations: equations
in which the left- and right-hand side have different types, that only become
equal after previous equations have been solved. For example, consider the type
ΣA:SetA with elements (A, a) packing a type A together with an element a of
that type. By injectivity of the pair constructor _,_, an equation (A, a) = (B, b)
can be simplified to A = B and a = b, but the type of the second equation
is now heterogeneous since a : A and b : B. Because traditional unification
algorithms only look at the syntax of the terms they are trying to unify, they
cause problems when applied to heterogeneous equalities.

Example 3.1. Consider the equation (Bool, true) = (Bool, false) of type
ΣA:SetA. By injectivity of the constructor _,_, we can simplify this equation
to the two equations Bool = Bool and true = false. If we postpone the first
equation, we can derive an absurdity from the second equation. However, this
line of reasoning depends on the principle of equality of second projections, which
is equivalent to K (Streicher, 1993). Indeed, if we have access to univalence
then we can prove that (Bool, true) can be identified with (Bool, false) of
type ΣA:SetA, so allowing the injectivity rule in this case is incompatible with
univalence.

On the other hand, consider the exact same unification problem (Bool, true) =
(Bool, false), but this time the type of the equation is a non-dependent product
Set × Bool. In this case it is possible to derive an absurdity, even in a theory
with univalence. However, a syntax-directed unification algorithm can never
distinguish between these two cases.

Example 3.2. Suppose we define two copies Bool1 and Bool2 of the boolean
type with constructors true1, false1 and true2, false2 respectively, then it
is unsound to apply the conflict rule on the (heterogeneous) equation true1 =
false2. Doing so would allow us to prove that Bool1 6' Bool2, contradicting
univalence. The unification algorithm used by Agda 2.4 (and older) contains
a number of ad hoc restrictions to the unification algorithm to avoid bad
unification steps like this, but these restrictions had no theoretical ground and
didn’t handle every case correctly.

68 PROOF-RELEVANT UNIFICATION

Example 3.3. The problem isn’t limited to theories that don’t support UIP,
either. Let A be an arbitrary type and Singleton : A → Set be an indexed
datatype with one constructor sing : (x : A) → Singleton x and consider
the unification problem (Singleton s, sing s) = (Singleton t, sing t). If
we allow the injectivity rule to simplify sing s = sing t to s = t then we
could prove injectivity of the type constructor Singleton. In particular, if we
take A = Set → Set then this injectivity allows us to refute the law of the
excluded middle (Theorem 1.22). In general, injectivity of type constructors
is an undesirable property because it is not only incompatible with the law
of the excluded middle but also with univalence (Theorem 1.21) and with an
impredicative universe of propositions (Miquel, 2010).

To avoid these problems, we give a fully typed account of unification of
dependently typed data where we treat unification problems and unification
rules as internal to the type theory. First, we represent the input of the
unification problem by a telescopic equality where each type in this telescope
corresponds to one equation of the unification problem (Section 3.1.1). Next, we
represent the output of the unification algorithm by an equivalence between the
original telescope of equations and a trivial one (Section 3.1.2). This equivalence
contains not only the substitution computed by the unification algorithm, but
also evidence that the output is correct. Finally, the unification algorithm itself
then works by successively applying unification rules, which are represented by
equivalences between two telescopes of equations (Section 3.1.3).

3.1.1 Unification problems as telescopes

To represent unification problems internally, we need to express equality between
two terms as a type. For this purpose, we use the propositional equality type
x ≡A y. For example, the unification problem suc m = suc n is represented by
the type suc m ≡N suc n.

The identity type x ≡A y only allows equations between elements of the same
type, so we still need a way to represent heterogeneous equations. For this
purpose, McBride (2000) introduced a heterogeneous equality type x A

∼=B y
where x : A and y : B can be of different types, but x A

∼=B y can only be proven
if the types A and B are actually the same. Using this type, a unification
problem can be represented by the (non-dependent) product of the individual
equalities. By maintaining the invariant that the leftmost equation is always
homogeneous, the equations can be solved step by step, from left to right.
However, using this heterogeneous equality type causes a number of problems:

UNIFICATION IN DEPENDENT TYPE THEORY 69

• Turning a heterogeneous equation between elements of the same type
into a homogeneous one requires the K rule. So in a theory without the
general K rule (such as HoTT), heterogeneous equalities are worthless.

• Using heterogeneous equality causes information about dependencies
between the equations to be lost. For example, if we have two equations
Bool Set

∼=Set Bool and true Bool
∼=Bool false, there is no way to see

whether the type of the second equation depends on the first. Example 3.1
shows that both cases are possible, and that it is essential to know the
difference!

• Finally, it is unsound to postpone an equation and continue with the next
one when working with heterogeneous equality, since this allows us to
prove things such as injectivity of certain type constructors (Example 3.3).

To avoid these problems and keep track of the dependencies between equations,
we use the concept from HoTT of an equality “laying over” another one. There
are multiple equivalent ways to define this type; for the sake of simplicity we
use the following definition in terms of the regular homogeneous equality by
substituting on the left:
Definition 3.4 (Dependent identity type). Let e : s ≡A t and P : (x : A) →
Set. We define the type u ≡eP v of equality proofs between u : P s and v : P t
laying over e by

u ≡eP v = (subst P e u) ≡(P t) v (3.1)

There are other possible definitions of u ≡eP v, for example it can be defined as
a new datatype with one constructor refl’ : u ≡refl

P u, or it can be defined as
a function by pattern matching on the proof e. In practice, the exact definition
doesn’t have much impact, what’s important is that (u ≡refl

P v) = (u ≡P s v)
whenever s = t. We prefer the definition here to the more symmetric alternatives
because it doesn’t require large eliminations or auxiliary datatypes.

We often write u ≡P e v instead of u ≡eP v. For example, if e : m ≡N n
and u : Vec A m and v : Vec A n are two vectors, then we may form the
type u ≡Vec A e v. This notation is inspired by cubical type theory (Cohen
et al., 2016), where a function f : A→ B is automatically lifted to a function
x ≡A y → f x ≡B f y. In our setting it is merely a convenient abuse of
notation.

Using this notion of an equality proof laying over another, we can define a
version of cong that works for dependent functions:

dcong : (f : (x : A)→ B x)→ {x y : A} → (e : x ≡A y)→ f x ≡B e f y
dcong f refl = refl

(3.2)

70 PROOF-RELEVANT UNIFICATION

In general, an equality may depend on more than one equation variable. To
keep track of the types P and the equation variables e, we give a type to the list
of equations in the form of a telescope. Telescopic equality is defined as follows:

Definition 3.5 (Telescopic equality). Let ∆ be a telescope and s̄, t̄ : ∆. We
define telescopic equality (ē : s̄ ≡∆ t̄) inductively on the length of the telescope
by () ≡() () = () and

(e; ē : (s; s̄) ≡(x:A)∆ (t; t̄)) = (e : s ≡A t)(ē : s̄ ≡∆[x7→e] t̄) (3.3)

For each t̄ : ∆, we define refl : t̄ ≡∆ t̄ as (refl; . . . ; refl).

For example, (e1; e2 : (m;u) ≡(x:N)(y:Vec A x) (n; v)) stands for the telescope
(e1 : m ≡N n)(e2 : u ≡Vec A e1 v).

Definition 3.6 (Unification problem). A unification problem is a telescope of
the form Γ(ē : ū ≡∆ v̄). The variables in Γ are called the flexible variables.

Example 3.7. A unification problem between two vectors can be represented
by the telescope

(m n : N)(x y : A)(xs : Vec A m)(ys : Vec A n)
(e1 : suc m ≡N suc n)(e2 : cons x xs ≡Vec A e cons y ys) (3.4)

Lemma 3.8 (J). We have the telescopic equality eliminator

J : (P : (s̄ : ∆)→ r̄ ≡ s̄→ Seti)→ P r̄ refl→ (s̄ : ∆)→ (ē : r̄ ≡ s̄)→ P s̄ ē
(3.5)

Construction. We define J by eliminating the equations ē from left to right
using J:

J P p () () = p
J P p (s; s̄) (e; ē) = J (λs; e. (s̄ : ∆)(ē : r̄ ≡ s̄)→ P (s; s̄) (e; ē))

(λs̄; ē. J (λs̄; ē. P (r; s̄) (refl; ē)) p ē)
e s̄ ē

(3.6)

Each elimination of an equation ei : ri ≡ si fills in refl for all occurrences of
ei, allowing the next equations to reduce and in particular ensuring that the
following equation is of the correct form.

Using J, we also define telescopic versions of subst, cong and dcong:

subst : (P : ∆→ Set`)→ {ū v̄ : ∆} → ū ≡∆ v̄ → P ū→ P v̄
cong : (f : ∆→ T)→ {ū v̄ : ∆} → ū ≡∆ v̄ → f ū ≡T f v̄

dcong : (f : (x̄ : ∆)→ T x̄)→ {ū v̄ : ∆} → (ē : ū ≡∆ v̄)→ f ū ≡T ē f v̄
(3.7)

UNIFICATION IN DEPENDENT TYPE THEORY 71

3.1.2 Unifiers as equivalences

Traditionally, a unifier for a unification problem ū = v̄ is defined as a substitution
σ such that ūσ and v̄σ are equal. So how do we translate this definition to
type theory? Consider a unification problem of the form Γ(ē : ū ≡∆ v̄).
We could represent a unifier as a telescope mapping σ : Γ′ → Γ satisfying
ū[Γ 7→ σ Γ] = v̄[Γ 7→ σ Γ], but then the correctness property is still external to
the theory. Instead, we use the power of dependent types to express the fact
that the equations are satisfied internally:
Definition 3.9 (Unifier). Let Γ and ∆ be telescopes and ū and v̄ be lists of
terms such that Γ ` ū, v̄ : ∆. We define a unifier of ū and v̄ as a telescope
mapping σ : Γ′ → Γ(ē : ū ≡∆ v̄) for some Γ′.

A unifier σ returns not only values for Γ but also evidence that the equations
are indeed satisfied by these values.

Usually, the goal of a unification algorithm is not just to output any unifier but
a most general one, i.e. a unifier σ : Γ′ → Γ(ē : ū ≡A v̄) such that any other
unifier σ′ : Γ′′ → Γ(ē : ū ≡A v̄) can be written as σ ◦ ν for some ν : Γ′′ → Γ′.

Again, we should think how to represent this concept internally. One way to
do this is to translate the definition of most general unifier directly to a type.
However, to do this we need to quantify over all possible telescopes Γ′′ and
unifiers σ′, making the definition more unwieldy than necessary. Can we find a
better definition?
Definition 3.10 (Pointwise equality). Let f, g : (x : A)→ B x be two functions.
The pointwise equality type f .= g is defined as (x : A) → f x ≡B x g x.
Similarly, if σ, τ : ∆→ Γ are two telescope mappings then σ .= τ is defined as
(x̄ : ∆)→ σ x̄ ≡Γ τ x̄.
Lemma 3.11. Let Γ and Γ′ be telescopes and σ : Γ′ → Γ. The following two
statements are equivalent:

• For any telescope Γ′′ and σ′ : Γ′′ → Γ, there exists a ν : Γ′′ → Γ′ such
that σ′ .= σ ◦ ν.

• There exists a τ1 : Γ→ Γ′ such that σ ◦ τ1
.= id.

Proof. First suppose that we have a telescope mapping τ1 : Γ→ Γ′ such that
σ ◦ τ1

.= id is the identity function on Γ. This allows us to define ν = τ1 ◦ σ′,
which gives us σ ◦ ν .= σ ◦ τ1 ◦ σ′

.= σ′, as we wanted.

For the other direction, we take Γ′′ = Γ and σ′ = id. Then by assumption we
have a τ1 : Γ→ Γ′ such that id .= σ ◦ τ1.

72 PROOF-RELEVANT UNIFICATION

Γ′ Γ

Γ′′

σ

σ′

ν

τ1

τ2

Figure 3.1: Lemma 3.11 allows us to construct a right inverse τ1 to σ from the
existence of the telescope mapping ν, while Lemma 3.12 gives us a left inverse
τ2 from its uniqueness.

It is often useful to require that the function ν is unique, for otherwise Γ′ may
contain ghost variables that are not actually used by σ. For example, for a
unification problem with Γ = (b : Bool) and a single equation b ≡Bool true, we
have the most general unifier σ : ()→ (b : Bool)(e : b ≡Bool true). However, if
ν is not required to be unique, then there may be other most general unifiers
with a non-equivalent choice of Γ′. For example, we could also have taken
σ′ : (b′ : Bool)→ (b : Bool)(e : b ≡Bool true) that ignores its argument b′.

Lemma 3.12. The telescope mapping ν constructed in Lemma 3.11 is unique
(up to pointwise equality) if and only if there exists a τ2 : Γ → Γ′ such that
τ2 ◦ σ

.= id.

Proof. Suppose that we have a τ2 such that τ2 ◦ σ
.= id. If ν and ν′ are two

telescope mappings such that σ ◦ ν .= σ′
.= σ ◦ ν′ then we have ν .= τ2 ◦ σ ◦

ν
.= τ2 ◦ σ ◦ ν′

.= ν′, so ν is unique.

For the other direction, we assume that ν is unique. Let Γ′′ = Γ′ and σ′ = σ
and ν = τ1 ◦ σ and ν′ = id. This gives us that σ ◦ ν .= σ

.= σ ◦ ν′, so by
uniqueness we have τ1 ◦ f

.= id. Hence taking τ2 = τ1 gives us the desired
telescope mapping τ2.

The proofs of Lemma 3.11 and Lemma 3.12 are illustrated in Figure 3.1.

If we replace the telescope Γ by a unification problem Γ(ē : ū ≡∆ v̄), then
Lemma 3.11 and Lemma 3.12 together give us that σ : Γ(ē : ū ≡∆ v̄) → Γ′
is a most general unifier if and only if it is an equivalence between Γ′ and
Γ(ē : ū ≡∆ v̄).

This brings us to the following definition of a most general unifier:

UNIFICATION IN DEPENDENT TYPE THEORY 73

Definition 3.13 (Most general unifier). Let Γ and ∆ be telescopes and ū and
v̄ be lists of terms such that Γ ` ū, v̄ : ∆. Then a most general unifier of ū and
v̄ is an equivalence f : Γ(ē : ū ≡∆ v̄) ' Γ′ for some telescope Γ′.

The unifier σ : Γ′ → Γ(ē : ū ≡∆ v̄) corresponds to the inverse function f−1.
Intuitively, f allows us to recover the values of the variables in Γ′ for any values
of Γ that satisfy ū ≡∆ v̄.

The definition of a most general unifier doesn’t prevent us from choosing
Γ′ = Γ(ē : ū ≡∆ v̄) and f = id. In fact, this is a valid (if trivial) most general
unifier from a logical point of view. However, it doesn’t satisfy the requirements
for a strong unifier (Definition 3.45).

In case unification succeeds negatively, we need evidence that the equations are
indeed impossible. For this purpose, we use the empty type ⊥:

Definition 3.14 (Disunifier). Let Γ and ∆ be telescopes and ū and v̄ be lists
of terms such that Γ ` ū, v̄ : ∆. A disunifier of ū and v̄ is an equivalence
f : Γ(ē : ū ≡∆ v̄) ' ⊥.

Any function f : A→ ⊥ is automatically an equivalence A ' ⊥, as the other
components of the equivalence can be constructed by using the eliminator
elim⊥ : (A : Set`)→ ⊥→ A. So the only interesting part of a disunifier is the
function f : A→ ⊥.

3.1.3 The unification algorithm

Now that we know how to represent the input and the output of the unification
algorithm, we can start thinking about the unification algorithm itself. Since the
end result of the unification process (the most general unifier) is an equivalence, it
is natural to represent unification rules as equivalences as well. These unification
rules can then be chained together by transitivity of ' to produce the most
general unifier f .

Definition 3.15 (Positive unification rule). A positive unification rule is an
equivalence of the form r : Γ(ē : ū ≡∆ v̄) ' Γ′(ē′ : ū′ ≡∆′ v̄

′).

For example, the unification rule for injectivity of the suc constructor for N is
injectivitysuc : (e : suc m ≡ suc n) ' (e′ : m ≡ n).

In addition to unification rules of this form, that transform one set of equations
into another, there are also unification rules that refute absurd equations like
true ≡Bool false.

74 PROOF-RELEVANT UNIFICATION

Definition 3.16 (Negative unification rule). A negative unification rule is an
equivalence of the form r : Γ(ē : ū ≡∆ v̄) ' ⊥.

For example, the unification rule for conflict between true and false is
conflicttrue,false : (true ≡Bool false) ' ⊥.

The unification algorithm tries to construct an equivalence Γ(ē : ū ≡∆ v̄) ' Γ′ by
successively applying the unification rules to the unification problem, simplifying
one or more equations in each step. This process continues until one of three
possible situations occurs:

• If there are no more equations left, the algorithm succeeds positively. In
this case, it returns an equivalence between the original problem Γ(ū ≡∆ v̄)
and the reduced telescope Γ′.

• If a contradictory equation is encountered, the algorithm succeeds
negatively. In this case, it returns an equivalence between the original
problem Γ(ū ≡∆ v̄) and the empty type ⊥.

• If there are no more applicable rules, the algorithm results in a failure.

We don’t yet give an explicit strategy on which rule to apply in a specific
situation. This leaves more freedom to the implementation to choose which rule
to try first. When we discuss our implementation in Section 3.5, we give one
concrete strategy.

Example 3.17. Consider the unification problem consisting of flexible variables
k l : N and a single equation between suc k and suc l. First, we simplify the
equation by applying the equivalence injectivitysuc : (e : suc k ≡N suc l) '
(e : k ≡N l) (Lemma 3.23). Applying this rule leaves the two variables k and
l unchanged. Next, we apply the solution rule (Lemma 3.21), which tells us
that (l : N)(e : k ≡N l) ' (). This leaves only the single variable k : N. Since
there are no more equations left in the telescope, unification ends in a positive
success.

(k l : N)(e : suc k ≡N suc l)

' (k l : N)(e : k ≡N l)

' (k : N)

(3.8)

To get the substitution from (k : N) to (k l : N)(e : suc k ≡N suc l) computed by
the unification process, we only need to compose the functions embedded in the
equivalences from the bottom to the top. The solution rule assigns l 7→ k and e 7→
refl, and the injectivity rule maps e : k ≡N l to cong suc e : suc k ≡N suc l,
so the complete substitution is k 7→ (k; k; refl) (since cong suc refl = refl).

UNIFICATION RULES 75

Before we continue with the general form of the unification rules in the next
section, we first give three easy but useful manipulations on equivalences (and
hence on unification rules) that allow us to postpone and reorder equations.
These principles are used when we want to apply a unification rule, but the
problem contains some additional variables or equations that aren’t mentioned
in the rule.

Lemma 3.18 (fΓ). If we have an equivalence f : ∆ ' ∆′ where ∆ and ∆′
possibly contain free variables from a telescope Γ, then we also have an
equivalence fΓ : Γ∆ ' Γ∆′.

Lemma 3.19 (f∆). If we have an equivalence f : Γ ' Γ′ and a telescope ∆
possibly containing free variables from Γ, then we also have an equivalence
f∆ : Γ∆ ' Γ′∆′ where ∆′ = ∆[Γ 7→ f−1 Γ′].

Lemma 3.20. If we have a telescope Γ, and Γ′ is a reordering of the variable
bindings in Γ that preserves the order of dependencies, then we have an
equivalence f : Γ ' Γ′.

Construction. The construction of the equivalence is in all three cases
straightforward, relying on J to prove that the functions are mutual inverses.

In what follows, we often make use of these manipulations implicitly. When we do
so, we underline the variables that are actually mentioned by the unification rule.
The remaining variables are handled by the three above lemma’s. For example, in
Example 3.17, Lemma 3.18 is applied to lift the equivalence injectivitysuc : (e :
suc k ≡N suc l) ' (e : k ≡N l) into an equivalence (k l : N)(e : suc k ≡N suc l),
and to lift solution : (l : N)(e : k ≡N l) ' () to (k l : N)(e : k ≡N l) ' (k : N).

3.2 Unification rules

In this section, we state the basic unification rules from McBride (1998b) in
our framework. We first handle the unification rules for simple datatypes
(Section 3.2.1) before moving on to the more challenging rules for indexed
datatypes (Section 3.2.2). We also show how to extend the unification algorithm
with rules for η-equality for record types (Section 3.2.3). Finally, we study
the computational behaviour of these unification rules as type-theoretic terms
(Section 3.3).

76 PROOF-RELEVANT UNIFICATION

3.2.1 The basic unification rules

The first two rules are generic in the sense that they work for any type A.

Lemma 3.21 (Solution). For any type A and term t : A, we have an equivalence

solution : (x : A)(e : x ≡A t) ' () (3.9)

satisfying solution−1 () = (t; refl).

In this rule, the variable x should not occur freely in t.

Construction of solution. The construction of the functions solution : (x :
A)(x ≡A t)→ () and isRinv solution : ()→ () ≡() () is trivial since they both
target an empty telescope. The function solution−1 : ()→ (x : A)(e : x ≡A t)
is defined by solution−1 () = (t; refl). Finally, isLinv solution : (x : A)(e :
x ≡A t)→ (t; refl) ≡(x:A)(e:x≡At) (x; e) is a direct application of the J rule.

Lemma 3.22 (Deletion). For any type A that satisfies K and any term t : A,
we have an equivalence

deletion : (e : t ≡A t) ' () (3.10)

Construction of deletion. The construction is similar to the construction of
solution, except that K is used instead of J.

The injectivity, conflict, and cycle rules are specific to an inductive datatype
D. We present them here for a simple (non-indexed) datatype and for an indexed
datatype in the next section.

Lemma 3.23 (Injectivity, simply-typed version). Let c : ∆c → D be a
constructor of the datatype D : Set` and let s̄, t̄ : ∆c. We have an equivalence

injectivityc : (c s̄ ≡D c t̄) ' (s̄ ≡∆c t̄) (3.11)

such that injectivityc
−1 ē = cong c ē.

Lemma 3.24 (Conflict, simply-typed version). Let c1 : ∆1 → D and c2 : ∆2 →
D be two distinct constructors of the datatype D : Set` and s̄ : ∆1 and t̄ : ∆2.
We have an equivalence

conflictc1,c2 : (c1 s̄ ≡D c2 t̄) ' ⊥ (3.12)

UNIFICATION RULES 77

Lemma 3.25 (Cycle, simply-typed version). Let D : Set` be a datatype and let
s, t : D be such that s ≺ t. We have an equivalence

cycles,t : (s ≡D t) ' ⊥ (3.13)

Once again, the type of the equation should be exactly D.

Construction of injectivityc, conflictc1,c2 and cyclex,t. See Lemma 4.16
for the construction of injectivityc and conflictc1,c2 and Lemma 4.20 for
the construction of cyclex,t.

Example 3.26. Consider the sum type A] B (where A,B : Set are arbitrary
types) with two constructors left : A → A] B and right : B → A] B.
An expression of the form left x is never equal to right y, so any equality
between those two terms is equivalent to ⊥:

(x : A)(y : B)(e : left x ≡A]B right y) ' ⊥ (3.14)

This is exactly the conflict rule between left and right.

The type of the equation on the left in Lemma 3.23 and Lemma 3.24 should be
exactly D, in particular the constructor c must be fully applied.

Counterexample 3.27. An equation between the constructors left and right
is not always absurd when they are not fully applied. Let A = B = ⊥, then
(e : left ≡⊥→⊥]⊥ right) is not equivalent to ⊥. This is because when viewed
as functions of type ⊥ → ⊥] ⊥, the constructors inj1 and inj2 coincide on all
possible inputs (i.e. none). The principle of functional extensionality then tells
us that these two functions are equal. So if we would consider this equation to
be absurd, we would prohibit ourselves from having functional extensionality in
our language, nevertheless a desirable property to have! Wrongly applying the
conflict rule in this way led to the problem described by issue #1497 on the
Agda bug tracker (Dijkstra, 2015).

3.2.2 Rules for indexed datatypes

The injectivity, conflict, and cycle rules defined in the previous section all work
on regular datatypes, but unification only becomes really interesting once we
consider indexed families of datatypes. Where the unification rules that we have
seen so far only have a single equation on the left side, the rules for indexed
datatypes have a telescope of equations: one equation for each index, and one
final equation for the datatype itself. If D is a datatype with indices Ξ, then the
telescope for this sequence of equations is D = (ū : Ξ)(x : D ū).

78 PROOF-RELEVANT UNIFICATION

Lemma 3.28 (Injectivity, general version). Let c : ∆→ D ū be a constructor
of the datatype D : Ξ→ Set`. Then we have an equivalence

injectivityc : ((ū[∆ 7→ s̄]; c s̄) ≡D (ū[∆ 7→ t̄]; c t̄)) ' (s̄ ≡∆ t̄) (3.15)

where s̄, t̄ : ∆. Moreover, injectivityc satisfies injectivityc
−1 ē =

dcong (λx̄. (ū; c x̄)) ē.

Lemma 3.29 (Conflict, general version). Let c1 : ∆1 → D ū1 and c2 : ∆2 →
D ū2 be two distinct constructors of the datatype D : Ξ→ Set`. Then we have
an equivalence

conflictc1,c2 : ((ū1[∆1 7→ s̄]; c1 s̄) ≡D (ū2[∆2 7→ t̄]; c2 t̄)) ' ⊥ (3.16)

where s̄ : ∆1 and t̄ : ∆2.

Lemma 3.30 (Cycle, general version). Let D : Ξ→ Set` be a datatype and let
(ū; s), (v̄; t) : D be such that s ≺ t. Then we have an equivalence

cyclex,t : ((ū; s) ≡D (v̄; t)) ' ⊥ (3.17)

Construction of injectivityc, conflictc1,c2 and cyclex,t. See Lemma 4.16
for the construction of injectivityc and conflictc1,c2 and Lemma 4.20 for
the construction of cyclex,t.

Example 3.31. Consider the indexed datatype Vec A : N → Set with the
two constructors nil : Vec A zero and cons : (n : N) → A → Vec A n →
Vec A (suc n). The injectivity rule for cons gives us the following equivalence:

((suc m; cons m x xs) ≡Vec A (suc n; cons n y ys))

' ((m;x; xs) ≡(n:N)(x:A)(xs:Vec A n) (n; y; ys))
(3.18)

This rule not only simplifies the equation between the two cons constructors,
but simultaneously simplifies the equation between the indices suc m and suc n.
Now let’s see how this rule works in action:

(m n : N)(x y : A)(xs : Vec A m)(ys : Vec A n)
(e1 : suc m ≡N suc n)(e2 : cons m x xs ≡Vec A e1 cons n y ys)

' (m n : N)(x y : A)(xs : Vec A m)(ys : Vec A n)
(e1 : m ≡N n)(e2 : x ≡A y)(e3 : xs ≡Vec A e1 ys)

' (n : N)(x : A)(xs : Vec A n)

(3.19)

The first step is an application of the injectivity rule, while the next step consists
of three applications of the solution rule.

UNIFICATION RULES 79

To apply injectivity of cons, the type of the equation has to be of the form
Vec A e where e refers to a previous equation. This implies that this rule
cannot be applied directly to an equation of the form cons n x xs ≡Vec A (suc n)
cons n y ys where xs : Vec A n and ys : Vec A n have the same length ‘on the
nose’. We discuss how to solve this deficiency in Section 3.4.

Example 3.32. In the previous example, it was not really necessary to simplify
the equation between the indices together with the equation between the
constructors, as we could also have applied injectivitysuc to the equation
suc m ≡N suc n. However, sometimes this simplification gives a real increase
to the power of unification. For example, let f : A → B be a (possibly very
complex) function, then in general there is no way to solve an equation of the
form f x ≡B f y. Now consider the following datatype

data Im f : B → Set where
image : (x : A)→ Im f (f x) (3.20)

The injectivity rule for image simultaneously solves the equations e1 : f x ≡B
f y and e2 : image x ≡Im f e1 image y:

(x y : A)(e1 : f x ≡B f y)(e2 : image x ≡Im f e1 image y)

' (x y : A)(e : x ≡A y)

' (x : A)

(3.21)

Remember that the variables that are underlined are handled by the unification
rules themselves (injectivityimage and solution in this case), while the
remaining variables are handled by Lemma 3.18, Lemma 3.19, and Lemma 3.20.
Having an injectivity rule that works in this way is useful when giving semantics
to an embedded language (Danielsson, 2015).

Contrast this with the unification problem

(x y : A)(e1 : Im f (f x) ≡Set Im f (f y))(e2 : image x ≡e1 image y) (3.22)

Here, it is not allowed to use injectivity on the second equation since its type
is not a datatype but a variable. Like in Example 3.1, there is no way to
distinguish between these two cases unless we keep track of the dependency of
the type of e2 on the equation e1. Wrongly applying injectivity in situations like
this led to the problems described by Abel (2015a,c) on the Agda bug tracker.

Example 3.33. Let D : Bool → Set be an indexed datatype with two
constructors tt : D true and ff : D false. Then the conflict rule between tt
and ff gives us the following equivalence:

(e1 : true ≡Bool false)(e2 : tt ≡D e1 ff) ' ⊥ (3.23)

80 PROOF-RELEVANT UNIFICATION

In contrast with the above example, the conflict rule cannot be applied if the
first equation is between the types D true and D false:

(e1 : D true ≡Set D false)(e2 : tt ≡e1 ff) 6' ⊥ (3.24)

Allowing the conflict rule to apply in this case would mean that we can
distinguish between D true and D false, which means that the type constructor
D is injective. In particular, this would be incompatible with univalence: there
is an equivalence between D true and D false under which tt is identified with
ff, so univalence allows us to prove that D true ≡Set D false. Note again that
we need information about how the type of e2 depends on e1 to distinguish
between these two cases. Wrongly applying conflict in situations like this led to
the problems described by Danielsson (2010) and Vezzosi (2015) on the Agda
bug tracker.

Example 3.34. This example is based on issue #1071 on the Agda bug tracker
(Danielsson, 2014). Let A : Set and F : Set → Set and P : Set → Set1 be a
datatype with one constructor c : (A : Set)→ P (F A). Then we have:

(f : F A)(R : Set)(f ′ : F R)
(e1 : F A ≡Set F R)(e2 : f ≡e1 f ′)(e3 : c A ≡P e1 c R)

' (f : F A)(R : Set)(f ′ : F R)(e′3 : A ≡Set R)(e2 : f ≡F e′3
f ′)

' (f : F A)(f ′ : F A)(e2 : f ≡F A f
′)

' (f : F A)

(3.25)

At each point during the unification process, there is only one valid way to
proceed. At the first step, the second equation f ≡e1 f ′ cannot be solved
right away as the type is heterogeneous and the solution rule only applies to
homogeneous equations. The first equation cannot be solved either as this
would require injectivity of the functor F . The only possibility is to apply the
injectivity of c to the third equation. At the second step, f ≡F e′3

f ′ cannot
be solved because the type F e′3 is heterogeneous, so e′3 has to be solved first
instead.

3.2.3 Rules for record types

One of the big advantages of having a general notion of ‘unification rule’ and
‘most general unifier’ is that we have an easy way to check the correctness of new
unification rules. Alternatively it can be used to assess the impact of adding a
new unification rule to the algorithm. In this section, we extend our algorithm
with two unification rules that deal with η-equality for record types.

UNIFICATION RULES 81

A record type is a type for grouping values together. One of the properties that
sets a record type apart from a regular datatype with a single constructor, are
the additional laws for equality of records called η-laws (not to be confused
with the η-law for functions).

Definition 3.35 (Record type). A record type R : Set` is defined by a number
of fields (also called projections):

f1 : (r : R)→ A1
f2 : (r : R)→ A2 (f1 r)

...
fn : (r : R)→ An (f1 r) . . . (fn−1 r)

(3.26)

To construct an element of the record type from values x1 : A1, . . . , xn :
An x1 . . . xn−1, we use the syntax record{f1 = x1; . . . ; fn = xn}. Applying
one of the projections to a record constructed this way gives back the field:

fi (record{f1 = x1; . . . ; fn = xn}) = xi (3.27)

The type Ai of each field can depend on the values of the previous fields fj r for
j < i. For example, Σx:A (B x) can be defined as a record with two projections
fst : Σx:A (B x) → A and snd : (p : Σx:A (B x)) → B (fst p). Then x, y is
shorthand for record{fst = x; snd = y}.

The η-law states that for any r : R, we have

r = record{f1 = f1 r; . . . ; fn = fn r} (3.28)

We use the η-law to construct two unification rules. The first rule applies η to
expand a variable of record type into its constituent fields, while the second
rule performs a similar expansion on an equation between two elements of a
record type.1

Lemma 3.36 (ηvarR). Let R : Set` be a record type with fields given by (3.26).
Then we have an equivalence:

ηvarR : (r : R) ' (f1 : A1) . . . (fn : An f1 . . . fn−1) (3.29)

Construction of ηvarR. We define ηvar r by f1 r; . . . ; fn r, and ηvar−1 f1 . . . fn
by record{f1 = f1; . . . ; fn = fn}. The proofs of both isLinv and isRinv is
refl: in the former case this is type-correct because of the η-law (3.28), and in
the latter case because of the computation rules for projections (3.27).

1A cubical type theorist might say these are two instances of the same rule.

82 PROOF-RELEVANT UNIFICATION

Example 3.37. This rule is especially useful for solving equations where one
side is a projection applied to a variable. Consider the type A × B = Σ_:AB.
Then we can solve the equation fst p ≡N zero as follows:

(p : N × N)(e : fst p ≡N zero)

' (x : N)(y : N)(e : x ≡N zero)

' (y : N)

(3.30)

Lemma 3.38 (ηeq). Let R : Set` be a record type with fields given by (3.26).
Then we have an equivalence:

ηeq : (e : r ≡R s) ' (e1 : f1 r ≡A1 f1 s) . . . (en : fn r ≡An e1 ... en−1 fn s)
(3.31)

Construction of ηeq. To construct ηeq, we rely on ηvar and cong: we define
ηeq e = cong ηvar e and ηeq−1 ē = cong ηvar−1 ē. The proofs of isLinv and
isRinv are straightforward applications of J.

Example 3.39. This rule is useful when one side of an equation is of the form
record{. . .}. If f : N→ N × N, then we can solve the equation x, y ≡N×N f z
as follows:

(x y z : N)(e : x, y ≡N×N f z)

' (x y z : N)(e1 : x ≡N fst (f z))(e2 : y ≡N snd (f z))

' (y z : N)(e2 : y ≡N snd (f z))

' (z : N)

(3.32)

3.3 Computational behaviour of unification rules

Until now, we have only been interested in an equivalence representing a
unification rule insofar that it has the correct type. But as a term in type
theory, it also has a certain computational behaviour. This computational
behaviour is important when we use that term as a component in some larger
construction, for example in the translation of pattern matching to eliminators
in the next chapter.

In particular, an important step during the translation of a case split to the
application of an eliminator is to generate auxiliary equations (Definition 4.22)
that are then solved by unification (Definition 4.24). However, in the end these
equations are filled in with refl (see in particular Definition 4.22).

COMPUTATIONAL BEHAVIOUR OF UNIFICATION RULES 83

Example 3.40. Consider the definition of the function tail (Example 1.10):

tail : (n : N)→ Vec A (suc n)→ Vec A n
tail .m (cons m x xs) = xs (3.33)

To translate this definition to eliminators, the first step is to generalize the
problem to constructing tail’ : (k n : N)→ Vec A k → k ≡N suc n→ Vec A n
and then let tail n xs = tail’ (suc n) n xs refl. Note in particular that the
final argument to tail’ is refl!

The next step in the translation is to apply case analysis (Lemma 4.5) to xs,
which instantiates k with zero in the case for nil and suc m in the case for
cons. The equations zero ≡N suc n and suc m ≡N suc n are then solved by
unification:

• In the first case, we get a negative unifier f1 : (n : N)(zero ≡N suc n) ' ⊥
and in particular f n e : ⊥, so the case can be handled by applying
absurd : (A : Set`)→ ⊥→ A (see Example 1.7).

• In the second case, we get a positive unifier f2 : (m n : N)(x : A)(xs :
Vec A m)(suc m ≡N suc n) ' (m : N)(x : A)(xs : Vec A m). This unifier
is used in the further translation of the right-hand side of tail.

When (the translated version of) tail is called with arguments m and
cons m x xs, it will evaluate to tail’ (suc m) m (cons m x xs) refl by
definition. In particular, the proof of suc m ≡N suc n that is passed to the
equivalence f2 is refl.

So if we care about the computational behaviour of the output of this translation,
we should worry about what happens when we apply a unification rule to refl,
i.e. when the equations on one side of the equivalence hold in fact definitionally.

Intuitively, a unification rule r : Γ(ē : ū ≡∆ v̄) ' Γ′(ē′ : ū′ ≡∆′ v̄
′) should

satisfy the property that if the equations on the left hold definitionally then
the ones on the right also hold definitionally and vice versa. Moreover, the
proofs isLinv r and isRinv r should be trivial in those cases. In other words,
the various components of the equivalence should satisfy the principle ‘refl in,
refl out’. This leads us to the following definition of a strong unification rule:

Definition 3.41 (Strong unification rule). A positive unification rule r : Γ(ē :
ū ≡∆ v̄) ' Γ′(ē′ : ū′ ≡∆′ v̄

′) is a strong unification rule if for any Γ0 and for any
s̄ and s̄′ such that Γ0 ` refl : ū[Γ 7→ s̄] ≡∆ v̄[Γ 7→ s̄] and Γ0 ` refl : ū′[Γ′ 7→
s̄′] ≡∆′ v̄

′[Γ′ 7→ s̄′], it satisfies the following five properties:

1. Γ0 ` f s̄ refl = (s̄′; refl) : Γ′(ē′ : ū′ ≡∆′ v̄
′) for some s̄′.

84 PROOF-RELEVANT UNIFICATION

2. Γ0 ` linv r s̄′ refl = (s̄1; refl) : Γ(ē : ū ≡∆ v̄) for some s̄1.

3. Γ0 ` rinv r s̄′ refl = (s̄2; refl) : Γ(ē : ū ≡∆ v̄) for some s̄2.

4. Γ0 ` isLinv r s̄ refl = refl : linv f (f s̄ refl) ≡Γ(ē:ū≡∆v̄) (s̄; refl).

5. Γ0 ` isRinv r s̄′ refl = refl : f (rinv f s̄′ refl) ≡Γ′(ē′:ū′≡∆′ v̄
′)

(s̄′; refl).

The trivial equivalence id : Γ(ē : ū ≡∆ v̄) ' Γ(ē : ū ≡∆ v̄) is clearly a strong
unification rule, and we can compose strong unification rules:

Lemma 3.42. If r and r′ are strong unification rules, then r ◦ r′ is one as well.

Proof. This follows directly from the definition of a strong unification rule and
the composition of two equivalences.

Most of the unification rules we have seen up until now are strong:

Lemma 3.43. solution and injectivityc are strong unification rules.

Proof. This follows directly from the construction of these rules (see Lemma 3.21
for solution, and Lemma 4.16 for injectivityc.).

For the deletion rule (3.22), the computational behaviour depends on the type
of the equation being eliminated and the construction of the proof of K. In a
theory with a general K rule, the deletion rule is also a strong unification rule.
However, if we construct K for a specific datatype such as N from the basic
eliminator, then the resulting unification rule won’t be strong as evaluation gets
stuck in case the left- and right-hand side of the equation are not of the form
zero or suc m.

Lemma 3.44. ηvar and ηeq are strong unification rules.

Proof. For ηvar, the first three properties are trivial as this rule does not involve
equations, and the last two properties holds as well since isLinv ηvar r and
isRinv ηvar r are equal to refl by definition.

For ηeq, the functions ηeq, ηeq−1, isLinv ηeq and isRinv ηeq all map refl
to refl by definition of cong and J, so it is also trivially a strong rule.

COMPUTATIONAL BEHAVIOUR OF UNIFICATION RULES 85

In the special case of a most general unifier, the telescope ∆′ on the right
becomes trivial so we can give a simpler definition of strongness. In particular,
the first property always holds so we may omit it, and for the second, third,
and fifth property it is sufficient to require that they hold in the case that s̄′ is
a list of variables Γ′ (since there are no equations in ∆′ that should hold as a
precondition). This leads us to the following definition of a strong unifier:

Definition 3.45 (Strong unifier). A most general unifier f : Γ(ē : ū ≡∆ v̄) ' Γ′
is strong if it satisfies the following four properties:

1. Γ′ ` linv f Γ′ = (s̄1; refl) : Γ(ē : ū ≡∆ v̄) for some s̄1.

2. Γ′ ` rinv f Γ′ = (s̄2; refl) : Γ(ē : ū ≡∆ v̄) for some s̄2.

3. For any Γ0 and s̄ such that Γ0 ` refl : ū[Γ 7→ s̄] ≡∆ v̄[Γ 7→ s̄], we have
Γ0 ` isLinv f s̄ refl = refl : linv f (f s̄ refl) ≡Γ(ē:ū≡∆v̄) (s̄; refl).

4. Γ′ ` isRinv f Γ′ = refl : f (rinv f Γ′) ≡Γ′ Γ′.

From the first two properties we deduce in particular that the equations ū ≡∆ v̄
are indeed satisfied definitionally under the substitution embedded in the most
general unifier f .

Lemma 3.46. If f = r1 ◦ r2 ◦ . . . ◦ rn : Γ(ē : ū ≡∆ v̄) ' Γ′ is composed of
strong unification rules r1, r2, . . . , rn, then f is a strong unifier.

Proof. Since a strong unifier is a special case of a strong unification rule, this
follows directly from Lemma 3.42.

Lemma 3.47. If f : Γ(ē : ū ≡∆ v̄) ' Γ′ is a strong unifier, then Γ′ `
linv f Γ′ = rinv f Γ′ : Γ.

Proof. By the second property of a strong unifier, we have s̄2 such that

Γ′ ` rinv f Γ′ = (s̄2; refl) : Γ(ē : ū ≡∆ v̄) (3.34)

In particular, (s̄2; refl) has type Γ(ē : ū ≡∆ v̄), so we know that

Γ′ ` refl : ū[Γ 7→ s̄2] ≡∆ v̄[Γ 7→ s̄2] (3.35)

By the third property of a strong unifier, this implies that

Γ′ ` isLinv f s̄2 refl = refl : (s̄2; refl) ≡Γ(ē:ū≡∆v̄) (s̄2; refl) (3.36)

86 PROOF-RELEVANT UNIFICATION

Since the left- and right-hand side of a definitional equality always have defini-
tionally equal types, it follows in particular that the type of isLinv f s̄2 refl
must be definitionally equal to the type of refl, i.e.

Γ′ ` linv f (f s̄2 refl) = (s̄2; refl) : Γ(ē : ū ≡∆ v̄) (3.37)

By similar reasoning, the fourth property gives us that the type of isRinv f Γ′
must be definitionally equal to that of refl, so in particular

Γ′ ` f (rinv f Γ′) = Γ′ : Γ′ (3.38)

But rinv f Γ′ = s̄2; refl, so we also have

Γ′ ` f (s̄2; refl) = Γ′ : Γ′ (3.39)

Applying linv f to both sides of this equations gives us that

Γ′ ` linv f (f (s̄2; refl)) = linv f Γ′ : Γ(ē : ū ≡∆ v̄) (3.40)

Putting this together with (3.37) gives us that

Γ′ ` linv f Γ′ = (s̄2; refl) : Γ(ē : ū ≡∆ v̄) (3.41)

Since rinv f Γ′ = (s̄2; refl), this gives us that Γ′ ` linv f Γ′ = rinv f Γ′ : Γ,
as we wanted to prove.

This lemma implies that we can write f−1 for both linv f and rinv f when f
is a strong unifier.

Discussion about the definition of a strong unifier. There are other possible
definitions of a strong unifier. In particular, to guarantee the good computational
properties of functions constructed through specialization by unification
(Lemma 4.26), we only need properties 1, 3, and a weaker version of property 4.
In our previous work (Cockx et al., 2016a) we used an even weaker definition of
a strong unifier:

Definition 3.48 (DEPRECATED, version from Cockx et al. (2016a)). A most
general unifier f : Γ(ē : ū ≡∆ v̄) ' Γ′ is strong if for any x̄′ : Γ′, it satisfies the
following two properties:

• f (f−1 x̄′) = x̄′

• isLinv f (f−1 x̄′) = refl

HIGHER-DIMENSIONAL UNIFICATION 87

This definition ensures exactly the properties needed for Lemma 4.26 to hold.
However, when writing down the proof of Theorem 4.29 in detail we discovered
it required an additional property, namely that f−1 x̄′ must be definitionally
equal to something of the form s̄; refl. Additionally, in various places we relied
implicitly on the fact that linv f and rinv f should be definitionally equal.
These discoveries lead to our current definition of a strong unifier.

3.4 Higher-dimensional unification

When constructing the indexed versions of the injectivity, conflict, and cycle
rules (Section 3.2.2), we required that the telescope of the equations on the
left-hand side should be exactly D = (ū : Ξ)(x : D ū). This means these rules can
only be applied to an equation where the type is fully general, i.e. a datatype
applied to distinct equality proofs for its indices. This is convenient when the
equations we start with are of this form because it allows us to simplify all
equations at the same time.

The main question posed in this section is what we can do if we encounter an
equation of the form c ū ≡D v̄ c v̄ but the indices v̄ are not fully general.

Example 3.49. Suppose the unification algorithm is trying to solve an equation

(e : cons n x xs ≡Vec A (suc n) cons n y ys) (3.42)

of type Vec A (suc n) where n is a regular variable rather than an equality
proof. In this case it is not possible to apply the injectivitycons rule directly.

There is no fundamental reason why unification should fail on this example.
On the other hand, always applying the injectivity rule even when the indices
are not fully general is unsound (Example 3.3). This is not just a theoretical
problem either: see for example issues #1411 and #1775 on the Agda bug
tracker (Abel, 2015b; Sicard-Ramírez, 2016).

In previous work, we tried different approaches to solve this problem that
worked in some cases but were ultimately unsatisfactory. In Cockx et al. (2014b)
we restricted all unification rules to homogeneous equations and additionally
imposed a self-unifiability criterion to the indices of the datatype when applying
the injectivity rule. In practice, this meant that the injectivity rule could only
be applied when the indices consisted of closed constructor forms only (e.g.
suc (suc zero), but not suc n), a severe restriction to the applicability of the
rule. In Cockx et al. (2016a) we used the general (heterogeneous) version of
the injectivity rule and relied on reverse unification to generalize the indices.

88 PROOF-RELEVANT UNIFICATION

This method had some potential in theory, but turned out to be too difficult
to implement in practice. Neither did we take into account the type of the
constructor in question, so we were unable to include useful heuristics such as
forced constructor arguments (Brady et al., 2003).

In this section, we describe a general technique for solving equations between
constructors of indexed datatypes. First, we study why the problem is so difficult
by looking at the analogous problem for the conflict and cycle rules, and make a
first attempt at generalizing the injectivity rule (Section 3.4.1). We continue to
show how to generalize the equality proofs in the indices in the general case by
introducing new equations between equality proofs (Section 3.4.2). Borrowing
terminology from homotopy type theory, we call them higher-dimensional
equations. To solve these higher-dimensional equations, we show how to lift
existing unification rules to higher dimensions (Section 3.4.3).

3.4.1 Generalizing unification rules

Before we try to tackle the problem of how to apply the injectivity rule on an
equation when the indices are not fully general, we first consider the analogous
problem for the conflict and cycle rules. The reason to take on these rules first
is because they shed some light on why the problem is harder for the injectivity
rule.
Lemma 3.50 (Generalized conflict). Consider a unification problem of the
form (s̄1; c1 t̄1) ≡Φ(x:D v̄) (s̄2; c2 t̄2) where D : Ξ → Set` is a datatype and
c1 : ∆1 → D ū1 and c2 : ∆2 → D ū2 are two distinct constructors of D. Then we
have an equivalence

conflict’c1,c2 :
(
(s̄1; c1 t̄1) ≡Φ(x:D v̄) (s̄2; c2 t̄2)

)
' ⊥ (3.43)

The indices v̄ are arbitrary, i.e. they don’t have to be variables like in the
standard conflict rule (Lemma 3.29). However, the type of the final equation
still has to be the datatype D applied to these indices. In particular it cannot be a
variable itself, or else we would run into the problem described in Example 3.33.

Before we give the proof of this lemma, we first want to show how a
naive proof attempt fails. It goes as follows: to construct a function(
(s̄1; c1 t̄1) ≡Φ(x:D v̄) (s̄2; c2 t̄2)

)
→ ⊥, it suffices (by the J rule) to construct

a function c1 t̄1 ≡D v̄ c2 t̄2 → ⊥. This function is constructed by calling the
indexed conflict rule (3.29) with refl for the proof of ū1[∆1 7→ t̄1] ≡Ξ ū2[∆2 7→
t̄2]. Since any function to ⊥ is an equivalence, we are done.

Think a moment about what is wrong with this proof. It uses the J rule to
eliminate the equations s̄1 ≡Φ s̄2, but there is no guarantee that s̄1 or s̄2 are

HIGHER-DIMENSIONAL UNIFICATION 89

in fact variables. Moreover, their structure as a term may be important for
satisfying the assumptions of the lemma, so simply generalizing the statement of
the lemma is not possible. In other words, the error in this proof attempt stems
from a confusion about the status of s̄1 and s̄2 as variables at the meta-level,
while they can be arbitrary terms at the object level!

We work around this issue by using the following lemma:

Lemma 3.51. Let f : A→ B and P : B → Set and e : s ≡A t and u : P (f s)
and v : P (f t). Then the types u ≡P (f e) v and u ≡P (cong f e) v are equivalent.

Proof. Notice the rather subtle difference between these two types: the first
one expands to subst (P ◦ f) e u ≡P (f t) v, while the second one expands
to subst P (cong f e) u ≡P (f t) v. To prove that they are equivalent, it is
sufficient to prove that subst (P ◦ f) e u ≡P (f t) subst P (cong f e) u. But
this follows directly by eliminating e using J.

Construction of conflict’c1,c2 . We start by expanding the definition of
telescopic equality: we have to derive an element of ⊥ from

(ē1 : s̄1 ≡Φ s̄2)(e2 : c1 t̄1 ≡D v̄[Φ 7→ē1] c2 t̄2) (3.44)

By Lemma 3.51, the type of e2 is equivalent to c1 t̄1 ≡D (cong (λΦ. v̄) ē) c2 t̄2. So
we call the conflict rule (3.29) with arguments ((cong (λΦ. v̄) ē1); e2) to get an
element of type ⊥. Since any function to ⊥ is an equivalence, this finishes the
proof.

Similarly, we can generalize the cycle rule:

Lemma 3.52 (Generalized cycle). Consider a unification problem of the form
(s̄1; t1) ≡Φ(x:D v̄) (s̄2; t2) where D : Ξ→ Set` is a datatype and t1 ≺ t2. Then we
have an equivalence

cycle’t1,t2 :
(
(s̄1; t1) ≡Φ(x:D v̄) (s̄2; t2)

)
' ⊥ (3.45)

Construction of cycle’t1,t2 . Analogously to the construction of conflict’c1,c2 .

For injectivity, it isn’t as easy to generalize the rule to arbitrary indices like
we just did for conflict and cycle. The problem here is harder because we also
have to construct an inverse function and prove that it is indeed a left and
right inverse, while this was trivial for the two negative rules. In the special
case where the index telescope Ξ satisfies the K rule, we can construct the
generalization:

90 PROOF-RELEVANT UNIFICATION

Lemma 3.53 (Generalized injectivity). Consider a unification problem of the
form (s̄1; c t̄1) ≡Φ(x:D v̄) (s̄2; c t̄2) where D : Ξ → Set` is a datatype with (at
least) one constructor c : ∆ → D ū, and assume Ξ satisfies K, i.e. we have
deletionΞ : (ē : w̄ ≡Ξ w̄) ' () for all w̄ : Ξ. Then we have an equivalence

injectivity’c :
(
(s̄1; c t̄1)≡Φ(x:D v̄) (s̄2; c t̄2)

)
' ((s̄1; t̄1)≡Φ∆ (s̄2; t̄2)) (3.46)

In case Φ is the empty telescope, this generalized injectivity rule is similar to
the specialized injectivity rule from Cockx et al. (2014b), but here we ask that
the types of the indices Ξ satisfy K, instead of asking that the indices ū are
self-unifiable.

Construction of injectivity’c. As for the previous lemma, we expand the
definition of telescopic equality and apply Lemma 3.51 to get to

(ē1 : s̄1 ≡Φ s̄2)(e2 : c t̄1 ≡D (cong (λΦ. v̄) ē1) c t̄2) (3.47)

Since Ξ satisfies K, it follows that (e′1 : v̄[Φ 7→ s̄1]≡Ξ v̄[Φ 7→ s̄2]) is equivalent
to (). So the previous telescope is equivalent to

(ē1 : s̄1 ≡Φ s̄2)(ē′1 : v̄[Φ 7→ s̄1] ≡Ξ v̄[Φ 7→ s̄2])
(e2 : c t̄1 ≡D (cong (λΦ. v̄) ē1) c t̄2) (3.48)

Again by K, we have that the proofs cong (λΦ. v̄) ē1 and ē′1 of type v̄[Φ 7→
s̄1] ≡Ξ v̄[Φ 7→ s̄2] are equal. This means the previous telescope is equivalent to

(ē1 : s̄1 ≡Φ s̄2)(ē′1 : v̄[Φ 7→ s̄1] ≡Ξ v̄[Φ 7→ s̄2])(e2 : c t̄1 ≡D ē′1 c t̄2) (3.49)

Finally, we can apply the injectivity rule (3.28) to prove that the part of the
telescope containing ē′1 and e2 is equivalent to t̄1 ≡∆ t̄2, so the previous telescope
is equivalent to

(ē1 : s̄1 ≡Φ s̄2)(ē2 : t̄1 ≡∆ t̄2) (3.50)
which is what we wanted to prove.

Like for the deletion rule, this generalized injectivity rule usually won’t be a
strong rule because its computational behaviour depends on the construction of
the proof of K for the index types.

3.4.2 A generalized injectivity rule

The generalized injectivity rule from the previous section is unsatisfactory
because it requires the index types of the datatype to satisfy K. This means we

HIGHER-DIMENSIONAL UNIFICATION 91

didn’t actually solve the problem of depending on K yet, we only moved it to
the indices. However, the proof taught us something about how to solve the
problem in general: it introduced new equality proofs ē′1 and used the K rule to
substitute these for the indices of D, allowing us to apply the injectivity rule. In
other words, it moved the problem from talking about equalities between terms
to equalities between equality proofs.

In this section, we show how to apply this idea in a more general way to
remove the dependency on K completely. We do this by applying—what else—
unification to the equations between the indices of the datatype. Since the
indices in the type of an equation can depend on the equality proofs of the
previous equations, this means we have to solve not just equalities between
terms but also equalities between other equality proofs, i.e. higher-dimensional
equations.

At first sight, it would seem that an entirely new set of unification rules is needed
to solve higher-dimensional equations (except for the solution rule, which can be
used at any dimension). However, it is possible to reuse the existing unification
rules on higher-dimensional problems. For example, the injectivitysuc rule
can be used not just to simplify equations of the form suc x ≡N suc y to x ≡N y,
but also cong suc e1 ≡suc x≡Nsuc y cong suc e2 to e1 ≡x≡Ny e2.

In general, whenever the unification algorithm encounters a higher-dimensional
unification problem of the form cong (λΦ. ū) ē ≡s̄≡∆ t̄ cong (λΦ. v̄) ē, it first
considers the simpler unification problem ū ≡∆ v̄. If it manages to find a
solution to this one-dimensional problem, it can then lift this solution to get a
solution to the original problem. The technical result that makes this possible
is Lemma 3.60 in the next section.

Let’s first take a look of how this works on an example.

Example 3.54. Consider the unification problem:

Γ(e : cons n x xs ≡Vec A (suc n) cons n y ys) (3.51)

where Γ = (n : N)(x y : A)(xs ys : Vec A n). The injectivitycons rule cannot
be applied, as the index suc n is not fully general (i.e. it is not an equation
variable). Instead, we solve this unification problem in three steps: in the
first step, we generalize over the indices in order to apply the injectivity rule,
generating higher-dimensional equations in the process. In the second step, we
bring down these equations by one dimension so we can solve them by applying
known unification rules. Finally, we lift the one-dimensional unifier to the
higher-dimensional problem.

92 PROOF-RELEVANT UNIFICATION

Step 1: generalizing the indices. We generalize the problem by introducing
an extra equation e1 : suc n ≡N suc n to the telescope, together with a
proof p that e1 is equal to refl:

Γ(e : cons n x xs ≡Vec A (suc n) cons n y ys)

' Γ(e1 : suc n ≡N suc n)(e2 : cons n x xs ≡Vec A e1 cons n y ys)
(p : e1 ≡suc n≡Nsuc n refl)

(3.52)
This is nothing but an application of the solution rule in the reverse
direction, as applying solution to p would bring us back to the first
equation.2

Since the index in the type of e2 is now fully general, we are free to apply
the injectivitycons rule:

Γ(e1 : suc n ≡N suc n)(e2 : cons n x xs ≡Vec A e1 cons n y ys)
(p : e1 ≡suc n≡Nsuc n refl)

' Γ(e′1 : n ≡N n)(e′2 : x ≡A y)(e′3 : xs ≡Vec A e′1
ys)

(p : cong suc e′1 ≡suc n≡Nsuc n refl)

(3.53)
Applying the injectivity rule to e2 has instantiated the variable e2 with
cong suc e′1. This instantiation is determined by the computational
behaviour of the injectivitycons rule (Lemma 3.23). As you can see, p
is a non-trivial equation between equality proofs, i.e. a higher-dimensional
equation.

Step 2: lowering the dimension of equations. To solve the higher-dimensional
equation p, we first consider a one-dimensional version of this problem:

(w′1 : N)(w′2 : A)(w′3 : Vec A w′1)(p : suc w′1 ≡N suc n) (3.54)

The equality proofs e′1, e′2 and e′3 from (3.53) have been replaced by regular
variables w′1, w′2 and w′3. To reflect this change, cong suc e′1 : suc n ≡N
suc n has been replaced by suc w′1 and refl : suc n ≡N suc n by suc n.
Now this is a problem we know how to solve: we apply injectivitysuc
and solution to find an equivalence f between this telescope and
(w′2 : A)(w′3 : Vec A n). This solves the one-dimensional problem.

2This is the exact same technique as used by McBride (2000): to do a case split on a
variable x : Vec A m where m is not fully general, he introduces a new variable n : N together
with an equality e : m ≡N n. This means that now x : Vec A m where m are just variables,
so it is possible to perform a case split on x. The only difference in our case is that we are
working one dimension higher, i.e. we work with equations between elements of the datatype
instead of elements of the datatype itself.

HIGHER-DIMENSIONAL UNIFICATION 93

Step 3: lifting unifiers to a higher dimension. How does this help us
with the higher-dimensional problem? By Lemma 3.60 (Section 3.4.3), we
can lift the equivalence f to get a new equivalence f↑:

(e′1 : n ≡N n)(e′2 : x ≡A y)(e′3 : xs ≡Vec A e′1
ys)

(p : cong suc e′1 ≡suc n≡Nsuc n refl)

' (e′′2 : x ≡A y)(e′′3 : xs ≡Vec A n ys)
(3.55)

This solves the higher-dimensional equation p, as well as the reflexive
equation e′1, without relying on the fact that N satisfies uniqueness of
identity proofs!

Finally, we apply the solution rule twice to solve the equations e′′2 and e′′3 .
So putting everything together, we have found an equivalence between the
original telescope (3.51) and (n : N)(x : A)(xs : Vec A n), solving the unification
problem.

Now that we have seen how to solve the problem in an example, let’s try to
generalize the solution. The main result of this section is the following theorem.

Theorem 3.55. Let D : Ξ → Set` be a datatype and c : ∆ → D ū be a
constructor of D. Consider a unification problem of the form

(ē : (s̄1; c t̄1) ≡Φ(z:D v̄) (s̄2; c t̄2)) (3.56)

Suppose we have an equivalence f : Φ∆(p̄ : ū ≡Ξ v̄) ' ∆′. Then we also have
an equivalence

(ē : (s̄1; c t̄1) ≡Φ(z:D v̄) (s̄2; c t̄2)) ' (ē′ : f s̄1 t̄1 refl ≡∆′ f s̄2 t̄2 refl) (3.57)

Moreover, if f is a strong unification rule then so is this new equivalence.

The computational behaviour of the unifier f suddenly becomes relevant for the
type of the resulting unification problem! In particular, we need the behaviour
of f applied to refl to calculate the left- and right-hand sides of the new
equations ē′.

Construction. We follow the same three steps as in Example 3.54, so if something
is unclear it may help to take a look at the corresponding step in the example.

Step 1: generalizing the indices. First, we unfold the telescopic equality
in (3.56) and apply Lemma 3.51 to get an equivalence with (ē1 : s̄1 ≡Φ

94 PROOF-RELEVANT UNIFICATION

s̄2)(e2 : c t̄1 ≡D v̄e
c t̄2) where v̄e = cong (λΦ. v̄) ē1. The equality proofs

v̄e have type ū1 ≡Ξ ū2 where ū1 and ū2 stand for ū[∆ 7→ t̄1] and ū[∆ 7→ t̄2]
respectively. To generalize v̄e, we introduce new variables ı̄ : ū1 ≡Ξ ū2
together with equalities p̄ : ı̄ ≡ū1≡Ξū2 v̄e:

(ē1 : s̄1 ≡Φ s̄2)(e2 : c t̄1 ≡D v̄e c t̄2)

' (ē1 : s̄1 ≡Φ s̄2)(̄ı : ū1 ≡Ξ ū2)(e2 : c t̄1 ≡D ı̄ c t̄2)
(p̄ : ı̄ ≡ū1≡Ξū2 v̄e)

(3.58)

Since ı̄ consists of distinct equation variables, it’s now possible to apply
injectivityc to the equation e2. This gives us an equivalence:

(ē1 : s̄1 ≡Φ s̄2)(̄ı : ū1 ≡Ξ ū2)(e2 : c t̄1 ≡D ı̄ c t̄2)(p̄ : ı̄ ≡ū1≡Ξū2 v̄e)

' (ē1 : s̄1 ≡Φ s̄2)(ē′2 : t̄1 ≡∆ t̄2)(p̄ : ūe ≡ū1≡Ξū2 v̄e)
(3.59)

where ūe = cong (λ∆. ū) ē′2.

Step 2: lowering the dimension of equations. Consider the one-dimensional
version of this unification problem Φ∆(p̄ : ū ≡Ξ v̄), where the equality
proofs ūe and v̄e have been replaced by their lower-dimensional variants
ū and v̄ respectively. Since this is a one-dimensional unification problem,
we can apply the known unification rules from Section 3.2 to solve it.
By assumption of the theorem, unification succeeds positively with most
general unifier f as a result.

Step 3: lifting unifiers to a higher dimension. Now we have to lift this
solution back to the higher-dimensional problem. This lifting is explained
in the next subsection. Lemma 3.60 gives us a lifted equivalence f↑:

(ē1 : s̄1 ≡Φ s̄2)(ē′2 : t̄1 ≡∆ t̄2)(p̄ : ūe ≡ū1≡Ξū2 v̄e)

' (ē′ : f s̄1 t̄1 refl ≡∆′ f s̄2 t̄2 refl)
(3.60)

This is exactly what we need to solve the problem in (3.59).

Now we combine the equivalences in (3.58), (3.59) and (3.60) to get the final
equivalence (3.57).

To see why this is a strong unification rule, note that it is the composition
of four equivalences: Lemma 3.51, solution−1, injectivityc and f↑. By
Lemma 3.42, it is sufficient to prove that these four equivalences are strong
unification rules individually. The first two are strong by construction, and
injectivityc is a strong unification rule by Lemma 3.43. Finally, f↑ is strong
too by Lemma 3.61.

HIGHER-DIMENSIONAL UNIFICATION 95

This finishes the application of higher-dimensional unification to the equation
e. We have solved the injectivity problem e, and there are no more higher-
dimensional unification problems in the resulting equations ē′1, so we can
continue unification on the new problem as normal.

It is impossible for higher-dimensional unification to end in a negative success,
as this would mean we are trying to solve an ill-typed equation. For example,
we can never encounter a higher-dimensional conflict:

cong c1 ē1 ≡??? cong c2 ū
′ v̄′ ē2 (3.61)

because the left-hand side has a type of the form c1 ū ≡ c1 v̄ while the right-
hand side has type c2 ū

′ ≡ c2 v̄
′. Likewise, a higher-dimensional cycle would

be:
e ≡??? cong c e (3.62)

where the left-hand side has some type u ≡ v but the right-hand side has type
c ū′ ≡ c v̄′ where u and v occur in ū′ and v̄′ respectively.

Now that we know how to do higher-dimensional unification in general, we can
justify the second restriction to the unification algorithm in Section 2.3.1.

Corollary 3.56. Let c : ∆→ D ū be an invertible constructor (Definition 2.30)
of the datatype D : Ξ→ Set` and t̄1, t̄2 : ∆. Then we have an equivalence

(e : c t̄1 ≡D v̄ c t̄2) ' (ē′ : t̄1|∆′ ≡∆′ t̄2|∆′) (3.63)

where v̄ = ū[∆ 7→ t̄1] = ū[∆ 7→ t̄2] and ∆′ is the telescope of non-forced
arguments of c with the forced arguments filled in with the corresponding values
from t̄1.

From the well-formedness of the type c t̄1 ≡D v̄ c t̄2, it follows that the forced
arguments of t̄1 and t̄2 are equal, so it doesn’t matter from which side we take
them.

Construction. By definition of an invertible constructor, applying unification
to the unification problem ∆(p̄ : ū ≡Ξ v̄) ends in a positive success with result
f : ∆(p̄ : ū ≡Ξ v̄) ' ∆′ where the computational behaviour of f is to select the
non-forced arguments of c from ∆. Applying Theorem 3.55 to f gives us the
desired equivalence.

3.4.3 Lifting unifiers to higher dimensions

In the last section, we have seen how to apply higher-dimensional unification
to make the injectivity rule more generally applicable. In this section, we dive

96 PROOF-RELEVANT UNIFICATION

into the heart of the problem. Our core result that makes higher-dimensional
unification work is Lemma 3.60, telling us exactly how to update the left- and
right-hand sides of the equations when lifting a unifier.

Suppose we have a unifier that we want to lift to a higher dimension. As a first
attempt, we try to apply the following theorem from The Univalent Foundations
Program (2013):

Theorem 3.57. If a function f : A→ B is an equivalence and x, y : A, then
cong f : x ≡A y → f x ≡B f y is also an equivalence.

Construction. This is Theorem 2.11.1 from The Univalent Foundations Program
(2013).

Applying this theorem to a unifier f : Γ(p̄ : ā ≡∆ b̄) ' Γ′ results in an
equivalence cong f : (ē : (ū; r̄) ≡Γ(p̄:ā≡∆b̄) (v̄; s̄)) ' (ē′ : f ū r̄ ≡Γ′ f v̄ s̄), or
expanding the definition of telescopic equality:

cong f : (ē : ū ≡Γ v̄)(q̄ : r̄ ≡āe≡∆e b̄e
s̄) ' (ē′ : f ū r̄ ≡Γ′ f v̄ s̄) (3.64)

where ū, v̄ : Γ and r̄ : āu ≡∆u
b̄u and s̄ : āv ≡∆v

b̄v, and ·x is shorthand for
·[Γ 7→ x̄]. This is already almost what we need for higher-dimensional unification,
but not quite.

To better visualize the problem, we make use of the concept of a square, also
called a 2-path by The Univalent Foundations Program (2013):

Definition 3.58 (Square type). Let A : Set` with terms w, x, y, z : A and
paths t : w ≡A x and b : y ≡A z and l : w ≡A y and r : x ≡A z between these
terms. The square type Square t b l r is defined to be the dependent equality
type l ≡t≡Ab r.

The type l ≡t≡Ab r can be written a little more explicitly as l ≡(t;b)
≡A r, or even

more explicitly as subst (_ ≡A _) (t; b) l ≡x≡Az r. If we imagine a square
with top side t, bottom side b, left side l, and right side r, then Square t b l r
can be thought of as the type of identity proofs that fill this square horizontally
as visualized in Figure 3.2a.

There is a second way to construct a square type from four given points
w, x, y, z : A and equality proofs t : w ≡A x and b : y ≡A z and l : w ≡A y
and r : x ≡A z: we can ‘flip’ the square around its w-z axis, as illustrated by
Figure 3.2b. To get to our desired result, we need to rely on the fact that both
square types are in fact equivalent:

HIGHER-DIMENSIONAL UNIFICATION 97

w x

y z

t

b

l r
p

(a) Horizontal filling

w x

y z

t

b

l rq

(b) Vertical filling

Figure 3.2: The Square type represents the possible ways to fill a square
defined by four equality proofs.

Lemma 3.59 (Flipping squares). Let A : Set and w, x, y, z : A and t : w ≡A x
and b : y ≡A z and l : w ≡A y and r : x ≡A z. Then we have an equivalence
flip t b l r : Square t b l r ' Square l r t b.

Proof. The proof of this lemma consists completely of repeated applications
of J. We start by constructing the function flip t b l r : Square t b l r →
Square l r t b. First, by J on t and b we can assume that w = x and y = z and
both t and b are refl, so we are left with the goal l ≡w≡Ay r → refl ≡l≡Ar refl.
The identity type in the function argument has become homogeneous, so we again
apply J, giving us that l = r and leaving us with the goal refl ≡l≡al refl.
Finally, one more application of J on l : w ≡A y leaves us with the goal
refl ≡w≡Aw refl, which we solve with refl.

For the construction of the left and right inverse of flip, we just change the
order of t, b, l and r in the construction of flip. For the proofs that they are in
fact inverses, the same sequence of applications of J as used in the construction
of flip suffices.

Now we prove the main lemma. When we applied this lemma in the last section,
we only used it for r̄ = refl and s̄ = refl, but the fully general version is not
harder to prove so that’s what we present here.

Lemma 3.60 (Lifting of unifiers). Suppose we have a unifier f : Γ(p̄ : ā ≡∆
b̄) ' Γ′, terms ū, v̄ : Γ and equality proofs r̄ : āu ≡∆u

b̄u and s̄ : āv ≡∆v
b̄v.3

Then we have a lifted unifier

f↑ : (ē : ū ≡Γ v̄)(p̄ : cong (λΓ.ā) ē ≡r̄≡∆e s̄
cong (λΓ.b̄) ē)

' (ē′ : f ū r̄ ≡Γ′ f v̄ s̄)
(3.65)

3We again write ·x for ·[Γ 7→ x̄]

98 PROOF-RELEVANT UNIFICATION

āu b̄u

āv b̄v

r̄

s̄

cong (λΓ.ā) ē cong (λΓ.b̄) ē
p̄

(a) Horizontal filling p̄

āu b̄u

āv b̄v

r̄

s̄

cong (λΓ.ā) ē cong (λΓ.b̄) ēq̄

(b) Vertical filling q̄

Figure 3.3: To construct the equivalence in Lemma 3.60, we apply Lemma 3.59
to transform the horizontal filling p̄ into a vertical one q̄.

Construction. By Theorem 3.57 we already have the equivalence in (3.64). By
Lemma 3.51, the type of q̄ is equivalent to r̄ ≡cong (λΓ.ā) ē≡∆e cong (λΓ.b̄) ē s̄. If
we think of this type as a square type, then Lemma 3.59 gives us that this
type is equivalent to cong (λΓ.ā) ē ≡r̄≡∆e s̄

cong (λΓ.b̄) ē. This is illustrated
in Figure 3.3. Composing this equivalence with cong f gives us the desired
equivalence f↑.

Lemma 3.61. If f : Γ(p̄ : ā ≡∆ b̄) ' Γ′ is a strong unifier, then so is f↑.

Proof. f↑ is constructed as a composition of the equivalences cong f
(Theorem 3.57), Lemma 3.51, and flip (Lemma 3.59). By Lemma 3.42, we
just have to verify that each of these equivalences is a strong unification rule.
But this can be verified by looking at their construction (in the case of cong f
also using the fact that f is a strong unifier).

3.5 Implementation

Using our framework for proof-relevant unification described in this chapter, we
reimplemented the unification algorithm used by Agda for checking definitions

IMPLEMENTATION 99

by dependent pattern matching. As a result, we were able to replace previous
ad hoc restrictions with formally verified unification rules, fixing a number of
bugs in the process. It also enabled us to add new unification rules dealing with
η-equality for record types, as well as higher-dimensional unification for solving
equations between constructors of indexed datatypes. Another advantage of our
approach is that the implementation is now much cleaner than before, allowing
it to be extended easily in the future. In this section, we take a look at our
implementation from the point of view of an Agda user (Section 3.5.1) and an
Agda developer (Section 3.5.2).

3.5.1 Impact on the Agda user

From the point of view of a user of Agda, unification happens behind the scenes
while checking definitions by pattern matching, so a different algorithm doesn’t
impact the syntax of the language directly. Instead, the main criterion a user of
Agda should judge the unification algorithm by is that it accepts the definitions
that should be accepted, and rejects the definitions that should be rejected. The
latter can be seen from the fact that our implementation directly resulted in a
fix for issue #1408 (Example 3.33), dealing with an incompatibility between
heterogeneous equations and the --without-K option (Vezzosi, 2015). Equally
important, our implementation provides a much more principled solution to
issues #292 (Danielsson, 2010, see also Example 3.33), #1071 (Danielsson,
2014), #1406 (Abel, 2015a, see also Example 3.32), #1411 (Abel, 2015b), and
#1427 (Abel, 2015c, see also Example 3.32). All these issues are fixed without
introducing special cases in the code and without limiting the power of the
unification algorithm in any significant way, as can be seen from the fact that
Agda’s test suite and standard library are still typechecked correctly. This is in
contrast to the previous ad-hoc fixes to some of these issues, which broke the
unification algorithm in some cases, for example in issue #1435 (Danielsson,
2015).

The addition of the new unification rules for η-equality of record values also
significantly improved the way Agda handles records. Before these unification
rule were added to Agda, all variables of record type had to be fully eta-expanded
before calling the unifier, for example in issue #473 (Danielsson, 2011). This
caused a substantial overhead when dealing with deeply nested records, see
issue #635 (Peebles, 2012). This also caused problems in combination with
Agda’s instance search mechanism, see for example issue #1613 (Abel, 2015d).
In contrast, by using this unification rule we only eta-expand a variable when it
is useful for the unification to proceed, thus eliminating this overhead.

100 PROOF-RELEVANT UNIFICATION

We also implemented higher-dimensional unification (Section 3.4). This addition
allows Agda to typecheck more definitions, such as the example given in issue
#1775 (Sicard-Ramírez, 2016).

3.5.2 Impact on the Agda codebase

For the further development of Agda, it is important that the unification
machinery is robust and easily extensible with further rules. For this reason,
we separated it into two logical parts: a unification strategy and the unification
engine. Both parts make use of the same data structures for representing the
unification state and unification rules, as shown in Figure 3.4. The unification
strategy takes a unification state as an argument and produces a lazy monadic
list of unification rules to try (Figure 3.5), while the unification engine tries to
apply these rules one by one until one succeeds (Figure 3.6).

A big difference between our implementation and Agda’s previous unification
algorithm is that our version explicitly manipulates telescopes of free variables
(varTel) and equations (eqTel) as well as explicit substitutions between these
telescopes, while previously these had to be reconstructed after unification was
finished. This change resulted in a significant simplification of the code for
checking left-hand sides and coverage of definitions by pattern matching (the
parts of Agda that use the unification algorithm).

An important choice when constructing a unification strategy is whether to
start on the leftmost or the rightmost equation. It seems sensible to start on
the left to avoid heterogeneous equations as much as possible, and this was
also the preferred method for the old algorithm. However, our unification rules
for indexed datatypes actually benefit from having unsolved equations in the
telescope, so a unification strategy that starts from the right provides more
opportunities to apply these rules. For this reason, our current implementation
uses a right-to-left strategy, although plugging in a different strategy would be
trivial.

Our implementation of higher-dimensional unification closely follows the steps
in Section 3.4.2. In particular, when applying the injectivity rule to a unification
problem of the form (ē1 : s̄1 ≡Φ s̄2)(e2 : c t̄1 ≡D v̄e

c t̄2) the unification algorithm
constructs the new unification problem Φ∆(p̄ : ū ≡Ξ v̄) where c : ∆→ D ū and
v̄ is the lower-dimensional analogue of v̄e, and recursively calls itself on this
new problem.

One noteworthy fact about the implementation is how the left- and right-hand
sides f s̄1 t̄1 refl and f s̄2 t̄2 refl of the new unification problem in (3.57) are
computed. The implementation doesn’t have an explicit representation of the

IMPLEMENTATION 101

data UnifyState = UState
{ varTel :: Telescope
, flexVars :: FlexibleVars
, eqTel :: Telescope
, eqLHS :: [Term]
, eqRHS :: [Term]
}

data UnifyStep
= Deletion { ... }
| Solution { ... }
| Injectivity { ... }
| Conflict { ... }
| Cycle { ... }
| EtaExpandVar { ... }
| EtaExpandEquation { ... }
| LitConflict { ... }
| StripSizeSuc { ... }
| SkipIrrelevantEquation { ... }
| TypeConInjectivity { ... }

Figure 3.4: The datatypes used for representing unification states and
unification rules closely follow the theory. In addition to the unification rules
presented in this chapter, Agda also has unification rules for dealing with literals,
sized types (Abel, 2010) and irrelevant equations (Abel, 2011), features not
discussed in this thesis. There is also a rule for injective type constructors that
is only used when this is enabled explicitly by the user.

type UnifyStrategy =
UnifyState -> ListT TCM UnifyStep

skipIrrelevantStrategy basicUnifyStrategy
dataStrategy literalStrategy etaExpandVarStrategy
etaExpandEquationStrategy injectiveTypeConStrategy
simplifySizesStrategy checkEqualityStrategy

:: Int -> UnifyStrategy

Figure 3.5: A unification strategy takes a unification state and produces a list
of unification steps to try in order. For constructing unification strategies, we
provide a number of basic strategies that can be combined in any order.

102 PROOF-RELEVANT UNIFICATION

unifyStep :: UnifyState -> UnifyStep
-> UnifyM (UnificationResult’ UnifyState)

unify :: UnifyState -> UnifyStrategy
-> UnifyM (UnificationResult’ UnifyState)

Figure 3.6: The unification engine consists of an auxiliary function unifyStep
that tries to apply one unification step, resulting in either a new state, an
absurdity (e.g. for the conflict and cycle rules), or a failure, and the main
function unify that tries all steps suggested by a given strategy, and continues
until either the unification problem is solved (i.e. the equation telescope is
empty) or there are no more rules left to try.

function f , so it’s not possible to calculate them directly. Instead, the recursive
call produces a substitution ρ of type ∆′ → Φ∆. This allows us to calculate
f−1 : ∆′ → (x̄ : Φ)(ȳ : ∆)(p̄ : ū ≡Ξ v̄) as λx̄′. (x̄′ρ; refl), but doesn’t give us a
direct way to compute f . To go in the opposite direction, we note that ρ is a
pattern with free variables ∆′. So we can match the values from Φ∆ against
this pattern. The proofs of ū ≡Ξ v̄ (assumed to be refl in our implementation,
since all the unifiers we compute are strong unifiers) ensure that this matching
cannot fail, so this allows us to recover the values of the variables in ∆′, thus
computing the function f : Φ∆(p̄ : ū ≡Ξ v̄)→ ∆′.

3.6 Related work

Unification is a large area of research that we cannot hope to cover here in full.
We refer the interested reader to Jouannaud and Kirchner (1990) and Baader
and Snyder (2001) for a general overview of the subject. Most extensions to
unification that are studied, such as higher-order unification and E-unification,
are orthogonal to the work in this chapter, although it would be interesting to
see how they fit within our framework.

Type checkers of dependently typed languages typically have some facility for
meta-variables that are solved by higher order pattern unification (Miller, 1991).
These kind of unification algorithms differ from the one presented in this chapter
because they have to satisfy different requirements. Whereas they search for a
unifier that is the most general one among all unifiers that make the two sides
definitionally equal, our unification algorithm guarantees that it is the most
general one among all the ones that make the two sides propositionally equal.
This affects the kind of unification rules that can be applied. For example, these

RELATED WORK 103

unification algorithms suppose all rigid symbols (including type constructors)
to be ‘injective’ for the purpose of unification. Some algorithms even consider
defined functions to be rigid (Ziliani and Sozeau, 2015) or make use of user-
provided hints to choose one solution over the other (Asperti, Ricciotti, Coen,
and Tassi, 2009), thereby giving up on finding most general unifiers entirely in
favour of finding solutions more often. In this case, the only problem is that the
solution to the metavariable may not be what the user intended. In contrast,
our algorithm produces evidence of unification internal to the theory we’re
working in, and it is actually important that the unifier found by the algorithm
is indeed the most general one (otherwise we might lose e.g. coverage of functions
by pattern matching). Still, it would be interesting to further investigate the
similarities and differences between these two unification algorithms.

Goguen (1989) takes a categorical view on unification, representing most general
unifiers as equalizers in a category of types and substitutions. It shouldn’t be
surprising that many of the category-theoretic notions are analogous to the
type-theoretic ones presented in this chapter. For example, giving an explicit
type to the domain of substitutions helps to avoid problems with non-uniqueness
in the definition of a most general unifier in other presentations. Compared
to the category-theoretical presentation of unification, our work adds support
for indexed datatypes, and it also differs in the fact that type theory allows an
internal representation of equations as (telescopic) equality types.

The idea to represent unification problems at the object level by using the
identity type stems from McBride (1998b). In McBride’s paper, the types of
equations are limited to simple (non-dependent) types, and the injectivity rule
is likewise limited to simple datatypes. Later, he solves this by introducing a
heterogeneous identity type (McBride, 2002). However, the K rule is needed
to turn heterogeneous equalities back into homogeneous ones. Additionally,
postponing equations is not supported, as heterogeneous equations can only be
turned into homogeneous ones if the types are equal. In our previous work, we
solved the problem of requiring K, but the unification rules still only worked on
the first equation in a telescope (Cockx et al., 2014b). As a consequence, we had
to limit the injectivity, conflict, and cycle rules to work only in homogeneous
situations, while here we can use them in their fully general form.

Our approach to unification is closely related to the notion of inversion of an
inductive hypothesis (Cornes and Terrasse, 1995; Monin, 2010). The usual
approach to inversion works by crafting a diagonalizer that is used as the
motive for an eliminator. Unification can also be as an alternative method for
proving inversion lemmas (McBride, 1998b). One advantage of the diagonalizer
approach is that it moves most of the work to the type level, potentially
improving performance of the resulting function. The process of constructing
diagonalizers has recently also been automated (Braibant, 2013). However, it

104 PROOF-RELEVANT UNIFICATION

requires that the indices of the inductive hypothesis we are inverting can be
written as a pattern, which is not always the case (e.g. they may be non-linear),
so the approach based on unification seems to be more general. It would be
interesting to try to implement an inversion tactic based on the unification
algorithm in this chapter to compare the power of the two approaches.

The idea to view equality proofs themselves as the subjects of unification is
inspired by cubical type theory, where equality proofs are terms viewed ‘one level
up’ (Cohen et al., 2016). In fact, if we were working in a cubical type theory,
there would be no difference between regular unification and higher-dimensional
unification, so the work in this chapter could be seen as ‘backporting’ some
of the power of cubical type theory back to the (currently) better-understood
world of standard intuitionistic type theory.

Compared to our reverse unification rules from Cockx et al. (2016a), higher-
dimensional unification takes information into account from the types of the
constructors as well as the types of the equation. This difference is similar to
the inversion of an inductive hypothesis by using a diagonalizer (Cornes and
Terrasse, 1995) versus using unification for the problem (McBride, 1998b).

Chapter 4

Back to eliminators

Perfection is achieved not when there is nothing left to add, but
when there is nothing left to take away.

— Antoine de Saint-Exupéry (1939)

In this chapter, we take everything we have done in the previous chapters and
explain it in terms of the ‘bare metal’ of type theory: datatype eliminators.
These eliminators encode the basic induction principles associated to each
datatype. By translating definitions by pattern matching to eliminators, we can
be confident that they don’t add anything extra to the core theory besides a
more convenient syntax (Theorem 4.27).

When translating one concept to another, there is always the danger that
some of the original meaning gets lost in the translation. For example, we
may accidentally translate a function not : Bool → Bool to a function not’ :
Bool→ Bool of the same type but for which not’ true = true. More subtly,
the translated definition could compute the same results for closed terms but
have a different computational behaviour when applied to open terms (i.e. ones
with free variables). For example, a function f : Bool → Bool may satisfy
f x = x while the translated function f’ only satisfies f’ true = true and
f’ false = false but not f’ x = x for arbitrary x. This becomes important
when we want to prove properties of this function: instead of writing refl
for the proof of f’ x ≡Bool x, we would instead have to handle the two cases
f’ true ≡Bool true and f’ false ≡Bool false separately. To avoid mismatches
between the definition by pattern matching and its translated version, we prove
that the translated version preserves the same definitional equalities as the
original (Theorem 4.29).

105

106 BACK TO ELIMINATORS

Our proof mostly follows the translation from pattern matching to eliminators
by Goguen et al. (2006). The general idea of the proof is as follows. First,
the definition by pattern matching is translated to a case tree as explained in
Section 2.2.1, using the unification algorithm presented in Chapter 3. Each
leaf node of the case tree corresponds to a clause f p̄ = e, i.e. it defines f on
arguments that match the pattern p̄, and each internal node corresponds to
a case split of p̄ on some variable x : D ū into patterns p̄1, . . . , p̄n. If we can
assemble the definitions of f p̄1, . . . , f p̄n into a definition of f p̄, then we can
work backwards from the leaf nodes towards the root, ultimately obtaining a
definition of f on arbitrary variables.

To assemble the definitions of f p̄1, . . . , f p̄n into a definition of f p̄, we proceed
in two steps. First we apply a technique called basic caseD-analysis. This splits
the problem into one subproblem for each constructor ci of D, and generates
new equations between the indices of the datatype. The second step is to apply
specialization by unification, simplifying these equations step by step. The
unification transitions make sure that we do not have to fill in anything for a
negative success. Finally, we fill in the translated definition of f p̄i for each
positive success.

In general there can be recursive calls to the function f in each clause f p̄ = e.
These recursive calls are required to be structurally recursive on some argument
x : D ū of f. This allows us to use well-founded recursion on D to obtain
an inductive hypothesis H, asserting that f is already defined on arguments
structurally smaller than x. This inductive hypothesis is then used to replace
the recursive calls to f in e.

The challenge is then to construct all these techniques as terms internal to
type theory. We start by constructing each of these techniques in turn: case
splitting (Section 4.1.1), structural recursion (Section 4.1.2), and the injectivity,
conflict, and cycle rules from Chapter 3 (Section 4.1.3 and Section 4.1.4).
These constructions are based on those from McBride et al. (2006), but they are
adapted to use our definition of telescopic equality in order to take the additional
dependencies on equality proofs into account. Then we present basic analysis
(Section 4.2.1) and specialization by unification (Section 4.2.2). Finally, all
these tools are brought together for the translation of case trees to eliminators
(Section 4.3).

4.1 Basic constructions on constructors

As the target theory of our translation, we take the same basic theory as given
in Section 2.1, except that in this theory it is not allowed to define functions by

BASIC CONSTRUCTIONS ON CONSTRUCTORS 107

pattern matching. Instead, the only way to define a function by recursion or
induction is by using the appropriate datatype eliminator.

Datatype eliminators are an instance of the more general concept of an
elimination operator (McBride, 2002).

Definition 4.1 (Elimination operator). Let Ψ be any telescope. A Ψ-
elimination operator is any function with a type of the form

(P : Ψ→ Seti)→
(m1 : ∆1 → P s̄1) . . . (mn : ∆n → P s̄n)→
(t̄ : Ψ)→ P t̄

(4.1)

We call Ψ the target, P the motive, and m1, . . . ,mn the methods of the
elimination operator.

We can think of a Ψ-elimination operator as a way to transform a problem into
a set of subproblems. In the type shown above, the problem is to construct a
result of type P t̄ when given arbitrary values t̄ in the telescope Ψ. This original
problem is transformed into n sub-problems given by each of the methods:
the ith subproblem is to construct a result of type P s̄i when given arbitrary
values of type ∆i. The elimination operator’s type can be read as a function
that transforms solutions for the sub-problems into a solution for the original
problem.

For the rest of this section, let D : Ξ→ Seti be an inductive family (where Ξ
is the telescope of the indices) with constructors c1, . . . , ck. Without loss of
generality, we assume that the non-recursive constructor arguments come before
the recursive ones, so ci has type:

ci : ∆i → (Φi,1 → D v̄i,1)→ . . .→ (Φi,ni
→ D v̄i,ni

)→ D ūi (4.2)

As before, we consider D to be already applied to its parameters, if it has any.

Definition 4.2 (Datatype eliminator). The standard datatype eliminator elimD
for D is a D-eliminator of type

elimD : (P : D→ Seti)(m1 : M1) . . . (mk : Mk)
→ (x̄ : D)→ P x̄

(4.3)

where the methods m1, . . . ,mk have type

Mi = (t̄ : ∆i)(x1 : Φi,1 → D v̄i,1) . . . (xni
: Φi,ni

→ D v̄i,ni
)

→ (h1 : (s̄1 : Φi,1)→ P v̄i,1 (x1 s̄1))→ . . .
→ (hni

: (s̄ni
: Φi,ni

)→ P v̄i,ni
(xni

s̄ni
))

→ P ūi (ci t̄ x1 . . . xni)

(4.4)

108 BACK TO ELIMINATORS

The evaluation behaviour of the standard datatype eliminator is given by the
following rule for i = 1, . . . , k:

elimD P m1 . . . mk ūi (ci t̄ x1 . . . xni
) =

mi t̄ x1 . . . xni

(λs̄1. elimD P m1 . . . mk v̄i,1 (x1 s̄1))
. . .
(λs̄ni . elimD P m1 . . . mk v̄i,ni(xni s̄ni))

(4.5)

Example 4.3. Consider the datatype Tree of binary trees:

data Tree : Set where
leaf : Tree
node : Tree→ Tree→ Tree

(4.6)

The eliminator for Tree is
elimTree : (P : Tree→ Seti)(mleaf : P leaf)

→ (mnode : (l r : Tree)→ P l→ P r → P (node l r))
→ (x : Tree)→ P x

(4.7)

The evaluation rules are

elimTree P mleaf mnode leaf = mleaf (4.8)

and
elimTree P mleaf mnode (node l r) =

mnode l r (elimTree P mleaf mnode l) (elimTree P mleaf mnode r)
(4.9)

Example 4.4. Consider the indexed datatype m ≤ n (Example 2.12):

data _ ≤ _ : N→ N→ Set where
lz : (n : N)→ zero ≤ n
ls : (m n : N)→ m ≤ n→ suc m ≤ suc n

(4.10)

The eliminator for ≤ is
elim≤ : (P : (m : N)(n : N)(x : m ≤ n)→ Seti)

→ (mlz : (n : N)→ P zero n (lz n))
→ (mls : (m : N)(n : N)(x : m ≤ n)→ P m n x

→ P (suc m) (suc n) (ls m n x))
→ (m : N)(n : N)(x : m ≤ n)→ P m n x

(4.11)

The evaluation rules are

elim≤ P mlz mls zero n (lz n) = mlz n (4.12)

and
elim≤ P mlz mls (suc m) (suc n) (ls m n x) =

mls m n x (elim≤ P mlz mls m n x) (4.13)

BASIC CONSTRUCTIONS ON CONSTRUCTORS 109

4.1.1 Case analysis

The most important part of dependent pattern matching is that it allows us to
do case analysis on a variable of an inductive type, returning a different value
for each constructor. In particular, each internal node of a case tree corresponds
exactly to one case split. In the translated version of the definition, each case
split corresponds to an application of the caseD-eliminator. In effect, it is a
weaker version of the standard eliminator, with the inductive hypotheses for
the recursive arguments dropped.

Lemma 4.5 (caseD). We have a function caseD of type

caseD : (P : D→ Seti)(m1 : M1) . . . (mk : Mk)
→ (x̄ : D)→ P x̄

(4.14)

where

Mi : (t̄ : ∆i)→ (x1 : Φi,1 → D v̄i,1) . . . (xni
: Φi,ni

→ D v̄i,ni
)

→ P ūi (ci t̄ x1 . . . xni
) (4.15)

for i = 1, . . . k.

Example 4.6. For the Tree type, we have:

caseTree : (P : Tree→ Seti)→ P leaf
→ ((l r : Tree)→ P (node l r))→ (x : Tree)→ P x

caseTree P mleaf mnode t = elimTree P mleaf (λl r hl hr. mnode l r) t
(4.16)

Example 4.7. For the type m ≤ n, we have:

case≤ : (P : (m : N)(n : N)(x : m ≤ n)→ Seti)
→ (mlz : (n : N)→ P zero n (lz n))
→ (mls : (m : N)(n : N)(x : m ≤ n)→ P (suc m) (suc n) (ls m n x))
→ (m : N)(n : N)(x : m ≤ n)→ P m n x

(4.17)

Construction of caseD.

caseD P m1 . . . mk = elimD P (λt̄ x̄ h̄.m1 t̄ x̄) . . . (λt̄ x̄ h̄.mk t̄ x̄) (4.18)

110 BACK TO ELIMINATORS

4.1.2 Structural recursion

A second core feature of dependent pattern matching is that it allows us to write
definitions by well-founded recursion: a function definition can make recursive
calls to itself applied not just to immediate subterms but also sub-subterms, sub-
sub-subterms, etcetera. For example, the definition f (suc (suc (suc n))) can
make use of (f (suc (suc n))), (f (suc n)) and (f n). In the translated version,
structural recursion is translated to an application of the recD-eliminator.

Before we define recD, we first define the auxiliary type BelowD collecting all
possible recursive calls: BelowD P ū x is defined as a tuple type that is inhabited
whenever P v̄ y holds for all y : D v̄ that are structurally smaller than x : D ū

Lemma 4.8 (BelowD). Let P : D → Seti. For any x : D ū, we have a type
BelowD P ū x such that for any y ≺ x we have a projection π : BelowD P ū x→
P v̄ y.

Example 4.9. The type BelowTree P x expresses that the property P : Tree→
Set holds for any subtree of x : Tree. In other words, we have

BelowTree P leaf = >
BelowTree P (node l r) = (BelowTree P l × P l) × (BelowTree P r × P r)

(4.19)

Construction of BelowD P . We apply the eliminator elimD to the motive Φ =
λ _. Seti. For the method mi corresponding to the constructor ci we give the
following:

mi = λt̄;x1; . . . ;xni ;h1; . . . ;hni .
((s̄1 : Φi,1)→ h1 s̄1 × P v̄i,1 (x1 s̄1)) ×
· · · × ((s̄ni

: Φi,ni
)→ hni

s̄ni
× P v̄i,ni

(xni
s̄ni

))
(4.20)

To construct the projection π, consider x : D ū and any structurally smaller term
y : D v̄. If y is (an application of) a direct subterm of x, say x = c t̄ x1 . . . xn
with y = xi w̄, then we return the second component of the ith component of
BelowD P x, i.e. we define

π H = π2 (πi H w̄) : BelowD P ū x→ P v̄ y (4.21)

Otherwise, y is a subterm of some direct subterm xi of x = c t̄ x1 . . . xn. In
particular, by induction we have some π′ : BelowD P v̄i xi → P v̄ y. This allows
us to define π as follows:

π H = π′ (π1 (πi H)) : BelowD P ū x→ P v̄ y (4.22)

BASIC CONSTRUCTIONS ON CONSTRUCTORS 111

It is possible to define an internal version of x ≺ t as a type in a similar way to
BelowD, replacing the product types × by sum types]. However, this is not
necessary as this type never shows up in the translated version of a definition
by pattern matching, it is only used to specify when the translation can be
performed.

Lemma 4.10 (belowD). We have a function belowD of type

belowD : (P : (x̄ : D)→ Seti)(p : (x̄ : D)→ BelowD P x̄→ P x̄)
→ (x̄ : D)→ BelowD P x̄

(4.23)

Definition 4.11 (recD). We define recD of type

(P : (x̄ : D)→ Seti)(p : (x̄ : D)→ BelowD P x̄→ P x̄)(x̄ : D)→ P x̄ (4.24)

by recD P p x̄ := p x̄ (belowD P p x̄).

Construction of belowD. To construct belowD P p, we apply elimD with the
motive BelowD P . The method mi is required to have type

mi : (t̄ : ∆i)(x1 : Φi,1 → D v̄i,1) . . . (xni : Φi,ni → D v̄i,ni)
→ (h1 : (s̄1 : Φi,1)→ BelowD P v̄i,1 (x1 s̄1))→ . . .
→ (hni

: (s̄ni
: Φi,ni

)→ BelowD P v̄i,ni
(xni

s̄ni
))

→ BelowD P ūi (ci t̄ x1 . . . xni
)

(4.25)

that we construct as follows:

mi t̄;x1; . . . ;xni
;h1; . . . ;hni

= λs̄1. (h1 s̄1, p v̄i,1 x1 (h1 s̄1)), . . . ,
λs̄ni

. (hni
s̄ni

, p v̄i,ni
xni

(hni
s̄ni

)) (4.26)

Example 4.12. The function belowTree encodes proof by complete induction
on trees: if we can give a step function s that proves BelowTree P t implies P t
for any tree t, then belowTree P s is a proof that BelowTree P t holds for any t.
The recursion operator recTree P s applies the step function s one more time
to conclude P t for any tree t.

Lemma 4.13. Let x : D ū and y : D v̄ such that y ≺ x and let π :
BelowD P ū x → P v̄ y be the projection given by Lemma 4.8. For any
P : (x̄ : D) → Seti and p : (x̄ : D) → BelowD P x̄ → P x̄, we have the
definitional equality:

π (belowD P p ū x) = recD P p v̄ y (4.27)

112 BACK TO ELIMINATORS

Proof. We prove this by induction on the derivation of y ≺ x. There are two
cases: either y is (an application of) a direct subterm of x, or y is a subterm of
a direct subterm of x. In both cases, x is of the form c t̄ x1 . . . xn : D ū, so by
definition of belowD we have

belowD P p ū (c t̄ x1 . . . xn)
= λs̄1. (belowD P p v̄1 (x1 s̄1), p v̄1 x1 (belowD P p v̄1 (x1 s̄1))), . . . ,

λs̄n. (belowD P p v̄n (xn s̄n), p v̄n xn (belowD P p v̄n (xn s̄n)))
(4.28)

In the first case y is (an application of) a direct subterm of x, i.e. y = xi w̄,
so π H = π2 (πi H w̄) = p v̄i xi (belowD P p v̄ (xi w̄)) = recD P p v̄ (xi w̄) =
recD P p v̄ y.

In the second case, we have y ≺ xi, so π H = π′ (π1 (πi H)) =
π′ (belowD P p v̄i xi) where π′ : BelowD P v̄i xi → P v̄ y. By induction,
we have π′ (belowD P p v̄i xi) = recD P p v̄ y.

4.1.3 No confusion

To perform case analysis on a variable whose indices are not fully general, we
apply unification. Two of the unification rules, injectivity and conflict, are
instances of a more general principle known as ‘no confusion’. In this section,
we construct this principle internally as an equivalence noConfD.

As for structural recursion, we first define an auxiliary type in order to give a
general type to noConfD.
Lemma 4.14 (NoConfusionD). We have a type NoConfusionD : D→ D→ Setd
such that

NoConfusionD (ū; ci s̄) (v̄; ci t̄) = s̄ ≡∆i
t̄

NoConfusionD (ū; ci s̄) (v̄; cj t̄) = ⊥ (when i 6= j) (4.29)

On the diagonal (where we have two times the same constructor), NoConfusionD
only requires s̄ ≡∆c t̄. From this it follows that ū ≡Ξ v̄ as well, since the indices
are determined by the choice of constructor and its arguments.
Example 4.15. For the Tree datatype, NoConfusion t1 t2 is defined as follows:

NoConfusion : Tree→ Tree→ Set
NoConfusion leaf leaf = >
NoConfusion leaf (node l r) = ⊥
NoConfusion (node l r) leaf = ⊥
NoConfusion (node l1 r1) (node l2 r2) = (l1 ≡Tree l2) × (r1 ≡Tree r2)

(4.30)

BASIC CONSTRUCTIONS ON CONSTRUCTORS 113

Construction of NoConfusionD. We apply caseD with the motive λ _. D →
Seti. For each method mi x̄, we apply caseD again with motive λ_ → Set.
This gives us k2 methods mi,j to fill in, one for each pair of constructors. On
the diagonal (where i = j) we define mii = λx̄; x̄′. x̄ ≡∆i

x̄′, and if i 6= j we
give mi,j = λx̄; x̄′. ⊥.

Lemma 4.16 (noConfD). We have an equivalence

noConfD : (x̄ ȳ : D)→ (x̄ ≡D ȳ) ' NoConfusionD x̄ ȳ (4.31)

Moreover, for any constructor c : ∆ → D ū and s̄, s̄′ : ∆, this equivalence
satisfies noConfD

−1 (ū[∆ 7→ s̄]; c s̄) (ū[∆ 7→ s̄′]; c s̄′) = dcong (λx̄. (ū; c x̄)).

Example 4.17. For Tree, the function noConfTree gives for any two trees s
and t that are equal a proof of NoConfusionTree s t:

noConfTree : (s t : Tree)→ (s ≡Tree t) ' NoConfusionTree s t (4.32)

If s and t are of the form node l1 r1 and node l2 r2 respectively, then this gives
us the injectivity rule (node l1 r1 ≡Tree node l2 r2) ' (l1 ≡Tree l2 × r1 ≡Tree r2).
On the other hand, if s is of the form leaf and t is of the form node l r, then
we get the conflict rule (leaf ≡Tree node l r) ' ⊥.

Construction of noConfD. First, we define the left-to-right function noConfD ā b̄.
To do this, we apply telescopic substitution subst with motive NoConfusionD ā.
This reduces the problem to finding a function of type

(ā : D)→ NoConfusionD ā ā (4.33)

But this can be done using caseD with motive λ ā. NoConfusionD ā ā, filling in
refl for each method mi x̄.

For the inverse noConfD
−1 ā b̄, we need to do a little more work. First, we

apply caseD twice as in the definition of NoConfusionD. Now we are left to give
methods

mi,j : NoConfusionD (ūi; ci x̄) (ū′j ; cj x̄
′)→ ūi (ci x̄) ≡D ū

′
j (cj x̄

′) (4.34)

When i 6= j, this is easy: we get an element of type ⊥ from NoConfusionD, from
which we can conclude anything. On the diagonal (where i = j) we get a proof
of x̄ ≡∆i

x̄′. Applying dcong to this equality gives us (ūi; ci x̄) ≡D (ū′i; ci x̄
′),

which is what we need.

Next, we prove that this is a left inverse by constructing a function of type

(ā b̄ : D)(ē : ā ≡D b̄)→ noConfD
−1 ā b̄ (noConfD ā b̄ ē) ≡ā≡Db̄

ē (4.35)

114 BACK TO ELIMINATORS

By J, it is sufficient to give a function of type

(ā : D)→ noConfD
−1 ā ā (noConfD ā ā refl) ≡ā≡Dā

refl (4.36)

But this we can do by applying caseD with methods mi x̄ = refl.

All that’s left to do is to prove that it is a right inverse as well. To construct
the proof isRinv that

(ā b̄ : D)(e : NoConfusionD ā b̄)→ noConf ā b̄ (noConf-1 ā b̄ e) ≡NoConfusionD ā b̄
e

(4.37)
we first apply case analysis on ā and b̄. In the cases where we have two distinct
constructors ci and ck, we have e : ⊥ so we can conclude by elim⊥. In the
diagonal cases we have e : s̄ ≡∆i

t̄. Eliminating these equations with J leaves
us with the goal refl ≡s̄≡∆i

s̄ refl, which we solve by giving refl.

4.1.4 Acyclicity

The final property of datatypes we need is acyclicity: a term can never be
structurally smaller than itself. This property is used for implementing the
cycle detection rule of the unification algorithm. Internally, it is represented
by the term noCycleD. To express its type, we first define what it means for a
term to (not) be structurally smaller than some other term.
Lemma 4.18 (6<D). We have a type _ 6<D _ : D → D → Setd such that for
any x : D ū and y : D v̄ with x ≺ y, we have x 6<D y → ⊥. We also define
ā 6≤D b̄ := ā 6<D b̄ × ā 6≡D b̄.

If x : D ū and y : D v̄ then we often leave the indices implicit and write x 6<D y
and x 6≤D y instead of (ū;x) 6<D (v̄; y) and (ū;x) 6≤D (v̄; y).
Example 4.19. The type x 6<Tree t expresses that x is not a subtree of t. In
particular, we have the following equalities:

x 6<Tree leaf = >
x 6<Tree (node l r) = ((x 6<Tree l) × (x 6≡Tree l)) × ((x 6<Tree r) × (x 6≡Tree r))

(4.38)

Construction of 6<D. We define 6<D in terms of BelowD:

ā 6<D b̄ := BelowD (λb̄′. ā 6≡ b̄′) b̄ (4.39)

By definition of BelowD, we have a projection π : (ū;x) 6<D (v̄; y) → (ū;x) 6≡D
(ū;x) whenever x ≺ y. Filling in refl for the proof of (ū;x) 6≡D (ū;x) gives us
the desired proof of x 6<D y → ⊥.

BASIC CONSTRUCTIONS ON CONSTRUCTORS 115

Now we can state the property that no term can be structurally smaller than
itself.

Lemma 4.20 (noCycleD). We have a function noCycleD : (ā b̄ : D) → ā ≡D
b̄→ ā 6<D b̄.

Example 4.21. noCycleTree is the proof that no tree can ever be a subtree of
itself, i.e. every well-typed tree is well-founded.

Construction of noCycleD. 1 Note that

x 6<D ci t̄ x1 . . . xni = ((s̄1 : Φi,1)→ x 6≤D x1 s̄1) × . . .
× ((s̄ni : Φi,ni)→ x 6≤D xni s̄ni)

(4.40)

by definition of BelowD and 6≤D. Now to construct noCycleD, we start by
eliminating the equation ā ≡D b̄ using J, which leaves us the goal (ā : D)→ ā 6<D ā.
Next we apply caseD with motive λā. ā 6<D ā, producing for each constructor
ci : ∆i → (Φi,1 → D v̄i,1)→ . . .→ (Φi,ni

→ D v̄i,ni
)→ D ūi the subgoal

(t̄ : ∆i)(x1 : Φi,1 → D v̄i,1) . . . (xni
: Φi,ni

→ D v̄i,ni
)→

(h1 : (s̄1 : Φi,1)→ x1 s̄1 6<D x1 s̄1) . . .
(hni

: (s̄ni
: Φi,ni

)→ xni
s̄ni
6<D xni

s̄ni
)→

ci t̄ x1 . . . xni 6<D ci t̄ x1 . . . xni

(4.41)

To continue, we define the auxiliary types Stepi,j for i = 1, . . . , k and j =
1, . . . , ni as follows:

Stepi,j : (t̄ : ∆i)(x1 : Φi,1 → D v̄i,1) . . . (xni
: Φi,ni

→ D v̄i,ni
)→

(s̄ : Φi,j)(ā : D)→ Setd
Stepi,j t̄ x1 . . . xni s̄ (ū; b) = (xj s̄) 6<D b→ (ci t̄ x1 . . . xni) 6≤D b

(4.42)

In what follows, we will construct

stepi,j : (t̄ : ∆i)(x1 : Φi,1 → D v̄i,1) . . . (xni : Φi,ni → D v̄i,ni)→
(s̄ : Φi,j)(ā : D)→ Stepi,j t̄ x1 . . . xni

Φi,j ā
(4.43)

Once this is done, we solve the subgoal (4.41) by filling in

λt̄;x1; . . . ;xni
;h1; . . . ;hni

.
(λs̄1. stepi,1 t̄ x̄ s̄1 (v̄i,1; (x1 s̄1)) (h1 s̄1)), . . . ,
(λs̄ni . stepi,ni t̄ x̄ s̄ni (v̄i,ni ; (xni s̄ni)) (hni s̄ni))

(4.44)

So we only need to construct stepi,j.
1Warning: understanding this construction will permanently make you a little less sane.

116 BACK TO ELIMINATORS

The construction of stepi,j t̄ x1 . . . xni
s̄ : (ā : D) → Stepi,j t̄ x1 . . . xni

s̄ ā
proceeds by applying elimD with the motive Stepi,j t̄ x1 . . . xni

s̄. The new
subgoals are of the form

(t̄′ : ∆p)(x′1 : Φp,1 → D v̄′p,1) . . . (x′np
: Φp,np

→ D v̄′p,np
)→

(h′1 : (s̄′1 : Φp,1)→ Stepi,j t̄ x1 . . . xni
s̄ v̄′p,1 (x′1 s̄′1)) . . .

(h′np
: (s̄′np

: Φp,np)→ Stepi,j t̄ x1 . . . xni s̄ v̄
′
p,np

(x′np
s̄′np

))→
Stepi,j t̄ x1 . . . xni

s̄ ū′p (cp t̄
′ x′1 . . . x′np

)

(4.45)

We solve them by giving:

λt̄′;x′1; . . . ;x′np
;h′1; . . . ;h′np

;H. α, β (4.46)

where we still have to construct

α : (ūi; ci t̄ x1 . . . xni
) 6<D (ū′p; cp t̄

′ x′1 . . . x′np
) (4.47)

and
β : (ūi; ci t̄ x1 . . . xni

) 6≡D (ū′p; cp t̄
′ x′1 . . . x′np

) (4.48)

We have H : xj s̄ 6<D cp ∆′p x′1 . . . x′np
or, by definition of 6<D, H =

(H1, . . . ,Hnp
) where Hq : (s̄′ : Φ′pq) → xj s̄ 6≤D x

′
q s̄
′. The construction of α

reduces to the construction of components αq : (s̄′ : Φ′p,q)→ ci t̄ x1 . . . xni
6≤D

x′q s̄
′. But these we can give as αq = λs̄′. h′q s̄

′ (π1 (Hp s̄
′)).

For constructing β, we assume (ūi; ci t̄ x1 . . . xni
) ≡D (ū′p; cp t̄

′ x′1 . . . x′np
) and

derive an element of ⊥. By noConfD, it suffices to consider the case where i = p
and (t̄;x1; . . . ;xni

) = (t̄′;x′1, . . . , x′np
). But then we have Hj s̄ : xj s̄ 6≤D xj s̄,

hence π2 (Hj s̄) refl : ⊥. This finishes the construction of noCycleD.

4.2 Two useful techniques

In this section, we discuss two useful and general techniques that are used for
the translation of definitions by pattern matching to eliminators: basic analysis
and specialization by unification.

4.2.1 Basic analysis

A Ψ-elimination operator returns something of type (t̄ : Ψ)→ P t̄ when given
a motive P : Ψ → Setj . However, we often need a return type where the
arguments ū are more specialized. For example, we may want to construct a

TWO USEFUL TECHNIQUES 117

function of type (k : N)(y : k ≤ zero)→ zero ≡N k. Applying case≤ directly
to y : k ≤ zero doesn’t work as this leads to a loss of the information that the
second index of y is zero. McBride (2002) solves this problem by adding the
constraints on the indices as additional arguments to the motive P , and filling
in refl as soon as the constraints are satisfied. This technique is called basic
analysis.

Definition 4.22 (Basic analysis). Let elim be any Ψ-elimination operator, i.e.
it has a type of the form:

(P : Ψ→ Seti)→
(m1 : ∆1 → P s̄1) . . . (mn : ∆n → P s̄n)→
(t̄ : Ψ)→ P t̄

(4.49)

Consider some problem of type ∆→ T where ∆ ` t̄ : Ψ. The basic elim-analysis
of T at t̄ is the term

λm1; . . . ;mn; x̄. elim (λs̄. ∆→ s̄ ≡Ψ t̄→ T) m1 . . . mn t̄ x̄ refl (4.50)

of type

(m1 : ∆1∆→ s̄1 ≡Ψ t̄→ T) . . . (mn : ∆n∆→ s̄n ≡Ψ t̄→ T)→ ∆→ T
(4.51)

Basic analysis is used throughout the proof of Theorem 4.27: once with recD
for structural recursion, and once with caseD for each case split.

Example 4.23. The basic case≤-analysis of zero ≡N k at (k; zero; y) has
type

(mlz : (m : N)(k : N)(y : k ≤ zero)→
(zero;m; lz m) ≡(m n:N)(x:m≤n) (k; zero; y)→ zero ≡N k)

(mls : (m n : N)(x : m ≤ n)(k : N)(y : k ≤ zero)→
(suc m; suc n; ls m n x) ≡(m n:N)(x:m≤n) (k; zero; y)→ zero ≡N k)→

(k : N)→ k ≤ zero→ zero ≡N k
(4.52)

To finish the proof that k ≤ zero→ zero ≡N k, we still need to give the two
arguments mlz and mls, which we do in the next section.

4.2.2 Specialization by unification

Specialization by unification allows us to construct functions of the form
m : (x̄ : Γ)(ē : ū ≡∆ v̄) → T x̄ ē, for example the functions of mlz and mls
from Example 4.23. It can be seen as a generic method of constructing an
inversion principle (McBride, 1998b).

118 BACK TO ELIMINATORS

Definition 4.24 (Specialization by unification). Consider a problem of the
form m : (x̄ : Γ)(ē : ū ≡∆ v̄) → T x̄ ē and suppose that unification of ū with
v̄ with Γ as flexible variables succeeds either positively or negatively, then we
construct the function m:

• In case the unification succeeds positively with most general unifier
f : Γ(ē : ū ≡∆ v̄) ' Γ′, then we define

m x̄ ē = subst T (isLinv f x̄ ē) (ms (f x̄ ē)) (4.53)

with the new subgoal of constructing ms : (x̄′ : Γ′)→ T (linv f x̄′).

• In case the unification succeeds negatively with disunifier f : Γ(ē : ū ≡∆
v̄) ' ⊥, then we have

m x̄ ē = elim⊥ (T x̄ ē) (f x̄ ē) (4.54)

with no additional assumptions.

Example 4.25. We apply specialization by unification to construct the methods
mlz and mls from Example 4.23.

In case of mlz, unification of ū = (zero;m; lz m) with v̄ = (k; zero; y) in
the context Γ = (m : N)(k : N)(y : k ≤ zero) results in a positive success
with most general unifier f : Γ(ū ≡(m n:N)(x:m≤n) v̄) ' () with f−1 () =
(zero; zero; lz zero; refl), so specialization by unification gives us the function
mlz on the condition we can construct mlz

s : zero ≡N zero, which we can do
easily as mlz

s = refl.

For mls, unification of ū = (suc m; suc n; ls m n x) with v̄ = (k; zero; y)
results in a negative success, so specialization by unification gives us the function
mls without any additional assumptions.

When applying specialization by unification to construct a functionm : (x̄ : Γ)→
(ē : ū ≡∆ v̄)→ T x̄ ē from the subgoal ms : (x̄′ : Γ′)→ T (linv f x̄′) we expect
m to have ‘the same’ computational behaviour as ms in case the equations
ū ≡∆ v̄ are actually satisfied. This is the content of the following lemma.

Lemma 4.26. If f is a strong unifier (Definition 3.45), then the function m
constructed through specialization by unification satisfies the definitional equality
m (f−1 x̄′) = ms x̄′ for any x̄′ : Γ′.

Proof. Remember that for a strong unifier f , linv f and rinv f are
definitionally equal, so it is fine to write f−1 here. By the first property
of a strong unifier, we have f−1 x̄′ = (s̄; refl) for some s̄ : Γ. By the third

FROM PATTERN MATCHING TO ELIMINATORS 119

property, this implies that isLinv f (f−1 x̄′) = refl. By the fourth property,
we also have f (f−1 x̄′) = x̄′. So we have

m (f−1 x̄′) = subst T (isLinv f (f−1 x̄′)) (ms (f (f−1 x̄′)))
= subst T refl (ms x̄′)
= ms x̄′

(4.55)

The fact that m (t̄ refl) evaluates to ms (f t̄ refl) ensures that the
computational behaviour corresponds to the clause written by the user, as
we will see in the next section.

4.3 From pattern matching to eliminators

In this section, we prove our main theorem showing that definitions by dependent
pattern matching satisfying our criterion can be translated to type theory with
universes and inductive families, without using K or any other axioms.

Theorem 4.27. Let f : (t̄ : ∆) → T be a function given by a valid case tree,
adhering to the following two restrictions:

• For each case split in the case tree on a variable x : D ū and for each
constructor c : ∆c → D v̄ of D, we have either a positive unifier of type
Γ(ē : ū ≡Φ v̄) ' Γ′ or a negative unifier of type Γ(ē : ū ≡Φ v̄) ' ⊥.

• When checking termination of a function by pattern matching, the type of
the argument on which the function is structurally recursive is of the form
D ū where D is a datatype.

Then we can construct a term f’ : (t̄ : ∆) → T constructed from eliminators
only.

Example 4.28. As an example, we translate the definition of antisym
(Example 1.12) to eliminators. We start from the case tree for antisym given
in Figure 2.9. We follow the general procedure for translating a case tree to
eliminators, so the result will be more complex than the version of antisym
given in Example 1.19.

We start with the goal of constructing a function

antisym’ : (m n : N)(x : m ≤ n)(y : n ≤ m)→ m ≡N n (4.56)

120 BACK TO ELIMINATORS

First, we choose an argument on which the definition is structurally recursive.
Since antisym is structurally recursive on all four arguments, we arbitrarily
choose the third one. By basic rec≤-analysis of m ≡N n at (m;n;x), it is
sufficient to construct a function

antisymr : (m′ n′ : N)(x′ : m′ ≤ n′)→ Below≤ P m′ n′ x′

→ (m n : N)(x : m ≤ n)(y : n ≤ m)
→ (m′;n′;x′) ≡≤ (m;n;x)→ m ≡N n

(4.57)

where P m′ n′ x′ = (m n : N)(x : m ≤ n)(y : n ≤ m) → (m′;n′;x′) ≡≤
(m;n;x) → m ≡N n. By applying J to the equations m′;n′;x′ ≡≤ m;n;x, it
suffices to construct a function

antisyms : (m n : N)(x : m ≤ n)(y : n ≤ m)→ Below≤ P m n x→ m ≡N n
(4.58)

Compared to the original goal, we have gained the ability to make recursive
calls by using the argument of type Below≤ P m nx.

Now we follow the case tree of antisym. By basic case≤-analysis of
Below≤ P m n x→ m ≡N n at (m;n;x), it suffices to construct two functions:

mlz : (k m n : N)(x : m ≤ n)(y : n ≤ m)
→ (zero; k; lz k) ≡≤ (m;n;x)
→ Below≤ P m nx→ m ≡N n

(4.59)

and

mls : (k l : N)(w : k ≤ l)(m n : N)(x : m ≤ n)(y : n ≤ m)
→ (suc k; suc l; ls k l w) ≡≤ (m;n;x)
→ Below≤ P m nx→ m ≡N n

(4.60)

For both goals, we apply specialization by unification on the equations
(zero; k; lz k) ≡≤ (m;n;x) and (suc k; suc l; ls k l w) ≡≤ (m;n;x)
respectively. Unification succeeds positively in both cases, leaving us with
the two new goals of constructing

ms
lz : (n : N)(y : n ≤ zero)→ Below≤ P zero n (lz n)→ zero ≡N n (4.61)

and
ms

ls : (k l : N)(w : k ≤ l)(y : suc l ≤ suc k)
→ Below≤ P (suc k) (suc l) (ls k l w)
→ suc k ≡N suc l

(4.62)

We handle each of these two goals in turn.

FROM PATTERN MATCHING TO ELIMINATORS 121

• To construct ms
lz, we again apply basic case≤-analysis of

Below≤ P zero n (lz n)→ zero ≡N n (4.63)

at (n; zero; y), resulting in two subgoals

mlzlz : (k′ n : N)(y : n ≤ zero)→ (zero; k′; lz k′) ≡≤ (n; zero; y)
→ Below≤ P zero n (lz n)→ zero ≡N n

(4.64)
and

mlzls : (k′ l′ : N)(w′ : k′ ≤ l′)(n : N)(y : n ≤ zero)
→ (suc k′; suc l′; ls k′ l′ w′) ≡≤ (n; zero; y)
→ Below≤ P zero n (lz n)→ zero ≡N n

(4.65)

We apply specialization by unification on the equations in both subgoals.
The first one ends in a positive success, resulting in the subgoal

ms
lzlz : Below≤ P zero zero (lz zero)→ zero ≡N zero (4.66)

which we solve by giving the right-hand side of the first clause: mlzlz =
λ_. refl. The second one ends in a negative success, so it is solved
without any new subgoals.

• To construct ms
ls, we once more apply basic case≤-analysis of

Below≤ P (suc k) (suc l) (ls k l w)→ suc k ≡N suc l (4.67)

at (suc l; suc k y) resulting in two subgoals

mlslz : (k′ k l : N)(w : k ≤ l)(y : suc l ≤ suc k)
→ (zero; k′; lz k′) ≡≤ (suc l; suc k y)
→ Below≤ P (suc k) (suc l) (ls k l w)
→ suc k ≡N suc l

(4.68)

and

mlsls : (k′ l′ : N)(w′ : k′ ≤ l′)(k l : N)(w : k ≤ l)(y : suc l ≤ suc k)
→ (suc k′; suc l′; ls k′ l′ w′) ≡≤ (suc l; suc k; y)
→ Below≤ P (suc k) (suc l) (ls k l w)
→ suc k ≡N suc l

(4.69)
We apply specialization on the equations in both subgoals. The first one
ends in a negative success, so it is solved without any subgoals. The

122 BACK TO ELIMINATORS

second one ends in a positive success, allowing us to construct mlsls from
the subgoal

ms
lsls : (k l : N)(w : k ≤ l)(w′ : l ≤ k)

→ Below≤ P (suc k) (suc l) (ls k l w)
→ suc k ≡N suc l

(4.70)

Because w ≺ ls k l w, we get by definition of Below≤ a projection π :
Below≤ P (suc k) (suc l) (ls k l w)→ P k l w. We use this projection to
translate the recursive call in the definition of antisym. More specifically,
we define ms

lsls = λk; l;w;w′;H. cong suc (π H k l w w′ refl).

There are no more subgoals to fill in, so this finishes the construction of the
translated function antisym’.

We now construct the translated function in general.

Construction. Let f : (t̄ : ∆) → T be the function given by a structurally
recursive case tree we want to translate to eliminators. Then f is structurally
recursive on some tj : D v̄, the jth variable in ∆, where D is a datatype. The
basic recD-analysis of T at (v̄; tj) allows us to construct f’ from a function fr

of type

fr : (x̄ : D)→ BelowD P x̄→ (t̄ : ∆)→ x̄ ≡D (v̄; tj)→ T (4.71)

where P : D → Seti is defined as P x̄ = (t̄ : ∆) → x̄ ≡D (v̄; tj) → T . More
explicitly, we define f’ by f’ t̄ = recD P fr (v̄; tj) t̄ refl.

To construct fr, we first move the argument of type BelowD P x̄ to after (t̄ : ∆)
and then apply J on the equations x̄ ≡D (v̄; tj). This simplifies the goal to
constructing fs of type

fs : (t̄ : ∆)→ BelowD P v̄ tj → T (4.72)

Note that fs may make ‘recursive calls’ on arguments structurally smaller than
tj using its argument of type BelowD P v̄ tj .

To construct fs, we proceed by induction on the structure of f’s case tree. So
suppose that we have arrived at some node with label [Θ]p̄. Then we construct
m : Θ→ BelowD P (v̄; tj)τ → Tτ where τ = [∆ 7→ dp̄e]. At the root node, we
have Θ = ∆ and p̄ = x̄ and m = fs. There are two cases:

FROM PATTERN MATCHING TO ELIMINATORS 123

Internal node. In this case, the telescope is split on some variable y where
Θ = Θ1(y : D′ v̄y)Θ2 and D′ is an inductive family. The basic caseD′-
analysis of BelowD P (v̄; tj)τ → Tτ at (v̄y; y) has type

. . .
→ (mc : (s̄ : ∆c)→ Θ→ (ūs; c s̄) ≡D (v̄y; y)→ BelowD P (v̄; tj)τ → Tτ)
→ . . .
→ Θ→ BelowD P (v̄; tj)τ → Tτ

(4.73)
where there is one method mc for each constructor c : (s̄ : ∆c)→ D′ ūs.
To construct the methods mc, we apply specialization by unification on
the equations (ūs; c s̄) ≡D (v̄y; y), which succeeds either positively or
negatively by the definition of a valid case tree (Definition 2.20). For each
c with a positive success, we have to deliver a

ms
c : Θ′ → BelowD P (v̄; tj)τσ → Tτσ (4.74)

where f : (s̄ : ∆c)Θ(ē : (ūs; c s̄) ≡D (v̄y; y)) ' Θ′ is the most general
unifier found by unification and σ is given by restricting the codomain of
f−1 to Θ. The inductive hypothesis for the subtree corresponding to the
constructor c gives us exactly such a function. For each c with a negative
success, we get the function mc without any additional hypotheses.

Leaf node. At each leaf node, we have the right-hand side ∆ ` e : Tτ . We
want to instantiate m = λs̄;H. e, but e may still contain recursive calls
to f. We first have to replace these recursive calls by appropriate calls
to H : BelowD P (v̄; tj)τ . So consider a recursive call f r̄ in e. Since f
is structurally recursive on its jth argument, we have rj ≺ dpje where
rj : D w̄. By construction of BelowD, we have a projection π such that
π H : (t̄ : ∆) → (w̄; rj) ≡D (v̄; tj) → T . Hence we define e′ by replacing
f r̄ by π H r̄ refl : T [∆ 7→ r̄] in e, and take m = λs̄;H. e′.

By induction, we now have the required fs : BelowD P v̄ x→ (t̄ : ∆)→ T , thus
finishing the construction of f’.

4.3.1 Computational behaviour of the translated function

What’s left to prove is that when f t̄ = u, we also have f’ t̄ = {u}f7→f’.

Theorem 4.29. Let f : (t̄ : ∆)→ T be a function satisfying the requirements
of Theorem 4.27 and let f’ be the translated version of f given by that theorem.
Suppose moreover that all the positive unifiers used in constructing the case tree

124 BACK TO ELIMINATORS

of f are strong unifiers. Define {e}f7→f’ by replacing all occurrences of f by f’
in e. Then f’ satisfies f’ t̄ = {u}f7→f’ whenever f t̄ = u, i.e. it has the same
reduction behaviour as f.

Proof. First, for any t̄ : ∆ we have

f’ t̄ = recD P fr (v̄; tj) t̄ refl
= fr (v̄; tj) (belowD P fr (v̄; tj)) t̄ refl
= fs t̄ (belowD P fr (v̄; tj))

(4.75)

by definition of recD and fr.

Now consider a clause
f p̄ = e (4.76)

with pattern variables Θ at a leaf node of f’s case tree. By construction of the
case tree, we have

p̄ = x̄0[Θ0 7→ (f−1
1 x̄1)|Θ0] · · · [Θn−1 7→ (f−1

n x̄n)|Θn−1] (4.77)

where fi : (s̄ : ∆c)Θi(ē : (ūs; c s̄) ≡D (v̄y; y)) ' Θi+1 is the most general unifier
computed at the ith node on the path from the root to the leaf corresponding
to this clause, x̄i are pattern variables of type Θi, Θ0 = ∆ and Θn = Θ.

To determine the computational behaviour of fs applied to dp̄e, we show by
induction on i that fs dp̄ie = mi x̄i where mi is the function m constructed at
the ith node on the path and

p̄i = x̄0[Θ0 7→ (f−1
1 x̄1)|Θ0] · · · [Θi−1 7→ (f−1

i x̄i)|Θi−1] (4.78)

is the label at that node.

• In the base case we have i = 0, mi = fs, and p̄0 = x̄0 : ∆, so we have
fs dp̄0e = mi x̄0 without taking any evaluation steps.

• For the induction step we have p̄i+1 = p̄i[Θi 7→ (f−1
i+1 x̄i+1)|Θi

], hence
fs dp̄i+1e = mi x̄i[Θi 7→ (f−1

i+1 x̄i+1)|Θi
] = mi ((f−1

i+1 x̄i+1)|Θi
) by the

induction hypothesis. So it is sufficient to prove that

mi ((f−1
i+1 x̄i+1)|Θi

) = mi+1 x̄i+1 (4.79)

By definition of mi, we have

mi x̄ = caseD (λz̄. Θ→ z̄ ≡D′ (v̄y; y)→ BelowD P (v̄; tj)τ → Tτ)
. . . mc . . . (v̄y; y) x̄ refl

(4.80)

FROM PATTERN MATCHING TO ELIMINATORS 125

where mc is defined by specialization by unification from mc
s = mi+1. By

construction of the strong unifier fi+1, we have that (f−1
i+1 x̄i+1) is of the

form (s̄; (t̄1; c s̄; t̄2); refl), so we have

mi ((f−1
i+1 x̄i+1)|Θi

) = mi t̄1 (c s̄) t̄2
= mc s̄ (t̄1; c s̄; t̄2) refl
= mc (f−1

i+1 x̄i+1)
= mi+1 x̄i+1

(4.81)

where the final equality follows from Lemma 4.26 and the fact that
ms

c = mi+1 by definition.

This completes the induction, so in particular we have fs dp̄e = fs dp̄ne =
mn x̄n.

For each recursive call f r̄ in e, we apply Lemma 4.13 to get:

π (belowD P fr (v̄; tj)) r̄ refl
= fr (w̄; rj) (belowD P fr (w̄; rj)) r̄ refl
= fs r̄ (belowD P fr (w̄; rj)) = f’ r̄

(4.82)

Finally, we are now ready to compute f’ dp̄e:

f’ dp̄e = fs dp̄e (belowD P fr ū dpje)
= mn x̄n (belowD P fr ū dpje)
= e′[H 7→ belowD P fr ū dpje]
= {e}f7→f’

(4.83)

Hence we conclude that whenever f t̄ = u, we also have f’ t̄ = {u}f7→f’, as we
wanted to prove.

Chapter 5

Conclusion

Look at me still talking when there’s Science to do.

— GLaDOS (2007)

Dependent pattern matching is a powerful yet intuitive tool for writing readable
programs and proofs in a dependently typed language. This thesis shows how
to implement it without relying on any axioms beyond standard dependent
type theory. This allows everyone to use dependent pattern matching in their
favourite variant of type theory, be it homotopy type theory, syntactic type
theory, classical logic, or something else.

During the development of the proof-relevant unification algorithm that is
used for case analysis, we present unification rules as terms internal to the
object type theory. Thus the type system itself enforces the correctness of these
unification rules. Moreover, this lets us extend the unification algorithm with
new principles in a safe and modular way. For example, we showed how to add
two new unification rules for η-equality of record types. As another example,
higher-dimensional unification augments the power of the injectivity rule by
allowing us to skip unification of forced arguments, yet would be impossible to
even formulate for an untyped unification algorithm. So we use the power of
dependent types to improve the state of dependently typed programming itself.

The impact of our work is most visible when you take dependently typed
programming seriously: it makes it as easy to write programs on dependently
typed data structures as it is on simply typed ones. It does so by offloading the
mechanical part of reasoning about equality proofs to the unification algorithm,
freeing you to think about the essential parts. So it allows you to write programs

127

128 CONCLUSION

with more interesting and expressive types without paying an extra price in
complexity.

Having an elegant theoretical framework for unification also helped us a lot when
implementing it in practice. As a result, the implementation of our algorithm
for Agda has become cleaner, more robust, and more easily extensible. We hope
this will also be the case for implementers of other dependently typed languages,
as it has already been for the Lean theorem prover and the Equations package
for Coq.

The path forward for dependently typed programming is long, but with the
push for dependent types in more mainstream languages like Haskell, the future
is bright. One day, I dare to say, it will be no harder to write a provably correct
dependently typed program than it is to write a simply typed one.

5.1 Discussion and future work

This thesis wouldn’t be a work of science if there weren’t a lot of questions left
to be answered and things left to be done. In this section we list some of the
questions we think could lead to interesting new work in the future.

Other applications of proof-relevant unification

In this work, we focus on one application of proof-relevant unification, namely
specialization by unification and its role in the compilation of dependent pattern
matching. However, we believe firmly that it could also be applied elsewhere,
for example for metaprogramming, tactic systems, or perhaps even dependently
typed logic programming.

More unification rules

It would be interesting to further explore the correspondence between unification
rules and new features of type theory. For example, it seems that E-unification
(unification modulo a set of equations) could correspond to new unification
rules for higher inductive types from HoTT. As another example, higher-
order (pattern) unification could correspond to functional extensionality as a
unification rule. And since the univalence axiom is itself an equivalence, maybe
it could be seen as a unification rule as well?

DISCUSSION AND FUTURE WORK 129

Custom unification rules

We can put the power of unification in the hands of the user by allowing them
to define custom unification rules in the form of hints (Asperti et al., 2009).
For example, if the user provides a proof of (f x ≡B f y) ' (x ≡A y) for some
function f : A → B, then this could be used as an injectivity rule for f by
the unifier. Two problems prevent us from allowing user-provided unification
rules in our current Agda implementation: these instances might contain free
meta-variables, and they might not be strong unification rules.

We see two possible approaches of how to allow custom unification rules to
be provided by the user without breaking soundness. The first one is to
actually perform the desugaring of pattern matching to eliminators, so the
user-provided unification rule can be incorporated into the resulting term. The
resulting desugared functions would be type-safe, but their computational
behaviour would naturally depend on the computational behaviour of the user-
provided unification rules. As a result, the function clauses would not hold
definitionally. The second possibility is to implement a check that the user-
provided unification rule is actually a strong one and that it doesn’t contain any
unsolved metavariables. We think it could be interesting to investigate whether
such a solution would be useful in practice.

Partial unification

When the unification algorithm gets stuck at some point before solving all
equations, there can still be some value in the partial unifier it has constructed
so far. So it would make sense to provide this partial unifier to the user, so they
can handle the remaining equations by hand. To do so, the syntax for patterns
would have to be extended so that the remaining equality proofs can be bound.

Example 5.1. Let l : N → N be an arbitrary function, then we could allow
the user to define a function f : (n : N)→ Vec A (l n)→ T as follows:

f : (m : N)→ Vec A (l m)→ T
f m (nil[e1]) = . . .
f m (cons[e2] n x xs) = . . .

(5.1)

where e1 : l m ≡N zero and e2 : l m ≡N suc n.

One difficulty here is ensuring that the clauses still hold as definitional equalities
in the presence of partial unifiers.

130 CONCLUSION

Unifiers versus strong unifiers

Not all unification rules satisfy the definition of a strong unification rule. In
particular, when we construct the deletion rule for natural numbers (deletionN :
(n ≡N n) ' ()) using the standard eliminator for N, the result will not be strong.
For example, we have isLinv deletionN refl = refl when n is a closed
natural number (zero, suc zero, . . .) but not when it is a variable from the
context.

It is possible to use non-strong unification rules like this with our unification
algorithm, but of course then the resulting unifier won’t be a strong one. This
is for example the approach taken by the Equations package for Coq. This
means that the equations given in a definition by pattern matching will hold
propositionally for the translated version of the function, but not definitionally.
In our own implementation, we have instead chosen to require that all unification
rules are strong, so we can’t use unification rules like deletionN but in return
we can guarantee that all clauses will hold as definitional equalities.

Unification rules beyond equivalences

You may wonder why we require every unification rule to be an equivalence.
At first sight, this seems to be too strict if there are no dependencies on
the equality proof in question. For example, to construct a function of type
f : (e : x ≡A x)→ B where B doesn’t depend on e, it is sufficient to construct a
value for f refl of type B. Given such a value of type B, we can define f e for
arbitrary e to be equal that value. This would suggest we only need a function
()→ (e : x ≡A x) instead of an equivalence (e : x ≡A x) ' () when there is no
dependency on e.

However, we cannot ignore the computational properties of the function f. If
the user only specified the clause f refl = b, then they would certainly be
surprised to see that f e = b for some e different from refl. For this reason,
we currently require all unification rules to be equivalences, even if this is not
necessary from a purely logical point of view. This rules out the definition of
f because in the absence of K, (e : x ≡A x) is not equivalent to the empty
telescope (). But one could certainly imagine relaxing the unification algorithm
in this way if the computational behaviour of f is less important, for example if
the return type B is a mere proposition without computational content.

DISCUSSION AND FUTURE WORK 131

A broader notion of datatypes

This thesis fixes one definition of indexed datatypes. But there are plenty other
notions of datatype that are used in practice. For example, we can extend the
requirement of strict positivity to allow datatypes like rose trees:

data Rose : Set where
node : List Rose→ Rose (5.2)

Our formulation of the strict positivity requirement doesn’t allow this datatype
because Rose occurs as a parameter to List, but it is relatively straightforward
to extend the notion of strict positivity to include definitions like this.

Other more involved forms of datatypes are inductive-recursive datatypes (Dy-
bjer, 2000) and inductive-inductive datatypes (Forsberg and Setzer, 2010). We
expect that our work could be extended to include them as well, though not
without significant work to first establish analogues of the no confusion and
acyclicity properties for these types.

Pattern matching on higher inductive types

Our criterion makes it possible to do pattern matching on regular inductive
families without assuming K. But HoTT also introduces the concept of
higher inductive types, which can have non-trivial identity proofs between their
constructors. This implies that in general they do not satisfy the injectivity,
disjointness, or acyclicity properties. Luckily, the translation of pattern matching
to eliminators is entirely parametric in the actual unification transitions that
are used. So to allow pattern matching in a context with higher inductive types,
we should start by limiting the unification algorithm further, for example by
cutting out the “no confusion” and “cycle” properties for types to which they
don’t apply.

As a second step, these principles can be replaced by type-specific solvers that
exploit any extra structure that may be available.

Example 5.2. The interval I is a higher inductive type with two point
constructors 0 : I and 1 : I and one path constructor line : 0 ≡I 1. We
have the following equivalence:

contract : (e : 0 ≡I 1) ' () (5.3)

By definition we have contract-1 () = line, so if we use this equivalence as a
unification rule, we won’t get a strong unification rule as a result. Maybe it is
possible to weaken this requirement a bit by not requiring refl as such, but

132 CONCLUSION

merely some canonical form. But this means that we also need computation
rules for functions applied to higher constructors, which is still an open problem.
So for now, we have to settle for a weaker kind of unification rules that don’t
have the proper definitional behaviour, but still produce an equivalence of the
correct type.

More generally, the “no confusion” principle is similar to the encode/decode
technique used by Licata and Shulman (2013) and McKinna and Forsberg
(2015) to calculate the fundamental group of the circle. In particular, they also
construct an equivalence between an equality/path type and a type of codes
taking the role of our NoConfusion type. So it may be possible to construct a
new unification rule for the circle type based on this equivalence. However, be
aware that these custom unification rules can introduce additional variables,
for example the rule for the circle introduces a variable of type Z! It is not yet
clear how to extend the syntax of definitions by pattern matching to deal with
these variables, so future research will have to show how much of the original
pattern matching algorithm can be salvaged in this setting.

Pattern matching in cubical type theory

The current version of our criterion (and the corresponding proof) are written
for an Agda-like theory based on standard MLTT. In such a theory, principles
such as functional extensionality or univalence can be postulated but they don’t
get any computational behaviour. On the other hand, a new and promising
theory called cubical type theory gives a constructive interpretation to the
univalence axiom, and hence also functional extensionality (Bezem, Coquand,
and Huber, 2014; Cohen et al., 2016). In the future we would like to adapt
the work in this thesis to this setting, so our criterion would become usable in
languages based on cubical type theory as well.

One obstacle for this adaptation is the fact that the representation of data
types in our theory (and also that of Agda, Coq, Idris, . . .) is computationally
incompatible with the principle of functional extensionality:

funext : {f g : (x : A)→ B x}
→ (p : (x : A)→ f x ≡B x g x)→ f ≡(x:A)→B x g

(5.4)

We give an example to illustrate the problem.1

1Thanks to Conor McBride for pointing out the problem and giving this example.

DISCUSSION AND FUTURE WORK 133

Example 5.3. Let Favourite : (N → N) → Set be a data type with one
constructor favourite : Favourite (λx. 0 + x). We can give a proof p of
(x : N)→ 0 +x ≡ x+ 0, so we have funext p : λx. 0 +x ≡ λx. x+ 0 and thence

subst Favourite (funext p) favourite : Favourite (λx. x+ 0) (5.5)

However, there is no closed canonical form of type Favourite (λx. x + 0)
so this term doesn’t reduce to a canonical form. This cannot be fixed
by taking the constructor itself to be the canonical form (i.e. by letting
favourite : Favourite (λx. x + 0)), as this would require the typechecker
to check whether two functions are extensionally equal, which is undecidable in
general.

This incompatibility could be solved by disallowing indexed data types and
instead having each constructor carry explicit proofs of the constraints it imposes
on the former indices. For example, favourite would have the internal type
(e : f ≡ (λx. 0 + x)) → Favourite f . The surface-level constructor is then
represented as favourite refl, while subst Favourite (funext p) favourite
computes to favourite (funext p). With this representation of data types, the
work done in this thesis is just as necessary as before (modulo some details in
the final proof), since we still need unification to solve the (telescopic) equations
embedded in the constructors, as well as equations between these embedded
equality proofs.

Example 5.4. We illustrate this by working out Example 3.54 again for a
version of the Vec datatype with embedded equality proofs instead of indices.
Suppose Vec A n is defined with constructors nil : n ≡N zero→ Vec A n and
cons : (m : N)(x : A)(xs : Vec A m) → n ≡N suc m → Vec A n and consider
the unification problem:

(e : cons n x xs refl ≡Vec A (suc n) cons n y ys refl) (5.6)

Since this version of the Vec datatype doesn’t have an index, we can apply the
injectivitycons rule to simplify this equation to:

(e1 : n ≡N n)(e2 : x ≡A y)(e3 : xs ≡Vec A e1 ys)
(e4 : refl ≡suc n≡Nsuc e1 refl) (5.7)

Now e4 is an equation between equality proofs, much like the one we obtained
in (3.53), except that the equality (p : suc e1 ≡suc n≡Nsuc n suc n) is replaced
with an equality (e4 : refl ≡suc n≡Nsuc e1 refl). Lemma 3.59 shows that these
two types are in fact equivalent. So higher-dimensional unification problems
also occur in languages without indexed datatypes, and hence that a general
way to solve this kind of equations is equally useful in these languages.

134 CONCLUSION

Another part of our work that needs to be updated to work with cubical type
theory is the definition of a strong unification rule (Definition 3.41). Similarly to
how in cubical type theory J computes differently according to the shape of the
type it is applied to, unification rules should also satisfy different computational
behaviour according to the types of the equations. We leave the precise definition
of a strong unifier in cubical type theory for future work.

Automatic translation to eliminators

One thing we noticed during the writing of this proof is how easily a small
mistake can have grave impact on the soundness. For example, it was only
after some time that we realized just disabling deletion was not enough, but
that the injectivity rule also subtly depends on K. To increase our confidence,
we should make the typechecker of our languages perform the translation
from pattern matching to a core calculus in practice. This is already done in
Epigram (McBride and McKinna, 2004; McBride, 2005) and in the Equations
package for Coq by Sozeau (2010).

In contrast to Coq and most other dependently typed languages, Agda currently
doesn’t have a core calculus. This means Agda is in practice somewhat less
trustworthy than Coq. On the other hand, not having to translate everything
to a core language also has a number of advantages:

• It is easier to extend Agda with new features without having to worry
about translating them to a core calculus. This means new ideas often
make their way into Agda quicker than they can into Coq.

• It is not possible to break the abstraction barrier between the high-level
language and the low-level core calculus in Agda, as there is none. In
contrast, in Coq it can be the case that we have to prove some properties
of the translated version of a function.

• The high-level version of a function is often more efficient to evaluate than
the translated one. For example, Agda uses an optimized version of case
trees to evaluate functions by pattern matching efficiently.

These are not necessarily arguments why we shouldn’t do the translation
to eliminators in practice, but we should keep these issues in mind when
implementing such a translation. In the Equations package for example, the
second issue is addressed by also generating a functional elimination scheme for
each definition by pattern matching.

DISCUSSION AND FUTURE WORK 135

An appealing idea to continue this line of work is to internalize even more of
the unification algorithm: not just unification problems and their solutions, but
also the unification engine and unification strategy described in Section 3.1.3.
This could be done for example by means of datatype-generic programming
as described by Dagand (2013). This would increase our confidence in the
translation even further and be a big step towards a verified typechecker for a
dependently typed language implemented in the language itself.

Computation rules beyond the standard eliminators

Our current notion of dependent pattern matching is restricted to those
definitions that can be translated to eliminators while preserving the same
computation rules. This is one of the reasons why we only allow definitions
that can be represented by a case tree. But there are many cases where we
would want a more general notion of pattern matching. For example, we may
want to define _ + _ in such a way that zero + n = n = n + zero and
(suc m) + n = suc (m+ n) = m+ (suc n). This kind of pattern matching with
overlapping clauses was studied by Allais, McBride, and Boutillier (2013) and
also in our own previous work (Cockx et al., 2014a).

However, these kind of definitions cannot be represented faithfully by eliminators,
so they fall outside of the framework studied in this thesis. In the future, it
would be interesting to study whether we can construct a more powerful core
language to include overlapping computation rules. For example, such a system
could be based on rewrite rules (Cockx and Abel, 2016). However, future work
will have to tell us what sensible set of rewrite rules can be allowed without
breaking soundness of the theory.

Index

(), 12, 36, 40
A × B, 5
A] B, 5, 41
A ' B, 17
FV (u), 35
[Φ]p̄, 47
Fin, 57
Γ ` ∆ telescope, 39
Γ ` u : A, 36
Γ ` u1 = u2 : A, 36
Γ context, 35
≡A, 8, 41
J, 20
K, 20
≤, 6, 7, 41
≤Fin, 57
N, 4, 40
t̄, 37
⊥, 5
D, 42
Bool, 4
Image, 24
Tree, 108
Vec, 6, 7, 41
cong, 70
dcong, 70
subst, 70
BelowD, 110
coerce, 14
cong, 8, 14
dcong, 69

funext, 17
isLinv, 17
isRinv, 17
linv, 17
rinv, 17
subst, 8, 14
sym, 8, 14
trans, 8, 14
dpe, 40
¬A, 5
6<D, 114
6≤D, 114
J, 70
≺, 49
ua, 17
refl, 8
refl, 70
Set, 7
Σ, 7
>, 5
f∆, 75
f−1, 17
fΓ, 75
u ≡eP v, 69
u[x1 7→ v1, . . . , xn 7→ vn], 35
NoConfusionD, 112
ηeq, 82
ηvarR, 81
belowD, 111
caseD, 109
conflict’c1,c2 , 88

137

138 INDEX

conflictc1,c2 , 76, 78
cycle’t1,t2 , 89
cyclex,t, 77, 78
deletion, 76
flip, 97
injectivity’c, 90
injectivityc, 76, 78
noConfD, 113
noCycleD, 115
recD, 111
solution, 76

Absurd clause, 40
Absurd pattern, 12, 40
Algebraic datatype, 4

Basic analysis, 117
Blocking variable, 47
Bound variable, 35

Case splitting, 47, 52
Case tree, 47
Clause, 10, 40
Conflict rule, 51, 76, 78
Context, 35
Convertible terms, 8
Curry-Howard correspondence, 5
Cycle rule, 51, 77, 78

Datatype, 4, 41
Datatype eliminator, 107
Declaration, 40
Definitional equality, 8
Deletion rule, 51, 76
Dependent function type, 6
Dependent identity type, 69
Dependent pair type, 7
Dependent pattern matching, 12
Dependent type, 6
Direct covering, 47
Disunifier, 73

Elimination operator, 107

Empty context, 35
Empty type, 5
Equivalence, 17

Flexible variable, 70
Forced constructor argument, 56
Free variable, 35
Fully general index, 87
Functional extensionality, 17

Generalized conflict, 88
Generalized cycle, 89
Generalized injectivity, 90

Heterogeneous equality type, 68
Higher inductive type, 131

Identity type, 8
Inaccessible pattern, 40
Index, 7
Indexed datatype, 7
Injectivity rule, 51, 76, 78
Internal node, 47
Invertible constructor, 56

Judgment, 35

Laying over, 69
Leaf node, 47
Lifted unifier, 97

Methods, 107
Most general unifier, 73
Motive, 107

Parameter, 7
Pattern, 10, 40
Pattern matching, 10, 43, 53
Pattern specialization, 47, 52
Pattern variable, 10
Pointwise equality, 71
Product type, 5
Projection, 81
Propositional equality, 8

INDEX 139

Propositions as types, 5

Record field, 81
Record type, 81
Recursive constructor argument, 49
Rigid occurrence, 56

Simultaneous substitution, 35
Solution rule, 51, 76
Specialization by unification, 15,

118
Square type, 96
Strict positivity, 42
Strong unification rule, 83
Strong unifier, 85
Structural order, 49
Sum type, 5

Telescope, 36
Telescope mapping, 39
Telescopic equality, 70
Term, 34
Type, 34
Type system, 3

Underlying term, 40
Unification, 15, 50
Unification problem, 70
Unification rule, 73, 74
Unifier, 15, 71
Unit type, 5
Univalence axiom, 17
Universe, 7

Bibliography

Andreas Abel. MiniAgda: Integrating sized and dependent types. In Workshop
on Partiality and Recursion in Interactive Theorem Provers, PAR, 2010.

Andreas Abel. Irrelevance in type theory with a heterogeneous equality
judgement. In Foundations of Software Science and Computational Structures.
2011.

Andreas Abel. Injectivity of type constructors is partially back. Agda refutes
excluded middle, 2015a. URL https://github.com/agda/agda/issues/
1406. (on the Agda bug tracker).

Andreas Abel. Order of patterns matters for checking left hand sides, 2015b.
URL https://github.com/agda/agda/issues/1411. (on the Agda bug
tracker).

Andreas Abel. Circumvention of forcing analysis brings back easy proof of
Fin injectivity, 2015c. URL https://github.com/agda/agda/issues/1427.
(on the Agda bug tracker).

Andreas Abel. Eta-expanded implicit patterns are not used for instance search,
2015d. URL https://github.com/agda/agda/issues/1613. (on the Agda
bug tracker).

Andreas Abel and Thorsten Altenkirch. A predicative analysis of structural
recursion. Journal of Functional Programming, 12(3):1–41, 2002.

Guillaume Allais, Conor McBride, and Pierre Boutillier. New equations for
neutral terms: A sound and complete decision procedure, formalized. In
Workshop on Dependently-typed Programming, 2013.

Thorsten Altenkirch. Without-K problem, 2012. URL https://lists.
chalmers.se/pipermail/agda/2012/004104.html. On the Agda mailing
list.

141

https://github.com/agda/agda/issues/1406
https://github.com/agda/agda/issues/1406
https://github.com/agda/agda/issues/1411
https://github.com/agda/agda/issues/1427
https://github.com/agda/agda/issues/1613
https://lists.chalmers.se/pipermail/agda/2012/004104.html
https://lists.chalmers.se/pipermail/agda/2012/004104.html

142 BIBLIOGRAPHY

Hiromu Arakawa. Fullmetal alchemist, 2001.

Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico Tassi.
Hints in unification. In Theorem Proving in Higher Order Logics, 2009.

Lennart Augustsson. Compiling pattern matching. In Functional Programming
Languages and Computer Architecture, volume 201 of Lecture Notes in
Computer Science. 1985.

Franz Baader and Wayne Snyder. Unification theory. Handbook of automated
reasoning, 2001.

Bruno Barras, Pierre Corbineau, Benjamin Grégoire, Hugo Herbelin, and
Jorge Luis Sacchini. A new elimination rule for the calculus of inductive
constructions. In Types for Proofs and Programs, TYPES, 2009.

Marc Bezem, Thierry Coquand, and Simon Huber. A model of type theory in
cubical sets. In Types for Proofs and Programs, TYPES, 2014.

Pierre Boutillier. De nouveaux outils pour Calculer avec des inductifs en Coq.
PhD thesis, Université Paris-Diderot-Paris VII, 2014.

Edwin Brady. Idris, a general purpose dependently typed programming language:
Design and implementation. Journal of Functional Programming, 23(5), 2013.

Edwin Brady, Conor McBride, and James McKinna. Inductive families need
not store their indices. In Types for Proofs and Programs, TYPES, 2003.

Thomas Braibant. A new Coq tactic for inversion, 2013. URL http://gallium.
inria.fr/blog/a-new-Coq-tactic-for-inversion.

Luitzen E. G. Brouwer. On the significance of the principle of excluded middle in
mathematics, especially in function theory. In A Source Book in Mathematical
Logic, 1879–1931 (1967). 1923.

Alonzo Church. A formulation of the simple theory of types. The journal of
symbolic logic, 1940.

Arthur C. Clarke. Hazards of prophecy: The failure of imagination. In Profiles
of the Future: An Enquiry into the Limits of the Possible. Victor Gollanz Ltd,
1962.

Jesper Cockx. Yet another way Agda --without-k is incompatible with
univalence, 2014. URL https://lists.chalmers.se/pipermail/agda/
2014/006367.html. On the Agda mailing list.

Jesper Cockx and Andreas Abel. Sprinkles of extensionality for your vanilla
type theory. In Types for Proofs and Programs, TYPES, 2016.

http://gallium.inria.fr/blog/a-new-Coq-tactic-for-inversion
http://gallium.inria.fr/blog/a-new-Coq-tactic-for-inversion
https://lists.chalmers.se/pipermail/agda/2014/006367.html
https://lists.chalmers.se/pipermail/agda/2014/006367.html

BIBLIOGRAPHY 143

Jesper Cockx and Dominique Devriese. Lifting proof-relevant unification to
higher dimensions. In 6th Conference on Certified Programs and Proofs, CPP.
ACM, 2017.

Jesper Cockx, Dominique Devriese, and Frank Piessens. Overlapping and order-
independent patterns: Definitional equality for all. In European Symposium
on Programming, ESOP, 2014a.

Jesper Cockx, Dominique Devriese, and Frank Piessens. Pattern matching
without K. In 19th International Conference on Functional Programming,
ICFP. ACM, 2014b.

Jesper Cockx, Dominique Devriese, and Frank Piessens. Unifiers as equivalences:
proof-relevant unification of dependently typed data. In 21th International
Conference on Functional Programming, ICFP. ACM, 2016a.

Jesper Cockx, Dominique Devriese, and Frank Piessens. Eliminating dependent
pattern matching without K. Journal of Functional Programming, 26, 2016b.

Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical
type theory: a constructive interpretation of the univalence axiom. CoRR,
2016. URL http://arxiv.org/abs/1611.02108.

Thierry Coquand. An analysis of girard’s paradox. INRIA, 1986.

Thierry Coquand. Pattern matching with dependent types. In Types for Proofs
and Programs, TYPES, 1992.

Cristina Cornes and Delphine Terrasse. Automating inversion of inductive
predicates in Coq. In Types for Proofs and Programs, TYPES. 1995.

Haskell B. Curry. Functionality in combinatory logic. Proceedings of the National
Academy of Sciences, 1934.

Pierre-Évariste Dagand. A cosmology of datatypes: reusability and dependent
types. PhD thesis, University of Strathclyde, 2013.

Nils Anders Danielsson. Heterogenous equality is crippled by the Bool /= Fin
2 fix, 2010. URL https://github.com/agda/agda/issues/292. (on the
Agda bug tracker).

Nils Anders Danielsson. The unification machinery does not respect η-equality,
2011. URL https://github.com/agda/agda/issues/473. (on the Agda
bug tracker).

Nils Anders Danielsson. Regression in unifier, possibly related to modules
and/or heterogeneous constraints, 2014. URL https://github.com/agda/
agda/issues/1071. (on the Agda bug tracker).

http://arxiv.org/abs/1611.02108
https://github.com/agda/agda/issues/292
https://github.com/agda/agda/issues/473
https://github.com/agda/agda/issues/1071
https://github.com/agda/agda/issues/1071

144 BIBLIOGRAPHY

Nils Anders Danielsson. Dependent pattern matching is broken, 2015. URL
https://github.com/agda/agda/issues/1435. (on the Agda bug tracker).

N. G. de Bruijn. The mathematical language AUTOMATH, its usage, and some
of its extensions, pages 29–61. Springer Berlin Heidelberg, Berlin, Heidelberg,
1970.

Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and
Jakob von Raumer. The Lean theorem prover (system description). In 25th
International Conference on Automated Deduction, CADE, 2015.

Antoine de Saint-Exupéry. Terre des hommes. Le Livre de Poche, 1939.

Gabe Dijkstra. Disunifying non-fully applied constructors is inconsistent
with function extensionality, 2015. URL https://github.com/agda/agda/
issues/1497. (on the Agda bug tracker).

Peter Dybjer. Inductive sets and families in Martin-Löf’s type theory and
their set-theoretic semantics. In Proceedings of the first workshop on Logical
frameworks, 1991.

Peter Dybjer. A general formulation of simultaneous inductive-recursive
definitions in type theory. The Journal of Symbolic Logic, 65(02):525–549,
2000.

Fredrik Nordvall Forsberg and Anton Setzer. Inductive-inductive definitions. In
International Workshop on Computer Science Logic, pages 454–468. Springer,
2010.

Jean-Yves Girard. Interprétation fonctionelle et élimination des coupures de
l’arithmétique d’ordre supérieur. PhD thesis, Université Paris VII, 1972.

Healfdene Goguen, Conor McBride, and James McKinna. Eliminating dependent
pattern matching. In Algebra, Meaning, and Computation. 2006.

Joseph A. Goguen. What is unification? – A categorical view of substitution,
equation and solution. In Resolution of Equations in Algebraic Structures,
Volume 1: Algebraic Techniques, 1989.

Martin Hofmann and Thomas Streicher. The groupoid model refutes uniqueness
of identity proofs. In Logic in computer science, LICS, pages 208–212, 1994.

William A. Howard. The formulæ-as-types notion of construction. In The
Curry-Howard Isomorphism (1995). 1969.

Chung Kil Hur. Agda with the excluded middle is inconsistent?, 2010. URL
https://lists.chalmers.se/pipermail/agda/2010/001522.html. On
the Agda mailing list.

https://github.com/agda/agda/issues/1435
https://github.com/agda/agda/issues/1497
https://github.com/agda/agda/issues/1497
https://lists.chalmers.se/pipermail/agda/2010/001522.html

BIBLIOGRAPHY 145

Robert Jordan. The Eye of the World, volume 1 of The Wheel of Time. Tor
Books, 1990.

Jean-Pierre Jouannaud and Claude Kirchner. Solving equations in abstract
algebras: A rule-based survey of unification. 1990.

Donald E. Knuth. Notes on the van Emde Boas construction of priority deques:
An instructive use of recursion. Letter to Peter van Emde Boas, 1977.

Nicolai Kraus and Christian Sattler. Higher homotopies in a hierarchy of
univalent universes. ACM Transactions on Computational Logic (TOCL), 16
(2):18, 2015.

Christoph Kreitz. The Nuprl Proof Development System, Version 5, 2002. URL
http://www.nuprl.org/html/02cucs-NuprlManual.pdf.

Chin Soon Lee, Neil D Jones, and Amir M Ben-Amram. The size-change
principle for program termination. In ACM SIGPLAN Notices, volume 36,
pages 81–92. ACM, 2001.

Daniel R. Licata and Michael Shulman. Calculating the fundamental group of
the circle in homotopy type theory. In 28th Symposium on Logic in Computer
Science, LICS, 2013.

Zhaohui Luo. Computation and reasoning: a type theory for computer science,
volume 11 of International Series of Monographs on Computer Science. 1994.

Cyprien Mangin and Matthieu Sozeau. Equations: a tool for dependent pattern-
matching. In Workshop on Type Theory Based Tools, TTT, 2017.

Per Martin-Löf. An intuitionistic theory of types. In Twenty-five years of
constructive type theory (Venice, 1995), pages 127–172. Oxford University
Press, 1972.

Per Martin-Löf. Intuitionistic type theory. Number 1 in Studies in Proof Theory.
1984.

Conor McBride. Towards dependent pattern matching in LEGO. Unpublished,
1998a.

Conor McBride. Inverting inductively defined relations in LEGO. In Types for
Proofs and Programs, TYPES, 1998b.

Conor McBride. Dependently typed functional programs and their proofs. PhD
thesis, University of Edinburgh, 2000.

Conor McBride. Elimination with a motive. In Types for Proofs and Programs,
TYPES, 2002.

http://www.nuprl.org/html/02cucs-NuprlManual.pdf

146 BIBLIOGRAPHY

Conor McBride. First-order unification by structural recursion. Journal of
functional programming, 13, 2003.

Conor McBride. Epigram: Practical programming with dependent types. In
Advanced Functional Programming, 2005.

Conor McBride and James McKinna. The view from the left. Journal of
Functional Programming, 14(1), 2004.

Conor McBride, Healfdene Goguen, and James McKinna. A few constructions
on constructors. In Types for Proofs and Programs, TYPES, 2006.

James McKinna and Fredrik Nordvall Forsberg. The encode-decode method,
relationally. In Types for Proofs and Programs, TYPES, 2015.

Dale Miller. A logic programming language with lambda-abstraction, function
variables, and simple unification. Journal of Logic and Computation, 1, 1991.

Alexandre Miquel. Re: Agda with the excluded middle is inconsistent?,
2010. URL https://lists.chalmers.se/pipermail/agda/2010/001543.
html. Proof posted by Chung-Kil Hur on the Agda mailing list.

Jean-François Monin. Proof trick: Small inversions. In Second Coq Workshop,
2010.

Sarah Newton. Mindjammer — The Roleplaying Game. Mindjammer Press
Ltd, 2016.

Ulf Norell. Towards a practical programming language based on dependent type
theory. PhD thesis, Chalmers University of Technology, 2007.

Ulf Norell, Andreas Abel, and Nils Anders Danielsson. Release notes for Agda 2
version 2.3.2, 2012. URL http://wiki.portal.chalmers.se/agda/pmwiki.
php?n=Main.Version-2-3-2.

Christine Paulin-Mohring. Inductive definitions in the System Coq - rules
and properties. In International Conference on Typed Lambda Calculi and
Applications, TLCA, London, UK, 1993. Springer-Verlag.

Daniel Peebles. Case splitting emits hidden record patterns that should remain
implicit, 2012. URL https://github.com/agda/agda/issues/635. (on the
Agda bug tracker).

Jason Reed. Another possible without-K problem, 2013. URL https://lists.
chalmers.se/pipermail/agda/2013/005578.html. On the Agda mailing
list.

https://lists.chalmers.se/pipermail/agda/2010/001543.html
https://lists.chalmers.se/pipermail/agda/2010/001543.html
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.Version-2-3-2
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.Version-2-3-2
https://github.com/agda/agda/issues/635
https://lists.chalmers.se/pipermail/agda/2013/005578.html
https://lists.chalmers.se/pipermail/agda/2013/005578.html

BIBLIOGRAPHY 147

Andrés Sicard-Ramírez. --without-K option too restrictive?, 2013. URL https:
//lists.chalmers.se/pipermail/agda/2013/005407.html. On the Agda
mailing list.

Andrés Sicard-Ramírez. The --without-K option generates unsolved metas,
2016. URL https://github.com/agda/agda/issues/1775. (on the Agda
bug tracker).

Matthieu Sozeau. Equations: A dependent pattern-matching compiler. In
Interactive theorem proving, ITP, 2010.

Thomas Streicher. Investigations into intensional type theory, 1993. Habilitation
thesis, Ludwig Maximilian University of Munich.

The Agda development team. Agda 2.5.2 documentation, 2016. URL http:
//agda.readthedocs.io/en/v2.5.2/.

The Coq development team. The Coq proof assistant reference manual. LogiCal
Project, 2016. URL https://coq.inria.fr/distrib/8.6/refman/. Version
8.6.

The Idris community. Documentation for the Idris language, 2017. URL
http://docs.idris-lang.org/en/v0.99.1/. Version 0.99.1.

The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations of Mathematics. http://homotopytypetheory.org/book,
Institute for Advanced Study, 2013.

Valve Corporation. Portal, 2007.

Andrea Vezzosi. Heterogeneous equality incompatible with univalence even
--without-k, 2015. URL https://github.com/agda/agda/issues/1408.
(on the Agda bug tracker).

Philip Wadler. Propositions as types. Communications of the ACM, 2015.

Beta Ziliani and Matthieu Sozeau. A unification algorithm for Coq featuring
universe polymorphism and overloading. In International Conference on
Functional Programming, ICFP, 2015.

https://lists.chalmers.se/pipermail/agda/2013/005407.html
https://lists.chalmers.se/pipermail/agda/2013/005407.html
https://github.com/agda/agda/issues/1775
http://agda.readthedocs.io/en/v2.5.2/
http://agda.readthedocs.io/en/v2.5.2/
https://coq.inria.fr/distrib/8.6/refman/
http://docs.idris-lang.org/en/v0.99.1/
http://homotopytypetheory.org/book
https://github.com/agda/agda/issues/1408

Curriculum

Jesper Cockx was born in Leuven, Belgium, in 1990.

He received his bachelor degree in mathematics from KU Leuven in 2011
and his master degree in mathematics in 2013. He wrote his master thesis
on Overlapping and Order-Independent Patterns in Type Theory under the
supervision of prof. Frank Piessens and dr. Dominique Devriese.

From October 2013, he is a Ph.D. student at KU Leuven at the Distrinet
research group under the supervision of Frank Piessens and Dominique Devriese.
His Ph.D. is funded by the Research Foundation Flanders (FWO).

149

List of publications

Journal articles

Jesper Cockx, Dominique Devriese, and Frank Piessens. Eliminating dependent
pattern matching without K. Journal of Functional Programming, 26,
2016b

Papers at International Conferences and Symposia

Jesper Cockx, Dominique Devriese, and Frank Piessens. Overlapping and
order-independent patterns: Definitional equality for all. In European
Symposium on Programming, ESOP, 2014a

Jesper Cockx, Dominique Devriese, and Frank Piessens. Pattern matching
without K. In 19th International Conference on Functional Programming,
ICFP. ACM, 2014b

Jesper Cockx, Dominique Devriese, and Frank Piessens. Unifiers as equivalences:
proof-relevant unification of dependently typed data. In 21th International
Conference on Functional Programming, ICFP. ACM, 2016a

Jesper Cockx and Dominique Devriese. Lifting proof-relevant unification to
higher dimensions. In 6th Conference on Certified Programs and Proofs,
CPP. ACM, 2017

151

FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

IMEC-DISTRINET
Celestijnenlaan 200A box 2402

B-3001 Leuven
jesper.cockx@cs.kuleuven.be
http://distrinet.cs.kuleuven.be

	Abstract
	Contents
	Introduction
	Type theory
	Pattern matching and unification
	Homotopy type theory
	Desugaring pattern matching
	Three recurring themes
	Overview and contributions

	Dependent pattern matching
	Agda Lite: a minimal language with dependent pattern matching
	Checking definitions by dependent pattern matching
	Pattern matching without K
	Related work

	Proof-relevant unification
	Unification in dependent type theory
	Unification rules
	Computational behaviour of unification rules
	Higher-dimensional unification
	Implementation
	Related work

	Back to eliminators
	Basic constructions on constructors
	Two useful techniques
	From pattern matching to eliminators

	Conclusion
	Discussion and future work

	Index
	Bibliography
	Curriculum
	List of publications

