Dependent pattern matching

and proof-relevant unification
Public PhD defence

Jesper Cockx

DistriNet — KU Leuven

26 June 2017

How to tell a computer

to do what you want?
Public PhD defence

Jesper Cockx

DistriNet — KU Leuven

26 June 2017

How to tell a computer
to do what you want?

1/28

How to tell a computer
to do what you want?

e By kicking?

1/28

How to tell a computer
to do what you want?

e By kicking? b 4

1/28

How to tell a computer
to do what you want?

e By kicking? b 4

e By yelling?

1/28

How to tell a computer
to do what you want?

e By kicking? b 4

e By yelling? X

1/28

How to tell a computer
to do what you want?

e By kicking? b 4

e By yelling? X

e By programming?

1/28

How to tell a computer
to do what you want?

e By kicking? b 4

e By yelling? X

e By programming? v

1/28

What is programming?

HOW DOES COMPUTER
PROGRAMMING (JORK ?

MAGIC

What is programming?

Programming

2/28

What is programming?

Programming

telling the computer what to do

2/28

What is programming?

Programming

telling the computer what to do,

using a programming language.

What is programming?

Programming

telling the computer what to do,

using a programming language.

Examples: C, Java, JavaScript, Python,
SQL, MatLab, Haskell, ML, ...

What is programming?

Programming

telling the computer what to do,

using a programming language.

Examples: C, Java, JavaScript, Python,
SQL, MatLab, Haskell, ML, Agda.

Programming is hard

3/28

Programming is hard

Programming is hard

Sf

; LD (@D
z\ AN

/@W

[EY

. Why is programming hard?
2. How do type systems help?
3. What is pattern matching?
4. What is homotopy type theory?

5. What did | work on?

1. Why is programming hard?

Programming is hard

e Computers take everything literally

Annoying Confirmation ﬁ

@. Are you sure?

4/28

Programming is hard

e Computers take everything literally
e [he code has to cover all cases

e el e [Ty S UL
e

i
L=
#E;IETHEJ%%EL

J]T
0
'ﬁ_IE
|
el
]

=il —;L':—_':[If%b 1= ||J I: L=
|'——§L_—||:I|'ZJ—'_' n|JI| ERi= ‘| _L|||
UE = %:_FE’ o rrfmr&' == } :

M e T e el
ﬁﬁuﬁi giﬁﬁh% =l %ﬁﬁf??

Programming is hard

e Computers take everything literally
e The code has to cover all cases
e Many pieces have to fit together

4/28

Programming is hard

Computers take everything literally
The code has to cover all cases
Many pieces have to fit together
You don't get immediate feedback

4/28

Programming is hard

Computers take everything literally
The code has to cover all cases
Many pieces have to fit together
You don't get immediate feedback
Testing can't find all mistakes

4/28

2. How do type systems help?

What is a type system?

A type system is a set of rules that
assign a property called type to var-
ious constructs a computer program
consists of.

(paraphrased from Wikipedia)

What is a type system?

A type system is a set of rules that
assign a property called type to var-
lous constructs a computer program
consists of.

The main purpose of a type system
is to reduce possibilities for bugs in
computer programs.

(paraphrased from Wikipedia)

5/28

What is a type system?

The term a has type T

a: I

6/28

What is a type system?

The term a has type T

a: I

donut : Pastry

6/28

What is a type system?

The term a has type T

6/28

Simple type theory (1940)

Base types:

Pastry, Monster, ...

Alonzo

Church

7/28

Simple type theory (1940)

Base types:
Pastry, Monster, ...

Function types:

A— B

Alonzo

Church

7/28

Simple type theory (1940)

Base types:
Pastry, Monster, ...

Function types:

A— B

Function application:

Alonzo
If f: A— Band x: A Church
then f x: B

7/28

How do types help
to write correct code?

eat : Pastry — I0 Unit

8/28

How do types help
to write correct code?

eat : Pastry — I0 Unit

eat donut

8/28

How do types help
to write correct code?

eat : Pastry — I0 Unit

eat donut v

8/28

How do types help
to write correct code?

eat : Pastry — I0 Unit

eat donut v
eat dragon

8/28

How do types help
to write correct code?

eat : Pastry — I0 Unit

eat donut v

X

Type error: A Monster is not a Pastry!

8/28

Dependent type theory (1972)

A dependent type is a
family of types, depending
on a term of a base type.

Per
Martin-Lof

9/28

Dependent type theory (1972)

Per
Martin-Lof

A dependent type is a
family of types, depending
on a term of a base type.

Monster

4

small Monster,
large Monster,

9/28

3. What is pattern matching?

Declarative programming

Declarative programming

say what you want

10/28

Declarative programming

Declarative programming

say what you want,
not how to do it.

10/28

Declarative programming

That is the very purpose of declara-
tive programming — to make it more
likely that we mean what we say by
improving our ability to say what we
mean.

— Conor McBride (2003)

10/28

Pattern matching

Write programs by giving equations:

flavour : Food — Flavour

11/28

Pattern matching

Write programs by giving equations:

flavour : Food — Flavour
flavour pizza = cheesy

11/28

Pattern matching

Write programs by giving equations:

flavour : Food — Flavour
flavour pizza = cheesy

flavour moelleux = chocolaty

11/28

The VGD’\ language

The VGD’\ language

A purely functional language

12/28

The VGD[\ language

A purely functional language

. for writing programs and proofs

12/28

The VGD,\ language

A purely functional language
. for writing programs and proofs

. with datatypes and pattern matching

12/28

The VGD,\ language

A purely functional language
. for writing programs and proofs
. with datatypes and pattern matching
. with first-class dependent types

12/28

The VGD,\ language

A purely functional language
. for writing programs and proofs
. with datatypes and pattern matching
. with first-class dependent types

. with support for interactive development

12/28

The VGD,\ language

A purely functional language
. for writing programs and proofs
. with datatypes and pattern matching
. with first-class dependent types

. with support for interactive development

Demo timel!

12/28

Dependent pattern matching
(1992)

By pattern matching, we
can learn something about
the type.

Thierry

Coquand

13/28

Dependent pattern matching
(1992)

By pattern matching, we
can learn something about
the type.

ingredients pizza:
List (cheesy Ingredient)

Thierry
Coquand

13/28

Checking definitions
by pattern matching

14 /28

Checking definitions
by pattern matching

Unification

Finding ways to make two terms equal

14 /28

Checking definitions
by pattern matching

Unification

Finding ways to make two terms equal,
by solving equations step by step.

14 /28

Specialization by unification:
The solution rule

We can make x equal to cheesy

15 /28

Specialization by unification:
The solution rule

We can make x equal to cheesy,
by replacing x with cheesy everywhere.

15 /28

Specialization by unification:
The solution rule

We can make x equal to cheesy,
by replacing x with cheesy everywhere.

ingredients : {x : Flavour} —
x Food — List (x Ingredient)

15 /28

Specialization by unification:
The solution rule

We can make x equal to cheesy,
by replacing x with cheesy everywhere.

ingredients : {x : Flavour} —
x Food — List (x Ingredient)

¢
ingredients pizza:
List (cheesy Ingredient)

15 /28

Specialization by unification:
The deletion rule

We can make cheesy equal to cheesy

16 /28

Specialization by unification:
The deletion rule

We can make cheesy equal to cheesy,
by doing nothing.

16 /28

Specialization by unification:
The deletion rule

We can make cheesy equal to cheesy,
by doing nothing.

amount-of-cheese :
cheesy Food — Amount

16 /28

Specialization by unification:
The deletion rule
We can make cheesy equal to cheesy,
by doing nothing.

amount-of-cheese :
cheesy Food — Amount

4

amount-of-cheese pizza : Amount

16 /28

Specialization by unification:
The conflict rule

cheesy can never be equal to chocolaty

17 /28

Specialization by unification:
The conflict rule

cheesy can never be equal to chocolaty,
so we can safely skip the case.

17 /28

Specialization by unification:
The conflict rule

cheesy can never be equal to chocolaty,
so we can safely skip the case.

amount-of-cheese :
cheesy Food — Amount

17 /28

Specialization by unification:
The conflict rule

cheesy can never be equal to chocolaty,
so we can safely skip the case.

amount-of-cheese :
cheesy Food — Amount

¥

No case for amount-of-cheese moelleux!

17 /28

4. What is homotopy type theory?

Homotopy type theory

Homotopy type theory

a new type system with weirdly shaped types

18 /28

Homotopy type theory

Homotopy type theory

a new type system with weirdly shaped types,

such as donuts

18/28

Homotopy type theory

Homotopy type theory

a new type system with weirdly shaped types,
such as donuts and pancakes.

18/28

The univalence axiom (2009)

Vladimir
Voevodsky

19/28

The univalence axiom (2009)

“Isomorphic types
can be identified.”

Vladimir
Voevodsky

19/28

The univalence axiom (2009)

“Isomorphic types
can be identified.”

o a (A= B) ~ (A~ B)
Vladimir
Voevodsky

19/28

The univalence axiom (2009)

Flavour is equal to Bool in two ways:

Flavour

cheesy chocolaty

20/28

The univalence axiom (2009)

Flavour is equal to Bool in two ways:

Flavour

cheesy chocolaty

true false

Bool

20/28

The univalence axiom (2009)

Flavour is equal to Bool in two ways:

Flavour

cheesy chocolaty

true false

Bool

20/28

The univalence axiom (2009)

Flavour is equal to Bool in two ways:

Flavour

cheesy chocolaty

true false

Bool

20/28

The univalence axiom (2009)

Flavour is equal to itself in two ways:

Flavour
cheesy chocolaty
cheesy chocolaty

Flavour

21/28

The univalence axiom (2009)

Flavour is equal to itself in two ways:

Flavour
cheesy chocolaty
cheesy chocolaty

Flavour

21/28

5. What did | work on?

My process of working on Agda

1. Discover a new problem

22/28

My process of working on Agda

1. Discover a new problem

2. Search for the cause of the problem

22/28

My process of working on Agda

1. Discover a new problem
2. Search for the cause of the problem
3. Think of a solution

22/28

My process of working on Agda

1. Discover a new problem
2. Search for the cause of the problem

3. Think of a solution

4. Implement the solution

22/28

My process of working on Agda

Discover a new problem
Search for the cause of the problem
Think of a solution

Implement the solution

o=

Prove that the solution works

22/28

My process of working on Agda

Discover a new problem

Search for the cause of the problem
Think of a solution

Implement the solution

Prove that the solution works

oSO w D=

Write a paper about the solution

22/28

Pattern matching without K

Problem. Dependent pattern matching
doesn’t work in homotopy type theory.

23/28

Pattern matching without K

Problem. Dependent pattern matching
doesn’t work in homotopy type theory.

Flavour is equal to itself in two ways

23/28

Pattern matching without K

Problem. Dependent pattern matching
doesn’t work in homotopy type theory.

Flavour is equal to itself in two ways,
so we cannot use the deletion rule!

23/28

Pattern matching without K

Problem. Dependent pattern matching
doesn’t work in homotopy type theory.

Flavour is equal to itself in two ways,
so we cannot use the deletion rule!

My contribution. A new version of pattern
matching that doesn't rely on deletion.

23 /28

Proof-relevant unification

Problem. Unification doesn’t consider the
ways in which terms can be made equal.

24 /28

Proof-relevant unification

Problem. Unification doesn’t consider the
ways in which terms can be made equal.

We call these ‘ways to make terms equal’

equality proofs.

24 /28

Proof-relevant unification

Problem. Unification doesn’t consider the
ways in which terms can be made equal.

We call these ‘ways to make terms equal’
equality proofs.

My contribution. A unification algorithm
that takes equality proofs into account.

24 /28

Eliminating pattern matching

Problem. How can we be sure pattern
matching doesn't cause any problems?

25/28

Eliminating pattern matching

Problem. How can we be sure pattern
matching doesn't cause any problems?

In a standard type theory, we only have
datatype eliminators.

25 /28

Eliminating pattern matching

Problem. How can we be sure pattern
matching doesn't cause any problems?

In a standard type theory, we only have
datatype eliminators.

Main theorem. Any definition by pattern
matching can be translated to eliminators.

25 /28

Eliminating pattern matching

Problem. How can we be sure pattern
matching doesn't cause any problems?

In a standard type theory, we only have
datatype eliminators.

Main theorem. Any definition by pattern
matching can be translated to eliminators.

Proof. See my thesis.

25 /28

From pattern matching . ..

antisym: (x y :N) = (x<y) = (y <x) = (x=y)
antisym .zero .zero (1lz |zero|) (1z [zero|) = refl
antisym .(suc k) .(suc /) (s klu) (1s.l.kv)

= cong suc (antisym k | u v)

26 /28

... to eliminators.

antisym: (xy :N) = (x<y) = (y <x) = (x=y)
antisym = elimc (Axyu.y < x > x=nY)
(Mv.elime (Ay x v.x =y zero — x =y y)
(Axe.e)
(Mk__e.elim; (suc k =y suc /) (noConfy (suc k) zero e))
| zero v refl)
(Ak | _Hv.cong suc (H
(elime (Axy .x =y suc/ — u=ysuc k = <k)
(M e_.elim; (I < k) (noConfy zero (suc /) e))
(AK'I' V' _ey €5 subst (An. n < k)
(noConfy (suc k') (suc /) &)
(subst (Am. k" < m) (noConfy (suc /') (suc k) &) v'))
(suc /) (suc k) v refl refl)))

27 /28

Take-home message

A simple type system can stop you
from trying to eat a dragon. ..

28/28

Take-home message

A simple type system can stop you
from trying to eat a dragon. ..

... but if you don't like chocolate on
your pizza, you need dependent types.

28 /28

