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When implementing or formalizing the syntax of a language with names and binders, one
challenging task is establishing and preserving well-scopedness. This is especially true when
implementing a dependent type checker, where types bind variables and terms with free variables
are evaluated. Luckily, if we implement this type checker itself in a dependently typed language,
we can work with well-scoped syntax, i.e. syntax that is statically known to be well-scoped by
the type system. For example, here is a minimal definition of well-scoped syntax for the untyped
lambda calculus in Agda:

data Var : (n : N) → Set where
zero : Var (suc n)
suc : Var n → Var (suc n)

data Term (n : N) : Set where
var : Var n → Term n
lam : Term (suc n) → Term n
app : Term n → Term n → Term n

Brady et al. [2003] have taught us that inductive families such as Var and Term need not
store their indices: the number n can be safely erased during compilation. However, to produce
efficient compiled code we should also ensure that operations on the syntax do not inspect the
scope at run-time. In a language with support for runtime irrelevance [McBride, 2016, Atkey,
2018] such as Idris 2 or Agda, we can enforce this property statically. But this reveals a problem:
to implement a function right : Var n → Var (k + n) that weakens a variable by adding k unused
variables to the scope, it must apply the suc constructor k times to its argument, so erasing k
is impossible! This example shows that using N as the type of scopes does not work.

This leads us to the question: is it possible to design types Scope : Set and Var : Scope → Set
such that all necessary operations on variables can be defined without inspecting the scope. To
make this question more concrete, let me list some operations that I consider ‘necessary’:

1. Decidable equality of variables: _ ?
=_ : (x y : Var α) → Dec (x ≡ y).

2. An empty scope ◦ : Scope such that Var ◦ ≃ ⊥.

3. A singleton scope • : Scope such that Var • ≃ ⊤.

4. A disjoint union _⋄_ : Scope → Scope → Scope such that Var (α ⋄ β) ≃ Var α ⊎ Var β.

5. A weakening coerce : α ⊆ β → Var α → Var β, where _⊆_ : Scope → Scope → Set is a
preorder on scopes.

6. For any p : α ⊆ β, a complement pC : Scope such that pC ⊆ β and pC ⊆ (trans p q)C

for any q : β ⊆ γ.

Instead of using N, let us represent scopes as binary trees where each leaf is either an empty
scope ◦ or a singleton •:

data Scope : Set where
◦ • : Scope
_⋄_ : Scope → Scope → Scope
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Rather than define Var and _⊆_ directly, we can define both in terms of a proof relevant
separation algebra [Rouvoet et al., 2020], a ternary relation on scopes that determines how the
names in the third scope are distributed over the first two.

data _▷◁_≡_ : (α β γ : Scope) → Set where
◦-l : ◦ ▷◁ β ≡ β
◦-r : α ▷◁ ◦ ≡ α
join : α ▷◁ β ≡ (α ⋄ β)
swap : α ▷◁ β ≡ (β ⋄ α)
⋄-ll : (α2 ▷◁ β ≡ δ) → (α1 ▷◁ δ ≡ γ) → (α1 ⋄ α2) ▷◁ β ≡ γ
⋄-lr : (α1 ▷◁ β ≡ δ) → (δ ▷◁ α2 ≡ γ) → (α1 ⋄ α2) ▷◁ β ≡ γ
⋄-rl : (α ▷◁ β2 ≡ δ) → (β1 ▷◁ δ ≡ γ) → α ▷◁ (β1 ⋄ β2) ≡ γ
⋄-rr : (α ▷◁ β1 ≡ δ) → (δ ▷◁ β2 ≡ γ) → α ▷◁ (β1 ⋄ β2) ≡ γ

Subscoping and variables can then be defined in terms of separation:

α ⊆ β = Σ (Erased Scope) (λ ([ γ ]) → α ▷◁ γ ≡ β)
Var α = • ⊆ α

Here, Erased A is a record type with constructor [_] : @0 A → Erased A. This definition of
_⊆_ makes it trivial to define the complement operation _C , since it is just the first projection
of the subscope proof.

An implementation of the operations listed above can be found at https://github.com/
jespercockx/scopes-n-roses. Compared to the code here, it follows Pouillard [2012] by
providing an abstract interface for working with scopes and support for named variables.

There are at least two still unresolved problems with this scope representation. The first one
is that separation proofs are not unique. In particular, we can map any proof of (α1 ⋄ α2) ▷◁ β ≡ γ
to another distinct proof of the same type:

enlarge : (α1 ⋄ α2) ▷◁ β ≡ γ → (α1 ⋄ α2) ▷◁ β ≡ γ
enlarge p = ⋄-ll join (⋄-rr join p)

As a result, the functions Var • → ⊤ and Var (α ⋄ β) → Var α ⊎ Var β are only retractions
rather than equivalences.

The second problem is that introduction of scope separation makes additional operations
hard or impossible to implement, such as the following property that we would like to have in
addition to the six above:

7. For two separations p : α1 ▷◁ α2 ≡ γ and q : β1 ▷◁ β2 ≡ γ of the same scope γ, a four-
way separation into scopes γ1, γ2, γ3, and γ4 such that γ1 ▷◁ γ2 ≡ α1, γ3 ▷◁ γ4 ≡ α2,
γ1 ▷◁ γ3 ≡ β1, and γ2 ▷◁ γ4 ≡ β2.

To address these problems, it may be necessary still to switch to a different representation
of scopes or scope representations. However, at the moment is is not even clear whether such
a representation even exists. This leads us to the following question: is possible to give an
implementation of scopes and scope separation that satisfies all the properties 1-7, while keeping
the size of separation proofs bounded by the size of the scopes? While the representation of
scopes presented here does not yet answer this question, the interface it offers provides new
insight into the kind of properties we can enforce by using dependent and quantitative types.
It is thus a first step towards an unexplored and exciting world of new variable representations.

https://github.com/jespercockx/scopes-n-roses
https://github.com/jespercockx/scopes-n-roses
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