
Dependent pattern matching
and proof-relevant unification

Public PhD defence

Jesper Cockx

DistriNet – KU Leuven

26 June 2017



How to tell a computer
to do what you want?

Public PhD defence

Jesper Cockx

DistriNet – KU Leuven

26 June 2017



How to tell a computer
to do what you want?

• By kicking?

• By yelling?

• By programming?

1 / 28



How to tell a computer
to do what you want?

• By kicking?

• By yelling?

• By programming?

1 / 28



How to tell a computer
to do what you want?

• By kicking?

• By yelling?

• By programming?

1 / 28



How to tell a computer
to do what you want?

• By kicking?

• By yelling?

• By programming?

1 / 28



How to tell a computer
to do what you want?

• By kicking?

• By yelling?

• By programming?

1 / 28



How to tell a computer
to do what you want?

• By kicking?

• By yelling?

• By programming?

1 / 28



How to tell a computer
to do what you want?

• By kicking?

• By yelling?

• By programming?

1 / 28



What is programming?

Programming

=

telling the computer what to do,

using a programming language.

Examples: C, Java, JavaScript, Python,

SQL, MatLab, Haskell, ML, Agda.

2 / 28



What is programming?

Programming

=

telling the computer what to do,

using a programming language.

Examples: C, Java, JavaScript, Python,

SQL, MatLab, Haskell, ML, Agda.

2 / 28



What is programming?

Programming

=

telling the computer what to do

,

using a programming language.

Examples: C, Java, JavaScript, Python,

SQL, MatLab, Haskell, ML, Agda.

2 / 28



What is programming?

Programming

=

telling the computer what to do,

using a programming language.

Examples: C, Java, JavaScript, Python,

SQL, MatLab, Haskell, ML, Agda.

2 / 28



What is programming?

Programming

=

telling the computer what to do,

using a programming language.

Examples: C, Java, JavaScript, Python,

SQL, MatLab, Haskell, ML, . . .

Agda.

2 / 28



What is programming?

Programming

=

telling the computer what to do,

using a programming language.

Examples: C, Java, JavaScript, Python,

SQL, MatLab, Haskell, ML, Agda.

2 / 28



Programming is hard

3 / 28



Programming is hard

3 / 28



Programming is hard

3 / 28



1. Why is programming hard?

2. How do type systems help?

3. What is pattern matching?

4. What is homotopy type theory?

5. What did I work on?



1. Why is programming hard?

2. How do type systems help?

3. What is pattern matching?

4. What is homotopy type theory?

5. What did I work on?



Programming is hard

• Computers take everything literally

• The code has to cover all cases

• Many pieces have to fit together

• You don’t get immediate feedback

• Testing can’t find all mistakes

4 / 28



Programming is hard

• Computers take everything literally

• The code has to cover all cases

• Many pieces have to fit together

• You don’t get immediate feedback

• Testing can’t find all mistakes

4 / 28



Programming is hard

• Computers take everything literally

• The code has to cover all cases

• Many pieces have to fit together

• You don’t get immediate feedback

• Testing can’t find all mistakes

4 / 28



Programming is hard

• Computers take everything literally

• The code has to cover all cases

• Many pieces have to fit together

• You don’t get immediate feedback

• Testing can’t find all mistakes

4 / 28



Programming is hard

• Computers take everything literally

• The code has to cover all cases

• Many pieces have to fit together

• You don’t get immediate feedback

• Testing can’t find all mistakes

4 / 28



1. Why is programming hard?

2. How do type systems help?

3. What is pattern matching?

4. What is homotopy type theory?

5. What did I work on?



What is a type system?

A type system is a set of rules that

assign a property called type to var-

ious constructs a computer program

consists of.

The main purpose of a type system

is to reduce possibilities for bugs in

computer programs.

(paraphrased from Wikipedia)

5 / 28



What is a type system?

A type system is a set of rules that

assign a property called type to var-

ious constructs a computer program

consists of.

The main purpose of a type system

is to reduce possibilities for bugs in

computer programs.

(paraphrased from Wikipedia)

5 / 28



What is a type system?

The term a has type T

a : T

donut : Pastry

dragon : Monster

6 / 28



What is a type system?

The term a has type T

a : T
donut : Pastry

dragon : Monster

6 / 28



What is a type system?

The term a has type T

a : T
donut : Pastry

dragon : Monster

6 / 28



Simple type theory (1940)
Base types:

Pastry, Monster, . . .

Function types:

A → B

Function application:

If f : A → B and x : A,

then f x : B

Alonzo

Church

7 / 28



Simple type theory (1940)
Base types:

Pastry, Monster, . . .

Function types:

A → B

Function application:

If f : A → B and x : A,

then f x : B

Alonzo

Church

7 / 28



Simple type theory (1940)
Base types:

Pastry, Monster, . . .

Function types:

A → B

Function application:

If f : A → B and x : A,

then f x : B

Alonzo

Church

7 / 28



How do types help
to write correct code?

eat : Pastry → IO Unit

...

Type error: A Monster is not a Pastry!

8 / 28



How do types help
to write correct code?

eat : Pastry → IO Unit
...

eat donut

Type error: A Monster is not a Pastry!

8 / 28



How do types help
to write correct code?

eat : Pastry → IO Unit
...

eat donut

Type error: A Monster is not a Pastry!

8 / 28



How do types help
to write correct code?

eat : Pastry → IO Unit
...

eat donut

eat dragon

Type error: A Monster is not a Pastry!

8 / 28



How do types help
to write correct code?

eat : Pastry → IO Unit
...

eat donut

eat dragon

Type error: A Monster is not a Pastry!

8 / 28



Dependent type theory (1972)

Per

Martin-Löf

A dependent type is a

family of types, depending

on a term of a base type.

Monster

⇓
small Monster,

large Monster,

. . .

9 / 28



Dependent type theory (1972)

Per

Martin-Löf

A dependent type is a

family of types, depending

on a term of a base type.

Monster

⇓
small Monster,

large Monster,

. . .

9 / 28



1. Why is programming hard?

2. How do type systems help?

3. What is pattern matching?

4. What is homotopy type theory?

5. What did I work on?



Declarative programming

Declarative programming

=

say what you want

,

not how to do it.

10 / 28



Declarative programming

Declarative programming

=

say what you want,

not how to do it.

10 / 28



Declarative programming

That is the very purpose of declara-

tive programming – to make it more

likely that we mean what we say by

improving our ability to say what we

mean.

— Conor McBride (2003)

10 / 28



Pattern matching

Write programs by giving equations:

flavour : Food → Flavour

flavour pizza = cheesy

flavour moelleux = chocolaty

11 / 28



Pattern matching

Write programs by giving equations:

flavour : Food → Flavour

flavour pizza = cheesy

flavour moelleux = chocolaty

11 / 28



Pattern matching

Write programs by giving equations:

flavour : Food → Flavour

flavour pizza = cheesy

flavour moelleux = chocolaty

11 / 28



The language

A purely functional language

. . . for writing programs and proofs

. . . with datatypes and pattern matching

. . . with first-class dependent types

. . . with support for interactive development

Demo time!

12 / 28



The language

A purely functional language

. . . for writing programs and proofs

. . . with datatypes and pattern matching

. . . with first-class dependent types

. . . with support for interactive development

Demo time!

12 / 28



The language

A purely functional language

. . . for writing programs and proofs

. . . with datatypes and pattern matching

. . . with first-class dependent types

. . . with support for interactive development

Demo time!

12 / 28



The language

A purely functional language

. . . for writing programs and proofs

. . . with datatypes and pattern matching

. . . with first-class dependent types

. . . with support for interactive development

Demo time!

12 / 28



The language

A purely functional language

. . . for writing programs and proofs

. . . with datatypes and pattern matching

. . . with first-class dependent types

. . . with support for interactive development

Demo time!

12 / 28



The language

A purely functional language

. . . for writing programs and proofs

. . . with datatypes and pattern matching

. . . with first-class dependent types

. . . with support for interactive development

Demo time!

12 / 28



The language

A purely functional language

. . . for writing programs and proofs

. . . with datatypes and pattern matching

. . . with first-class dependent types

. . . with support for interactive development

Demo time!

12 / 28



Dependent pattern matching
(1992)

By pattern matching, we

can learn something about

the type.

Thierry

Coquand
13 / 28



Dependent pattern matching
(1992)

By pattern matching, we

can learn something about

the type.

ingredients pizza :
List (cheesy Ingredient)

Thierry

Coquand
13 / 28



Checking definitions
by pattern matching

Unification
=

Finding ways to make two terms equal,

by solving equations step by step.

14 / 28



Checking definitions
by pattern matching

Unification
=

Finding ways to make two terms equal

,

by solving equations step by step.

14 / 28



Checking definitions
by pattern matching

Unification
=

Finding ways to make two terms equal,

by solving equations step by step.

14 / 28



Specialization by unification:
The solution rule

We can make x equal to cheesy

,

by replacing x with cheesy everywhere.

ingredients : {x : Flavour} →
x Food → List (x Ingredient)

⇓
ingredients pizza :

List (cheesy Ingredient)

15 / 28



Specialization by unification:
The solution rule

We can make x equal to cheesy,

by replacing x with cheesy everywhere.

ingredients : {x : Flavour} →
x Food → List (x Ingredient)

⇓
ingredients pizza :

List (cheesy Ingredient)

15 / 28



Specialization by unification:
The solution rule

We can make x equal to cheesy,

by replacing x with cheesy everywhere.

ingredients : {x : Flavour} →
x Food → List (x Ingredient)

⇓
ingredients pizza :

List (cheesy Ingredient)

15 / 28



Specialization by unification:
The solution rule

We can make x equal to cheesy,

by replacing x with cheesy everywhere.

ingredients : {x : Flavour} →
x Food → List (x Ingredient)

⇓
ingredients pizza :

List (cheesy Ingredient)

15 / 28



Specialization by unification:
The deletion rule

We can make cheesy equal to cheesy

,

by doing nothing.

amount-of-cheese :

cheesy Food → Amount

⇓
amount-of-cheese pizza : Amount

16 / 28



Specialization by unification:
The deletion rule

We can make cheesy equal to cheesy,

by doing nothing.

amount-of-cheese :

cheesy Food → Amount

⇓
amount-of-cheese pizza : Amount

16 / 28



Specialization by unification:
The deletion rule

We can make cheesy equal to cheesy,

by doing nothing.

amount-of-cheese :

cheesy Food → Amount

⇓
amount-of-cheese pizza : Amount

16 / 28



Specialization by unification:
The deletion rule

We can make cheesy equal to cheesy,

by doing nothing.

amount-of-cheese :

cheesy Food → Amount

⇓
amount-of-cheese pizza : Amount

16 / 28



Specialization by unification:
The conflict rule

cheesy can never be equal to chocolaty

,

so we can safely skip the case.

amount-of-cheese :

cheesy Food → Amount

̸⇓

No case for amount-of-cheese moelleux!

17 / 28



Specialization by unification:
The conflict rule

cheesy can never be equal to chocolaty,

so we can safely skip the case.

amount-of-cheese :

cheesy Food → Amount

̸⇓

No case for amount-of-cheese moelleux!

17 / 28



Specialization by unification:
The conflict rule

cheesy can never be equal to chocolaty,

so we can safely skip the case.

amount-of-cheese :

cheesy Food → Amount

̸⇓

No case for amount-of-cheese moelleux!

17 / 28



Specialization by unification:
The conflict rule

cheesy can never be equal to chocolaty,

so we can safely skip the case.

amount-of-cheese :

cheesy Food → Amount

̸⇓

No case for amount-of-cheese moelleux!

17 / 28



1. Why is programming hard?

2. How do type systems help?

3. What is pattern matching?

4. What is homotopy type theory?

5. What did I work on?



Homotopy type theory

Homotopy type theory

=

a new type system with weirdly shaped types

,

such as donuts

and pancakes.

18 / 28



Homotopy type theory

Homotopy type theory

=

a new type system with weirdly shaped types,

such as donuts

and pancakes.

18 / 28



Homotopy type theory

Homotopy type theory

=

a new type system with weirdly shaped types,

such as donuts and pancakes.

18 / 28



The univalence axiom (2009)

Vladimir

Voevodsky

“Isomorphic types

can be identified.”

(A ≡ B) ≃ (A ≃ B)

19 / 28



The univalence axiom (2009)

Vladimir

Voevodsky

“Isomorphic types

can be identified.”

(A ≡ B) ≃ (A ≃ B)

19 / 28



The univalence axiom (2009)

Vladimir

Voevodsky

“Isomorphic types

can be identified.”

(A ≡ B) ≃ (A ≃ B)

19 / 28



The univalence axiom (2009)

Flavour is equal to Bool in two ways:

cheesy chocolaty

Flavour

true false

Bool

20 / 28



The univalence axiom (2009)

Flavour is equal to Bool in two ways:

cheesy chocolaty

Flavour

true false

Bool

20 / 28



The univalence axiom (2009)

Flavour is equal to Bool in two ways:

cheesy chocolaty

Flavour

true false

Bool

20 / 28



The univalence axiom (2009)

Flavour is equal to Bool in two ways:

cheesy chocolaty

Flavour

true false

Bool

20 / 28



The univalence axiom (2009)

Flavour is equal to itself in two ways:

cheesy chocolaty

Flavour

cheesy chocolaty

Flavour

21 / 28



The univalence axiom (2009)

Flavour is equal to itself in two ways:

cheesy chocolaty

Flavour

cheesy chocolaty

Flavour

21 / 28



1. Why is programming hard?

2. How do type systems help?

3. What is pattern matching?

4. What is homotopy type theory?

5. What did I work on?



My process of working on Agda

1. Discover a new problem

2. Search for the cause of the problem

3. Think of a solution

4. Implement the solution

5. Prove that the solution works

6. Write a paper about the solution

22 / 28



My process of working on Agda

1. Discover a new problem

2. Search for the cause of the problem

3. Think of a solution

4. Implement the solution

5. Prove that the solution works

6. Write a paper about the solution

22 / 28



My process of working on Agda

1. Discover a new problem

2. Search for the cause of the problem

3. Think of a solution

4. Implement the solution

5. Prove that the solution works

6. Write a paper about the solution

22 / 28



My process of working on Agda

1. Discover a new problem

2. Search for the cause of the problem

3. Think of a solution

4. Implement the solution

5. Prove that the solution works

6. Write a paper about the solution

22 / 28



My process of working on Agda

1. Discover a new problem

2. Search for the cause of the problem

3. Think of a solution

4. Implement the solution

5. Prove that the solution works

6. Write a paper about the solution

22 / 28



My process of working on Agda

1. Discover a new problem

2. Search for the cause of the problem

3. Think of a solution

4. Implement the solution

5. Prove that the solution works

6. Write a paper about the solution

22 / 28



Pattern matching without K

Problem. Dependent pattern matching

doesn’t work in homotopy type theory.

Flavour is equal to itself in two ways,

so we cannot use the deletion rule!

My contribution. A new version of pattern

matching that doesn’t rely on deletion.

23 / 28



Pattern matching without K

Problem. Dependent pattern matching

doesn’t work in homotopy type theory.

Flavour is equal to itself in two ways

,

so we cannot use the deletion rule!

My contribution. A new version of pattern

matching that doesn’t rely on deletion.

23 / 28



Pattern matching without K

Problem. Dependent pattern matching

doesn’t work in homotopy type theory.

Flavour is equal to itself in two ways,

so we cannot use the deletion rule!

My contribution. A new version of pattern

matching that doesn’t rely on deletion.

23 / 28



Pattern matching without K

Problem. Dependent pattern matching

doesn’t work in homotopy type theory.

Flavour is equal to itself in two ways,

so we cannot use the deletion rule!

My contribution. A new version of pattern

matching that doesn’t rely on deletion.

23 / 28



Proof-relevant unification

Problem. Unification doesn’t consider the

ways in which terms can be made equal.

We call these ‘ways to make terms equal’

equality proofs.

My contribution. A unification algorithm

that takes equality proofs into account.

24 / 28



Proof-relevant unification

Problem. Unification doesn’t consider the

ways in which terms can be made equal.

We call these ‘ways to make terms equal’

equality proofs.

My contribution. A unification algorithm

that takes equality proofs into account.

24 / 28



Proof-relevant unification

Problem. Unification doesn’t consider the

ways in which terms can be made equal.

We call these ‘ways to make terms equal’

equality proofs.

My contribution. A unification algorithm

that takes equality proofs into account.

24 / 28



Eliminating pattern matching

Problem. How can we be sure pattern

matching doesn’t cause any problems?

In a standard type theory, we only have

datatype eliminators.

Main theorem. Any definition by pattern

matching can be translated to eliminators.

Proof. See my thesis.

25 / 28



Eliminating pattern matching

Problem. How can we be sure pattern

matching doesn’t cause any problems?

In a standard type theory, we only have

datatype eliminators.

Main theorem. Any definition by pattern

matching can be translated to eliminators.

Proof. See my thesis.

25 / 28



Eliminating pattern matching

Problem. How can we be sure pattern

matching doesn’t cause any problems?

In a standard type theory, we only have

datatype eliminators.

Main theorem. Any definition by pattern

matching can be translated to eliminators.

Proof. See my thesis.

25 / 28



Eliminating pattern matching

Problem. How can we be sure pattern

matching doesn’t cause any problems?

In a standard type theory, we only have

datatype eliminators.

Main theorem. Any definition by pattern

matching can be translated to eliminators.

Proof. See my thesis.

25 / 28



From pattern matching . . .

antisym : (x y : N) → (x ≤ y) → (y ≤ x) → (x ≡ y)
antisym .zero .zero (lz ⌊zero⌋) (lz ⌊zero⌋) = refl

antisym .(suc k) .(suc l) (ls k l u) (ls .l .k v)
= cong suc (antisym k l u v)

26 / 28



. . . to eliminators.

antisym : (x y : N) → (x ≤ y) → (y ≤ x) → (x ≡ y)
antisym = elim≤ (λx y u. y ≤ x → x ≡N y)
(λl v . elim≤ (λy x v . x ≡N zero → x ≡N y)
(λx e. e)
(λl k e. elim⊥ (suc k ≡N suc l) (noConfN (suc k) zero e))
l zero v refl)

(λk l H v . cong suc (H
(elim≤ (λx y . x ≡N suc l → u ≡N suc k → l ≤ k)
(λl ′ e . elim⊥ (l ≤ k) (noConfN zero (suc l) e))
(λk ′ l ′ v ′ e1 e2. subst (λn. n ≤ k)
(noConfN (suc k ′) (suc l) e1)
(subst (λm. k ′ ≤ m) (noConfN (suc l ′) (suc k) e2) v

′))
(suc l) (suc k) v refl refl)))

27 / 28



Take-home message

A simple type system can stop you

from trying to eat a dragon. . .

. . . but if you don’t like chocolate on

your pizza, you need dependent types.

28 / 28



Take-home message

A simple type system can stop you

from trying to eat a dragon. . .

. . . but if you don’t like chocolate on

your pizza, you need dependent types.

28 / 28


