
ZU064-05-FPR paper April 17, 2018 16:19

Under consideration for publication in J. Functional Programming 1

Proof-relevant unification
Dependent pattern matching with only the axioms of your type theory

Jesper Cockx and Dominique Devriese

Abstract

Dependently typed languages such as Agda, Coq and Idris use a syntactic first-order unifi-
cation algorithm to check definitions by dependent pattern matching. However, standard
unification algorithms implicitly rely on principles such as uniqueness of identity proofs and
injectivity of type constructors. These principles are inadmissible in many type theories,
particularly in the new and promising branch known as homotopy type theory (HoTT). As
a result, programs and proofs in these new theories cannot make use of dependent pattern
matching or other techniques relying on unification, and are as a result much harder to
write, modify, and understand.

This paper proposes a proof-relevant framework for reasoning formally about unification
in a dependently typed setting. In this framework, unification rules compute not just a
unifier but also a corresponding soundness proof in the form of an equivalence between two
sets of equations. By rephrasing the standard unification rules in a proof-relevant manner,
they are guaranteed to preserve soundness of the theory. In addition, it enables us to safely
add new rules that can exploit the dependencies between the types of equations, such as
rules for eta-equality of record types and higher-dimensional unification rules for solving
equations between equality proofs.

Using our framework, we implemented a complete overhaul of the unification algorithm
used by Agda. As a result, we were able to replace previous ad hoc restrictions with
formally verified unification rules, fixing a substantial number of bugs in the process.
In the future, we may also want to integrate new principles with pattern matching, for
example the higher inductive types introduced by HoTT. Our framework also provides a
solid basis for such extensions to be built on.

1 Introduction

Unification is a generic method for solving symbolic equations algorithmically. It
is a fundamental algorithm used in many areas in computer science, such as logic
programming, type inference, term rewriting, automated theorem proving, and nat-
ural language processing. In particular, type checkers for languages with dependent
pattern matching (Coquand, 1992) such as Agda (Norell, 2007), the Equations
package for Coq (Sozeau, 2010), Idris (Brady, 2013), and Lean (de Moura, Kong,
Avigad, van Doorn, and von Raumer, 2015) use first-order unification to determine
whether a set of constructors covers all possible cases.1

1 They also use a different higher-order unification algorithm to solve constraints and
derive the values of implicit arguments, but this is not the focus of this paper.

ZU064-05-FPR paper April 17, 2018 16:19

2 J. Cockx and D. Devriese

Although first-order unification is well understood in the untyped or simply
typed setting, its interaction with dependent types has been mysterious so far.
In particular, some standard unification rules are no longer valid in the presence
of universes and indexed datatypes, two common features of dependently typed
languages. Examples of how this can go wrong follow later in this introduction, but
we start with an example where first-order unification works as intended.

Example 1. Consider the type of length-indexed vectors Vec A n (i.e. the type
of vectors containing n elements of type A) where nil : Vec A zero is the empty
vector and cons n x xs is the vector with head x : A and tail xs : Vec A n. We can
define a safe tail function on vectors by dependent pattern matching as follows:

tail : (n : N) → Vec A (suc n) → Vec A n

tail .m (cons m x xs) = xs (1)

The function tail needs only be defined in the case for (cons n x xs): the case
for nil is impossible because unification of zero (the length of nil) with suc n

reports an absurdity. This is all the better because there is no way to take the
tail of an empty vector! In the cases where unification succeeds, it can also teach
us something extra about the type of the right-hand side. For example, in the
remaining case tail .m (cons m x xs), unification of suc m with suc n tells us that
n must be equal to m, as indicated by the so-called inaccessible pattern .m. This
method of solving equations to either gain more information about the type of
the right-hand side or to derive an absurdity is called specialization by unification
(Goguen, McBride, and McKinna, 2006).

In a language that has dependent pattern matching as a primitive such as Agda
(Norell, 2007), the particularities of the unification rules used become crucial for the
language’s notion of equality. Indeed, we can match on a proof of u ≡A v with the
constructor refl precisely when the unification algorithm is able to unify u with v.
For example, if the unification algorithm is allowed to delete reflexive equations of
the form u = u, then this allows us to prove uniqueness of identity proofs (UIP) by
pattern matching (Coquand, 1992). So it is important to have a solid theoretical
understanding of unification in order to study these languages.

When dependently typed terms themselves become the subject of unification, the
unification algorithm can encounter heterogeneous equations: equations in which the
left- and right-hand side have different types, that only become equal after previous
equations have been solved. For example, consider the type ΣA:SetA with elements
(A,a) packing a type A together with an element a of that type. By injectivity of
the pair constructor _,_, an equation (A,a) = (B,b) can be simplified to A = B

and a = b, but the type of the second equation is now heterogeneous since a : A

and b : B. Because traditional unification algorithms only look at the syntax of the
terms they are trying to unify, they cause problems when applied to heterogeneous
equalities.

Example 2. Consider the equation (Bool,true) = (Bool,false) of type ΣA:SetA.
By injectivity of the constructor _,_, we can simplify this equation to the two
equations Bool = Bool and true = false and then derive an absurdity from the

ZU064-05-FPR paper April 17, 2018 16:19

Proof-relevant unification 3

second equation. However, this line of reasoning depends on the principle of equality
of second projections, which is equivalent to UIP (Streicher, 1993). In a univalent
theory such as HoTT (The Univalent Foundations Program, 2013) it is actually
possible to prove that (Bool,true) = (Bool,false) of type ΣA:SetA under the
equivalence between Bool and itself swapping true and false, refuting the use
of injectivity above. So the naive injectivity rule above cannot be used in such a
theory.

On the other hand, consider the exact same unification problem (Bool,true) =
(Bool,false), but this time the type of the equation is a non-dependent product
Set × Bool (defined as Σ_:SetBool). In this case it is possible to derive an absurdity,
even in a univalent theory. However, a unification algorithm can never distinguish
between these two equations unless it takes their types into account.

Example 3. Suppose we define two copies Bool1 and Bool2 of the boolean type
with constructors true1, false1 and true2, false2 respectively, then it is unsound
to apply the conflict rule on the (heterogeneous) equation true1 = false2. Doing
so would allow us to prove that Bool1 ̸≡Set Bool2, again contradicting univalence.

Example 4. The problem is not limited to theories that do not support UIP, either.
Problems can also occur when we use a naive injectivity rule for constructors of
indexed datatypes. Let A be an arbitrary type and Singleton : A → Set be an
indexed datatype with one constructor sing : (x : A) → Singleton x and consider
the unification problem (Singleton s,sing s) = (Singleton t,sing t). If we allow
the injectivity rule to simplify sing x = sing y to x = y then this problem can
be solved with solution y 7→ x. However, this would allow us to prove injectivity
of the type constructor Singleton. In general, injectivity of type constructors is
an undesirable property because it is not only incompatible with the law of the
excluded middle (Theorem 93), but also with univalence (Theorem 92) and with
an impredicative universe of propositions (Miquel, 2010). In particular, if we let
A = Set → Set in the above example then the injectivity of the Singleton type
constructor allows us to refute the law of the excluded middle.

The unification algorithm used by Agda 2.4 (and older) for checking definitions
by dependent pattern matching contains a number of restrictions to avoid bad
unification steps like in the above examples. One of these restrictions is to not delete
equations of the form u = u if the theory doesn’t support UIP (Cockx, Devriese,
and Piessens, 2016a). The rule for simplifying equations of the form c u1 . . . un =
c v1 . . . vn is also restricted in case c is a constructor of an indexed datatype.
However, these ad hoc restrictions make the unification algorithm hard to prove
correct, modify, or extend.

Contributions. In this paper, we give a typed and proof-relevant account of the
first-order unification algorithm used for checking definitions by dependent pattern
matching, in order to solve the problems with untyped unification in general and
put unification in type theory back on a solid theoretical foundation. Concretely,
we make the following contributions:

ZU064-05-FPR paper April 17, 2018 16:19

4 J. Cockx and D. Devriese

• We give a new representation of unification rules and most general unifiers in a
dependently typed setting as equivalences between solution spaces represented
by telescopic systems of equations, serving as evidence of their soundness
(Section 3). This allows us to use type information to decide when a unification
rule is applicable and avoid the use of any axioms such as UIP.

• We show how the standard first-order unification rules used by Goguen et al.
(2006) can be implemented as equivalences (Section 4). We extend these rules
to the case of indexed families of datatypes. These rules work on heterogeneous
equations and can solve multiple equations at once, making them more general
than the ones in our previous work (Cockx, Devriese, and Piessens, 2014). We
also show how to extend the unification algorithm with rules for η-equality of
record types.

• To guarantee good computational properties of the unifiers produced by our
unification algorithm, we introduce the notion of a strong unification rule
(Section 5). We show that all the unification rules used by our algorithm are
strong ones, except for the (optional) deletion rule.

• We show how to make the injectivity rule for indexed datatypes more general
by a technique called higher-dimensional unification (Section 6). In particu-
lar, this technique formalizes the concept of forced constructor arguments, a
heuristic that allows unification to skip certain constructor arguments if they
are determined by the type of the constructor (Corollary 67).

• We reimplement the unification algorithm used by Agda for pattern matching
on indexed families of datatypes based on our framework for proof-relevant
unification, eliminating the previous ad-hoc restrictions and fixing a number
of bugs in the process (Section 8). This new unification algorithm has been
released as part of Agda version 2.5.12.

This paper is based on the work of two conference papers (Cockx et al., 2016a;
Cockx and Devriese, 2017), as well as the first author’s PhD thesis (Cockx, 2017).
Compared to the conference papers, we made the following additions:

• We give a new definition of a strong unifier (Definition 53). Compared the
previous definition (Cockx et al., 2016a), this definition is more natural to
work with and allows us to prove that functions constructed by unification
satisfy the expected computational behaviour (Lemma 56), while it is still
satisfied by all the unification rules.

• We prove that lifting a strong unifier results again in a strong unifier (Lemma 73).
• We give a formal proof that (a suitably internalized notion of) a most general

unifier is really equivalent to an equivalence (Lemma 17 and Lemma 18).
• The presentation of many examples, definitions, lemmas and theorems was

improved compared to the conference version.

2 Available from http://wiki.portal.chalmers.se/agda/.

http://wiki.portal.chalmers.se/agda/

ZU064-05-FPR paper April 17, 2018 16:19

Proof-relevant unification 5

Overview. First, we give an overview of the type theory we work in, including
syntax and typing rules for telescopes and telescopic equality (Section 2). We
start the paper proper with a general description of our framework for reasoning
about unification in a dependently typed setting (Section 3). We phrase the basic
unification rules in this framework and show how our algorithm can easily be ex-
tended by adding more unification rules (Section 4). We pay special attention to the
computational behaviour of unification rules when viewed as terms in type theory
(Section 5). To augment the power of the unification rules for indexed datatypes,
we introduce a new technique called higher-dimensional unification (Section 6).
We show that our unification rules are conservative over standard type theory
by translating them to the standard datatype eliminators (Section 7). We also
discuss the implementation of our unification algorithm in Agda (Section 8). We
finish the paper with a discussion of related work (Section 9) and future work
(Section 10). The appendix contains a proof of the incompatibility between injective
type constructors on one hand and univalence and the law of the excluded middle
on the other hand (Appendix A).

2 Preliminaries

We base ourselves on Martin-Löf’s Intuitionistic Theory of Types with dependent
function types, inductive families, and universes (Martin-Löf, 1972, 1984). However,
the results in this paper should be equally applicable in other type theories with
inductive families such as the Unified Theory of Dependent Types (UTT) by Luo
(1994) or the Calculus of Inductive Constructions (CIC) used by Coq. The main
reason we do not use these more expressive calculi is because we do not need their
additional features, and not using them makes our results more generally applicable.

2.1 Basic syntax and typing rules

We use a syntax closely resembling that of Agda (Figure 1). Types and terms share
the same syntactic class. As a convention, types are indicated by capital letters
A, B, . . . and other terms by small letters u, v,. . . Aside from the standard type-
theoretic constructs, the syntax includes datatypes D, constructors c, and defined
functions f.

The set of variables that occur freely in u is indicated by FV (u). Simultaneous
substitution u[x1 7→ v1, . . . ,xn 7→ vn] is defined by simultaneously replacing all free
occurrences of x1, . . . ,xn in u by v1, . . . ,vn, avoiding variable capture by renaming
bound variables when necessary.

The basic rules for context validity, typing, and definitional equality are given in
Figure 2, Figure 3, and Figure 4 respectively. In addition to these rules, we assume
one rule for each datatype D, constructor c, and defined function f, asserting that
the symbol has its declared type in any valid context.

ZU064-05-FPR paper April 17, 2018 16:19

6 J. Cockx and D. Devriese

Γ ::= () (empty context)
| Γ(x : A) (context extension)

A,B,u,v ::= x (variable)
| u v (application)
| λx.u (lambda abstraction)
| (x : A) → B (dependent function type)
| Setℓ (universe ℓ)
| D (inductive datatype)
| c (data constructor)
| f (defined function)

Figure 1: The syntax for contexts, types, and terms.

() context

Γ ⊢ A : Setℓ x /∈ F V (Γ)
Γ(x : A) context

Figure 2: The typing rules for valid contexts.

2.2 Inductive families of datatypes.

Inductive families of datatypes are (dependent) types inductively defined by a
number of constructors (Dybjer, 1991). Inductive families can also have parameters
and indices. In the syntax (Figure 1), datatypes are written D and constructors c.

Γ context x : A ∈ Γ
Γ ⊢ x : A

Γ ⊢ u : A1 Γ ⊢ A1 = A2 : Setℓ

Γ ⊢ u : A2

Γ context
Γ ⊢ Setℓ : Setℓ+1

Γ ⊢ A : Setℓ Γ(x : A) ⊢ B : Setℓ′

Γ ⊢ (x : A) → B : Setmax(ℓ,ℓ′)

Γ(x : A) ⊢ u : B

Γ ⊢ λx. u : (x : A) → B

Γ ⊢ f : (x : A) → B Γ ⊢ u : A

Γ ⊢ f u : B[x 7→ u]

Figure 3: The core typing rules, including dependent function types (x : A) → B

and an infinite hierarchy of universes Set0,Set1, Set2,. . .

ZU064-05-FPR paper April 17, 2018 16:19

Proof-relevant unification 7

Γ(x : A) ⊢ u : B Γ ⊢ v : A

Γ ⊢ (λx. u) v = u[x 7→ v] : B[x 7→ v]

Γ ⊢ u : A
Γ ⊢ u = u : A

Γ ⊢ u1 = u2 : A

Γ ⊢ u2 = u1 : A

Γ ⊢ u1 = u2 : A Γ ⊢ u2 = u3 : A

Γ ⊢ u1 = u3 : A

Γ ⊢ u1 = u2 : A1 Γ ⊢ A1 = A2 : Setℓ

Γ ⊢ u1 = u2 : A2

Γ ⊢ A1 = A2 : Setℓ Γ(x : A1) ⊢ B1 = B2 : Setℓ′

Γ ⊢ (x : A1) → B1 = (x : A2) → B2 : Setmax(ℓ,ℓ′)

Γ(x : A) ⊢ u1 = u2 : B

Γ ⊢ λx. u1 = λx. u2 : (x : A) → B

Γ ⊢ f1 = f2 : (x : A) → B Γ ⊢ u1 = u2 : A

Γ ⊢ f1 u1 = f2 u2 : B[x 7→ u1]

Figure 4: The rules for definitional equality, including rules for β-equality, reflexivity,
symmetry, transitivity, and congruence.

Example 5. N is defined as an inductive datatype with the constructors zero : N
and suc : N → N.

Example 6. Vec A n is an inductive family with one parameter A : Set, one index
n : N, and two constructors nil : Vec A zero and cons : (n : N) → A → Vec A n →
Vec A (suc n).

In the original definition of indexed families by Dybjer (1991), parameters are
required to occur uniformly everywhere in the definition of the datatype, while
indices can vary from constructor to constructor. Agda is less restrictive and also
allows parameters to occur non-uniformly in the types of recursive constructor
arguments, but not in their return types. The work in this paper is valid for both
variants of the definition.

The values of the parameters are not arguments to the constructor c, not even
implicitly. This is intentional: requiring constructors to remember their parameters
is impractical from an implementation perspective, so we make sure they are never
needed for the unification algorithm described in this paper.

2.3 The identity type

The propositional equality type x ≡A y expresses the property that x and y are equal
elements of type A (Martin-Löf, 1984). The basic way to prove a propositional
equality is by using refl : x ≡A x (short for reflexivity); for example refl is a

ZU064-05-FPR paper April 17, 2018 16:19

8 J. Cockx and D. Devriese

proof of zero ≡N zero. The identity type comes equipped with a number of useful
reasoning principles besides refl:

• sym : {x y : A} → x ≡A y → y ≡A x expresses the symmetry of propositional
equality.3

• trans : {x y z : A} → x ≡A y → y ≡A z → x ≡A z expresses the transitivity of
propositional equality.

• cong : (f : A → B) → {x y : A} → x ≡A y → f x ≡A f y expresses congruence:
applying a function to equal arguments gives equal results.

• subst : (P : A → Set) → {x y : A} → x ≡A y → P x → P y expresses substitu-
tion: if two types are equal up to some propositionally equal terms, then we
can transport elements from one type to the other.

In particular, if we take A = Set and P = λX. X in the type of subst, the result
is a function of type (X Y : Set) → (X ≡Set Y) → X → Y . This function is often
called coerce because it allows us to coerce a term from one type to another if the
types are propositionally equal.

The standard eliminator for the identity type x ≡A y is called the J rule:

J : {x : A}(P : (y : A) → x ≡A y → Set)(p : P x refl)(y : A)(e : x ≡A y) → P y e (2)

This rule is a generalization of subst where the type P is allowed to depend on the
given equality proof. Using only J, it is possible to define sym, trans, cong, and
subst, and coerce.

We will also rely on the concept of pointwise equality between two functions.

Definition 7 (Pointwise equality). Let f,g : (x : A) → B x be two functions. The
pointwise equality type f

.= g is defined as (x : A) → f x ≡B x g x. Similarly, if
σ,τ : ∆ → Γ are two telescope mappings then σ

.= τ is defined as (x̄ : ∆) → σ x̄ ≡Γ τ x̄.

In case we have access to functional extensionality, pointwise equality becomes
equivalent with regular propositional equality. However, we don’t rely on functional
extensionality for any of the work in this paper.

2.4 Equivalences

The central concept we use to represent unification rules in this paper is the notion
of an equivalence. We use Definition 4.3.1 from The Univalent Foundations Program
(2013):

Definition 8. A function f : A → B is an equivalence if we have two functions
g1 : B → A and g2 : B → A and proofs that they are respectively a left and a right
inverse of f (i.e. terms of type (x : A) → g1 (f x) ≡A x and (y : B) → f (g2 y) ≡B y).

3 As in Agda, we use two function spaces (x : A) → B and {x : A} → B for explicit and
implicit functions respectively. The values of implicit arguments can always be deduced
from the types of the other arguments, so we omit them when applying the function. For
example, we write sym e instead of sym x y e. In case we do want to make these arguments
explicit, we write them between curly brackets as well, for example sym {x} {y} e.

ZU064-05-FPR paper April 17, 2018 16:19

Proof-relevant unification 9

Γ context (Tel-empty)
Γ ⊢ () telescope

Γ ⊢ A : Setℓ Γ(x : A) ⊢ ∆ telescope
(Tel-extend)

Γ ⊢ (x : A)∆ telescope

Γ context (List-empty)
Γ ⊢ () : ()

Γ ⊢ u : A Γ ⊢ ū : ∆[x 7→ u]
(List-extend)

Γ ⊢ u; ū : (x : A)∆

Figure 5: The typing rules for telescopes.

Two types A and B are equivalent if there exists an equivalence from A to B. The
type of all equivalences f : A → B is written as A ≃ B.

If f : A ≃ B is an equivalence, then we also write f for the function f : A → B.
We write linv f for the function g1 (for the left inverse of f), and isLinv f for the
proof of (x : A) → linv f (f x) ≡A x. Similarly, rinv f stands for the function g2
and isRinv f for the proof of (y : B) → f (rinv f y) ≡B y. For many equivalences,
linv f and rinv f are definitionally equal. In that case we write f−1 for their
common value.

The notion of equivalence plays a central role in Voevodsky’s univalence axiom.
However, our work doesn’t require any primitives on top of basic intuitionistic
type theory (such as univalence). In fact, our work can be equally well understood
without any knowledge of HoTT, and is still useful in a setting that assumes entirely
different axioms (such as the law of the excluded middle from classical logic).

2.5 Telescopes

A telescope is a list of typed variable bindings where each type can depend on
the previous variables (de Bruijn, 1991). For example, (m : N)(p : m ≡N zero) is
a telescope of length 2. Telescopes are much like contexts in the sense that they
consist of a sequence of variable typings of the form (x : A). However, they are used
for different purposes so it is best to keep the two concepts separate. While contexts
grow to the right, telescopes grow to the left. One way to think about a telescope
is as the tail of a context: while a context must always be closed, a telescope can
contain free variables from an ambient context, and the telescope can be added to
that context to produce a new, extended context.

If there are multiple variables of the same type after each other, then we usually
only write the type once. For example, (x y z : A) stands for the telescope (x : A)(y :
A)(z : A).

Telescopes are used as the type of a list of terms. A list of terms is indicated by
a bar above the letter, for example t̄ = (zero;refl) : (m : N)(p : m ≡N zero). We
also write () for the empty list of terms. The typing rules for telescopes and lists of
terms are given in Figure 5.

ZU064-05-FPR paper April 17, 2018 16:19

10 J. Cockx and D. Devriese

Telescopes are useful for various other purposes: a telescope can be used

. . . as an extension to the context: Γ∆ is defined by Γ() := Γ and Γ((x : A)∆) :=
(Γ(x : A))∆. In particular, if ∆ is a valid telescope in the empty context then
∆ can be used as the context ()∆.

. . . as the names of the variables of a parallel substitution: u[∆ 7→ v̄] is defined
by substituting the values v̄ for the variables of ∆ in u.

. . . as the argument types of an iterated function type: ∆ → B is defined by
() → B := B and (x : A)∆ → B := (x : A) → (∆ → B).

. . . in the definition of an iterated lambda abstraction: λ∆. u is defined by λ(). u :=
u and λ((x : A)∆).u := λx. (λ∆. u).

. . . as a list of the variables in the telescope: f ∆ is defined by f () := f and
f ((x : A)∆) := (f x) ∆.

These various interpretations of telescopes can be used together. For example, if
Γ ⊢ f : ∆ → B then we have Γ∆ ⊢ f ∆ : B.

If D is a datatype with indices Ξ, we write D for the telescope (ū : Ξ)(x : D ū), for
example Vec A = (n : N)(x : Vec A n).

A function between telescopes is called a telescope mapping. A telescope mapping
f : ∆ → ∆′ maps variables of type ∆ to values of type ∆′. Telescope mappings
generalize the concept of a (non-dependent) function to multiple inputs and multiple
outputs. They could be encoded as normal functions by representing a telescope by
an iterated Σ-type, but we find it useful to define them as a first-class concept.

Another way to view a telescope mapping f : ∆ → ∆′ is as a typed variant of a
substitution. In particular, if we have a term u : A with free variables coming from
∆′, then we can apply the substitution [∆′ 7→ f ∆] to it, replacing the variables
from ∆′ by the values given by f ∆, to get a term u′ with free variables coming
from ∆.

Example 9. Suppose ∆ = (k :N) and ∆′ = (m n :N) and let f k = (zero;suc k). We
have ∆′ ⊢ m+n :N, so applying the substitution [∆′ 7→ f ∆] = [m 7→ zero;n 7→ suc k]
gives us ∆ ⊢ zero+suc k : N.

When we use a telescope mapping f : ∆ → ∆′ as a substitution, the substitution
goes in the ‘opposite’ direction: it takes terms with free variables ∆′ to terms with
free variables ∆. In this case, the type of f is often written as ∆ ⊢ f : ∆′. However,
since in this paper we use telescope mappings mainly as functions rather than as
substitutions, we stick to the notation f : ∆ → ∆′.

2.6 Heterogeneous and telescopic equality

The identity type x ≡A y only allows equations between elements of the same
type, so we still need a way to represent heterogeneous equations. For this purpose,
McBride (2000) introduced a heterogeneous equality type x A

∼=B y where x : A and
y : B can be of different types, but x A

∼=B y can only be proven if the types A and
B are actually the same. Using this type, a unification problem can be represented
by the (non-dependent) product of the individual equalities. By maintaining the

ZU064-05-FPR paper April 17, 2018 16:19

Proof-relevant unification 11

invariant that the leftmost equation is always homogeneous, the equations can be
solved step by step, from left to right. However, using this heterogeneous equality
type causes a number of problems:

• Turning a proof of heterogeneous equality between elements of the same type
into a homogeneous one requires UIP. So in a theory without UIP (such as
HoTT), heterogeneous equalities are worthless.

• Using heterogeneous equality causes information about dependencies between
the equations to be lost. For example, if we have two equations Bool Set∼=Set

Bool and true Bool∼=Bool false, there is no way to see whether the type of
the second equation depends on the first. Example 2 shows that both cases
are possible, and that it is essential to know the difference!

• Finally, it is unsound to postpone an equation and continue with the next
one when working with heterogeneous equality, since this allows us to prove
things such as injectivity of certain type constructors (Example 4).

To avoid these problems and keep track of the dependencies between equations,
we use the concept from HoTT of an equality “laying over” another one. There are
multiple equivalent ways to define this type; for the sake of simplicity we use the
following definition in terms of the regular homogeneous equality by substituting
on the left:

Definition 10. Let e : s ≡A t and P : (x : A) → Set. We define the type u ≡e
P v of

equality proofs between u : P s and v : P t laying over e by

u ≡e
P v = (subst P e u) ≡(P t) v (3)

In practice, the exact definition of u ≡e
P v doesn’t have much impact, what’s

important is that (u ≡refl
P v) = (u ≡P s v) whenever s = t. An alternative definition

would be to define u ≡e
P v as a new datatype indexed over s, t, e, u, and v with a

single constructor refl : u ≡refl
P u. Yet another alternative definition would be to

define the type u ≡e
P v by matching on e, giving (u ≡refl

P v) = u ≡P s v in case e

is refl. We prefer our definition to these more symmetric alternatives because it
doesn’t require auxiliary datatypes or large eliminations.

We often write u ≡P e v instead of u ≡e
P v. For example, if e : m ≡N n and u :

Vec A m and v : Vec A n are two vectors, then we may form the type u ≡Vec A e v.
This notation is inspired by cubical type theory (Cohen, Coquand, Huber, and
Mörtberg, 2016), where a function f : A → B is automatically lifted to a function
x ≡A y → f x ≡B f y. In our setting it is merely a convenient abuse of notation.

Using this notion of an equality proof laying over another, we can define a version
of cong that works for dependent functions:

dcong : (f : (x : A) → B x) → {x y : A} → (e : x ≡A y) → f x ≡B e f y

dcong f refl = refl
(4)

Telescopic equality is defined as follows:

ZU064-05-FPR paper April 17, 2018 16:19

12 J. Cockx and D. Devriese

Definition 11. Let ∆ be a telescope and Γ ⊢ s̄, t̄ : ∆. We define a new telescope
(ē : s̄ ≡∆ t̄) called the telescopic equality between s̄ and t̄ inductively on the length
of ∆ by () ≡() () = () and

(e; ē : s; s̄ ≡(x:A)∆ t; t̄) = (e : s ≡A t)(ē : s̄ ≡∆[x 7→e] t̄) (5)

For each t̄ : ∆, we define refl : t̄ ≡∆ t̄ as refl; . . . ;refl.

For example, ((e1;e2) : (m;u) ≡(x:N)(y:Vec A x) (n;v)) stands for the telescope (e1 :
m ≡N n)(e2 : u ≡Vec A e1 v).

Lemma 12. We have the telescopic equality eliminator

J : (P : (s̄ : ∆) → r̄ ≡ s̄ → Seti) → P r̄ refl → (s̄ : ∆) → (ē : r̄ ≡ s̄) → P s̄ ē (6)

Construction. We define J by eliminating the equations ē from left to right using
J:

J P p () () = p

J P p (s; s̄) (e; ē) = J (λs;e. (s̄ : ∆)(ē : r̄ ≡ s̄) → P (s; s̄) (e; ē))
(λs̄; ē. J (λs̄; ē. P (r; s̄) (refl; ē)) p ē)
e s̄ ē

(7)

Each elimination of an equation ei : ri ≡ si fills in refl for all occurrences of ei,
allowing the next equations to reduce and in particular ensuring that the following
equation is of the correct form.

Using J, we also define telescopic versions of subst, cong and dcong:

subst : (P : ∆ → Setℓ) → {ū v̄ : ∆} → ū ≡∆ v̄ → P ū → P v̄

cong : (f : ∆ → T) → {ū v̄ : ∆} → ū ≡∆ v̄ → f ū ≡T f v̄

dcong : (f : (x̄ : ∆) → T x̄) → {ū v̄ : ∆} → (ē : ū ≡∆ v̄) → f ū ≡T ē f v̄

(8)

3 Unification in dependent type theory

In this section, we describe our new framework for unification of dependently
typed data. First, we represent the input of the unification problem by a tele-
scopic equality where each type in this telescope corresponds to one equation of
the unification problem (Section 3.1). The output of the unification algorithm
is then an equivalence between the original telescope of equations and a trivial
one (Section 3.2). This equivalence contains not only the substitution computed
by the unification algorithm, but also evidence that the output is sound. The
unification algorithm itself works by successively applying unification rules, which
are represented by equivalences between two telescopes of equations (Section 3.3).
The aggregate equivalence produced by unification can be used for specialization by
unification, an essential part of the translation of definitions by dependent pattern
matching to eliminators (Section 3.4).

3.1 Unification problems as telescopes

To represent equations internally, we use the propositional equality type x ≡A y. For
example, the equation suc m = suc n is represented by the type suc m ≡N suc n.

ZU064-05-FPR paper April 17, 2018 16:19

Proof-relevant unification 13

In general, a unification problem can consist of multiple equalities and the type of
an equality may depend on the solution of the previous equalities. To keep track of
these dependencies, we give a type to the list of equations in the form of a telescope.
By the nature of a telescope, the type of each equation can depend on the previous
equations.

Definition 13. A unification problem is a telescope of the form Γ(ē : ū ≡∆ v̄). The
variables in Γ are called the flexible variables.

Example 14. A unification problem between two vectors can be represented by
the telescope

(m n : N)(x y : A)(xs : Vec A m)(ys : Vec A n)
(e1 : suc m ≡N suc n)(e2 : cons m x xs ≡Vec A e1 cons n y ys) (9)

3.2 Unifiers as equivalences

Traditionally, a unifier for a unification problem ū = v̄ is defined as a substitution
σ such that ūσ and v̄σ are equal. So how do we translate this definition to type
theory? Consider a unification problem of the form Γ(ē : ū ≡∆ v̄). We could represent
a unifier as a telescope mapping σ : Γ′ → Γ satisfying ū[Γ 7→ σ Γ] = v̄[Γ 7→ σ Γ], but
then the soundness property is still external to the theory. Instead, we use the power
of dependent types to express the fact that the equations are satisfied internally:

Definition 15. Let Γ and ∆ be telescopes and ū and v̄ be lists of terms such that
Γ ⊢ ū, v̄ : ∆. We define a unifier of ū and v̄ as a telescope mapping σ : Γ′ → Γ(ē :
ū ≡∆ v̄) for some Γ′.

A unifier σ returns not only values of type Γ but also evidence that the equations
are indeed satisfied by these values.

Example 16. The telescope mapping σ : (k : N) → (k l : N)(e : suc k ≡N suc l)
defined by σ = λk.k;k;refl is a unifier of suc k and suc l. The evidence here
is refl : suc k = suc k, proving that suc k and suc l become equal under the
substitution [k 7→ k; l 7→ k].

Usually, the goal of a unification algorithm is not just to output any unifier but
a most general one, i.e. a unifier σ : Γ′ → Γ(ē : ū ≡A v̄) such that any other unifier
σ′ : Γ′′ → Γ(ē : ū ≡A v̄) can be written as σ ◦ν for some ν : Γ′′ → Γ′.

Again, we should think how to represent this concept internally. One way to do
this is to translate the definition of most general unifier directly to a type. However,
to do this we need to quantify over all possible telescopes Γ′′ and unifiers σ′, making
the definition more unwieldy than necessary. Can we find a better definition?

Lemma 17. Let Γ and Γ′ be telescopes and σ : Γ′ → Γ. The following two statements
are equivalent:

• For any telescope Γ′′ and σ′ : Γ′′ → Γ, there exists at least one ν : Γ′′ → Γ′

such that σ′ .= σ ◦ν.
• There exists a τ1 : Γ → Γ′ such that σ ◦ τ1

.= id.

ZU064-05-FPR paper April 17, 2018 16:19

14 J. Cockx and D. Devriese

Γ′ Γ

Γ′′

σ

σ′

ν

τ1

τ2

Figure 6: Lemma 17 allows us to construct a right inverse τ1 to σ from the existence
of the telescope mapping ν, while Lemma 18 gives us a left inverse τ2 from its
uniqueness.

Proof. First suppose that we have a telescope mapping τ1 : Γ → Γ′ such that σ◦τ1
.=

id is the identity function on Γ. This allows us to define ν = τ1 ◦σ′, which gives us
σ ◦ ν

.= σ ◦ τ1 ◦ σ′ .= σ′, as we wanted.
For the other direction, we take Γ′′ = Γ and σ′ = id. Then by assumption we

have a τ1 : Γ → Γ′ such that id .= σ ◦ τ1.

It is often useful to require that the function ν is unique, for otherwise Γ′

may contain ghost variables that are not actually used by σ. For example, for
a unification problem with Γ = (b : Bool) and a single equation b ≡Bool true, we
have the unifier σ : () → (b : Bool)(e : b ≡Bool true) that we would like to recognize
as the most general one. However, if ν is not required to be unique, then there may
be other most general unifiers with a non-equivalent choice of Γ′. For example, we
could also have taken σ′ : (b′ : Bool) → (b : Bool)(e : b ≡Bool true) that ignores its
argument b′.

Lemma 18. Let Γ and Γ′ be telescopes and let σ : Γ′ → Γ. The following two
statements are equivalent:

• For any telescope Γ′′ and σ′ : Γ′′ → Γ, there exists at most one ν : Γ′′ → Γ′

such that σ′ .= σ ◦ν.
• There exists a τ2 : Γ → Γ′ such that τ2 ◦σ

.= id.

Proof. Suppose that we have a τ2 such that τ2 ◦σ
.= id. If ν and ν′ are two telescope

mappings such that σ ◦ ν
.= σ′ .= σ ◦ ν′ then we have ν

.= τ2 ◦ σ ◦ ν
.= τ2 ◦ σ ◦ ν′ .= ν′,

so ν is unique.
For the other direction, we assume that ν is unique. Let Γ′′ = Γ′ and σ′ = σ and

ν = τ1 ◦σ and ν′ = id. This gives us that σ ◦ν
.= σ

.= σ ◦ν′, so by uniqueness we have
τ1 ◦f

.= id. Hence taking τ2 = τ1 gives us the desired telescope mapping τ2.

The proofs of Lemma 17 and Lemma 18 are illustrated in Figure 6. If we re-
place the telescope Γ by a unification problem Γ(ē : ū ≡∆ v̄), then Lemma 17 and
Lemma 18 together give us that σ : Γ(ē : ū ≡∆ v̄) → Γ′ is a most general unifier if
and only if it is an equivalence between Γ′ and Γ(ē : ū ≡∆ v̄). This brings us to the
following definition of a most general unifier:

ZU064-05-FPR paper April 17, 2018 16:19

Proof-relevant unification 15

Definition 19. Let Γ and ∆ be telescopes and ū and v̄ be lists of terms such that
Γ ⊢ ū, v̄ : ∆. Then a most general unifier of ū and v̄ is an equivalence f : Γ(ē : ū ≡∆
v̄) ≃ Γ′ for some telescope Γ′.

The unifier σ : Γ′ → Γ(ē : ū ≡∆ v̄) corresponds to the inverse function f−1. Intu-
itively, f allows us to recover the values of the variables in Γ′ for any values of Γ
that satisfy ū ≡∆ v̄.

The definition of a most general unifier doesn’t prevent us from choosing Γ′ =
Γ(ē : ū ≡∆ v̄) and f = id. In fact, this is a valid (if trivial) most general unifier from
a logical point of view.

In case unification succeeds negatively, we need evidence that the equations are
indeed impossible. For this purpose, we use the empty type ⊥:

Definition 20. Let Γ and ∆ be telescopes and ū and v̄ be lists of terms such that
Γ ⊢ ū, v̄ : ∆. A disunifier of ū and v̄ is an equivalence f : Γ(ē : ū ≡∆ v̄) ≃ ⊥.

Any function f : A → ⊥ is automatically an equivalence A ≃ ⊥, as the other
components of the equivalence can be constructed by using the eliminator elim⊥ :
(A : Setℓ) → ⊥ → A. So the only interesting part of a disunifier is the function
f : A → ⊥.

3.3 The unification algorithm

Now that we know how to represent the input and the output of the unification
algorithm, we can start thinking about the unification algorithm itself. Since the
end result of the unification process (the most general unifier) is an equivalence, it
is natural to represent unification rules as equivalences as well. These unification
rules can then be chained together by transitivity of ≃ to produce the most general
unifier f .

Definition 21. A positive unification rule is an equivalence of the form r : Γ(ē :
ū ≡∆ v̄) ≃ Γ′(ē′ : ū′ ≡∆′ v̄′).

For example, the unification rule for injectivity of the suc constructor for N is

injectivitysuc : (e : suc m ≡ suc n) ≃ (e : m ≡ n) (10)

Another important example of a positive unification rule is the solution rule used
to solve equations where one side is a variable:

solution : (x : A)(e : x ≡A t) ≃ () (11)

In addition to unification rules of this form, that transform one set of equations into
another, there are also unification rules that refute absurd equations like true ≡Bool

false.

Definition 22. A negative unification rule is an equivalence of the form r : Γ(ē :
ū ≡∆ v̄) ≃ ⊥.

For example, the unification rule for conflict between true and false is

conflicttrue,false : (true ≡Bool false) ≃ ⊥ (12)

ZU064-05-FPR paper April 17, 2018 16:19

16 J. Cockx and D. Devriese

The unification algorithm tries to construct an equivalence Γ(ē : ū ≡∆ v̄) ≃ Γ′ by
successively applying the unification rules to the unification problem, simplifying
one or more equations in each step. This process continues until one of three possible
situations occurs:

• If there are no more equations left, the algorithm succeeds positively. In this
case, it returns an equivalence between the original problem Γ(ū ≡∆ v̄) and
the reduced telescope Γ′.

• If a contradictory equation is encountered, the algorithm succeeds negatively.
In this case, it returns an equivalence between the original problem Γ(ū ≡∆ v̄)
and the empty type ⊥.

• If there are no more applicable rules, the algorithm results in a failure.

We do not yet give an explicit strategy on which rule to apply in a specific situation.
This leaves more freedom to the implementation to choose which rule to try first.
When we discuss our implementation in Section 8, we give one concrete strategy.

Example 23. Consider the unification problem consisting of flexible variables k l :
N and a single equation between suc k and suc l. First, we simplify the equation
by applying the equivalence injectivitysuc : (e : suc k ≡N suc l) ≃ (e : k ≡N l).
Applying this rule leaves the two variables k and l unchanged. Next, we apply the
solution rule, which tells us that (l : N)(e : k ≡N l) ≃ (). This leaves only the single
variable k : N. Since there are no more equations left in the telescope, unification
ends in a positive success.

We write down the unification process as a series of telescopes (representing
unification problems) with equivalences between them (representing the individual
unification steps). In each step, we underline the variables and equations that are
being solved or simplified.

(k l : N)(e : suc k ≡N suc l)
≃ (k l : N)(e : k ≡N l)
≃ (k : N)

(13)

To get the substitution from (k : N) to (k l : N)(e : suc k ≡N suc l) computed by
the unification process, we only need to compose the functions embedded in the
equivalences from the bottom to the top. The solution rule assigns l to be k and e

to be refl, and the injectivity rule maps e : k ≡N l to cong suc e : suc k ≡N suc l, so
the aggregate unifier f−1 : (k : N) → (k l : N)(e : suc k ≡N suc l) here is λk.k;k;refl
(since cong suc refl = refl).

Before we continue with the general form of the unification rules in the next
section, we first give three easy but useful manipulations on equivalences (and
hence on unification rules) that allow us to postpone and reorder equations. These
principles are used when we want to apply a unification rule, but the problem
contains some additional variables or equations that aren’t mentioned in the rule.
For example, in the second step of Example 23 the solution rule didn’t affect the
variable k. In what follows, we often make use of these manipulations implicitly.

ZU064-05-FPR paper April 17, 2018 16:19

Proof-relevant unification 17

Lemma 24. If we have an equivalence f : ∆ ≃ ∆′ where ∆ and ∆′ possibly contain
free variables from a telescope Γ, then we also have an equivalence fΓ : Γ∆ ≃ Γ∆′.

Lemma 25. If we have an equivalence f : Γ ≃ Γ′ and a telescope ∆ possibly con-
taining free variables from Γ, then we also have an equivalence f∆ : Γ∆ ≃ Γ′∆′

where ∆′ = ∆[Γ 7→ linv f Γ′].

Lemma 26. If we have a telescope Γ, and Γ′ is a reordering of the variable bindings
in Γ that preserves the order of dependencies, then we have an equivalence f : Γ ≃ Γ′.

Construction. The construction of the equivalence is in all three cases straightfor-
ward, relying on J to prove that the functions are mutual inverses.

3.4 Specialization by unification

When performing case analysis on a variable from an inductive family, the type-
checker of a dependently typed language needs to determine which constructors
can occur in a given position and how the variables need to be instantiated for
the pattern to be well-typed. To do this, it applies unification to the indices of
the datatype in question. If unification determines that there can be no such
substitution, then we can skip the case for the corresponding constructor. This
method of solving equations to either gain more information about the type of the
right-hand side or to derive an absurdity is called specialization by unification.

Specialization by unification allows us to construct functions of the form

m : (x̄ : Γ)(ē : ū ≡∆ v̄) → T x̄ ē (14)

It can be seen as a generic method of constructing an inversion principle (McBride,
1998a). It is also a core component in the translation of definitions by pattern match-
ing to eliminators (Goguen et al., 2006; Cockx, Devriese, and Piessens, 2016b).

Definition 27 (Specialization by unification). Consider a problem of the form
m : (x̄ : Γ)(ē : ū ≡∆ v̄) → T x̄ ē and suppose that unification of ū with v̄ with Γ
as flexible variables succeeds either positively or negatively, then we construct the
function m:

• In case the unification succeeds positively with most general unifier f : Γ(ē : ū ≡∆
v̄) ≃ Γ′, we have

isLinv f : (x̄ : Γ)(ē : ū → f−1 (f x̄ ē) ≡Γ(ē : ū x̄; ē) (15)

Then we define m by

m x̄ ē = subst T (isLinv f x̄ ē) (ms (f x̄ ē)) (16)

with the new subgoal of constructing ms : (x̄′ : Γ′) → T (linv f x̄′).
• In case the unification succeeds negatively with disunifier f : Γ(ē : ū ≡∆ v̄) ≃ ⊥,

then we define m by

m x̄ ē = elim⊥ (T x̄ ē) (f x̄ ē) (17)

with no additional assumptions.

ZU064-05-FPR paper April 17, 2018 16:19

18 J. Cockx and D. Devriese

Example 28. We apply specialization by unification to construct two functions

mlz : (m : N)(k : N)(y : k ≤ zero) →
(zero;m;lz m) ≡(m n:N)(x:m≤n) (k;zero;y) → zero ≡N k

(18)

and

mls : (m n : N)(x : m ≤ n)(k : N)(y : k ≤ zero) →
(suc m;suc n;ls m n x) ≡(m n:N)(x:m≤n) (k;zero;y) → zero ≡N k

(19)

In case of mlz, unification of ū = zero;m;lz m with v̄ = k;zero;y in the context
Γ = (m : N)(k : N)(y : k ≤ zero) results in a positive success with most general
unifier f : Γ(ū ≡(m n:N)(x:m≤n) v̄) ≃ () with f−1 () = zero;zero;lz zero;refl, where
refl : zero;zero;lz zero ≡(m n:N)(x:m≤n) zero;zero;lz zero. Specialization by
unification gives us the function mlz on the condition we can construct mlz

s :
zero ≡N zero, which we can do easily as mlz

s = refl.
For mls, unification of ū = suc m;suc n;ls m n x with v̄ = k;zero;y results in a

negative success, so specialization by unification gives us the function mls without
any additional assumptions.

4 Unification rules

In this section, we state the basic unification rules from McBride (1998b) in our
framework. We first handle the unification rules for simple datatypes (Section 4.1)
before moving on to the more challenging rules for indexed datatypes (Section 4.2).
We also show how to extend the unification algorithm with rules for η-equality for
record types (Section 4.3).

4.1 The basic unification rules

The first two rules are generic in the sense that they work for any type A.

Lemma 29. For any type A and term t : A, we have an equivalence

solution : (x : A)(e : x ≡A t) ≃ () (20)

satisfying solution−1 () = t;refl.

In this rule, the variable x should not occur freely in t.

Construction of solution. The construction of the functions solution : (x : A)(x ≡A

t) → () and isRinv solution : () → () ≡() () is trivial since they both target an
empty telescope. The function solution−1 : () → (x : A)(e : x ≡A t) is defined by
solution−1 () = t;refl. Finally, isLinv solution, of type (x : A)(e : x ≡A t) →
t;refl ≡(x:A)(e:x≡At) x;e, is a direct application of the J rule.

Lemma 30. For any type A that satisfies UIP and any term t : A, we have an
equivalence

deletion : (e : t ≡A t) ≃ () (21)

ZU064-05-FPR paper April 17, 2018 16:19

Proof-relevant unification 19

ti s1 . . . sk ≺ c t1 . . . tn

s ≺ ti

s ≺ c t1 . . . tn

Figure 7: The structural order ≺ is used to check termination and to detect cycles
during unification.

Construction of deletion. This follows directly from the uniqueness of identity
proofs at type A.

The injectivity, conflict, and cycle rules are specific to an inductive datatype
D. We present them here for a simple (non-indexed) datatype and for an indexed
datatype in the next section.

Lemma 31. Let c : ∆c → D be a constructor of the datatype D : Setℓ and let x̄, x̄′ : ∆c.
We have an equivalence

injectivityc : (c x̄ ≡D c x̄′) ≃ (x̄ ≡∆c x̄′) (22)

such that injectivityc
−1 ē = cong c ē.

Lemma 32. Let c1 : ∆1 → D and c2 : ∆2 → D be two distinct constructors of the
datatype D : Setℓ and x̄1 : ∆1 and x̄2 : ∆2. We have an equivalence

conflictc1,c2 : (c1 x̄1 ≡D c2 x̄2) ≃ ⊥ (23)

To state the cycle rule, we need the structural order ≺ defined in Figure 7.
This definition is somewhat different from the one given by Goguen et al. (2006).
It describes the same relation in case the left- and right-hand sides are elements
of the datatype D, but it enforces that the left- and right-hand sides are actually
elements of the datatype. This prevents odd structural orders that are allowed by
the original definition. For example, if we have a datatype D with a constructor
c : (A → D) → D, then the definition by Goguen et al. allows us to derive for any
a : A that a ≺ c a ≺ c, even though a doesn’t occur in c.

Lemma 33. Let D : Setℓ be a datatype and let x,t : D be such that x ≺ t. We have
an equivalence

cyclex,t : (x ≡D t) ≃ ⊥ (24)

Once again, the type of the equation should be exactly D. We postpone the proof
of this lemma until Section 7.

Example 34. Consider the sum type A ⊎ B (where A,B : Set are arbitrary types)
with two constructors left : A → A ⊎ B and right : B → A ⊎ B. An expression of
the form left x is never equal to right y, so any equality between those two terms
is equivalent to ⊥:

(x : A)(y : B)(e : left x ≡A⊎B right y) ≃ ⊥ (25)

This is exactly the conflict rule between left and right.

The type of the equation on the left in Lemma 31 and Lemma 32 should be
exactly D, in particular the constructor c must be fully applied.

ZU064-05-FPR paper April 17, 2018 16:19

20 J. Cockx and D. Devriese

Counterexample 35. An equation between the constructors left and right
is not always absurd when they are not fully applied. Let A = B = ⊥, then (e :
left ≡⊥→⊥⊎⊥ right) is not equivalent to ⊥. This is because when viewed as
functions of type ⊥ → ⊥ ⊎ ⊥, the constructors inj1 and inj2 coincide on all possible
inputs (i.e. none). The principle of functional extensionality then tells us that these
two functions are equal. So if we would consider this equation to be absurd, we
would prohibit ourselves from having a general rule for functional extensionality
in our language, nevertheless a desirable property to have! Wrongly applying the
conflict rule in this way led to the problem described by issue #1497 on the Agda
bug tracker (Dijkstra, 2015).

4.2 Rules for indexed datatypes

The injectivity, conflict, and cycle rules defined in the previous section all work on
regular datatypes, but unification only becomes really interesting once we consider
indexed families of datatypes. Where the unification rules that we have seen so far
only have a single equation on the left side, the rules for indexed datatypes have a
telescope of equations: one equation for each index, and one final equation for the
datatype itself.

Lemma 36. Let c : ∆ → D ū be a constructor of the datatype D : Ξ → Setℓ. Then
we have an equivalence

injectivityc : (ū[∆ 7→ x̄];c x̄ ≡D ū[∆ 7→ x̄′];c x̄′) ≃ (x̄ ≡∆ x̄′) (26)

where x̄, x̄′ : ∆ and injectivityc
−1 ē = dcong (λx̄. ū;c x̄) ē.

Lemma 37. Let c1 : ∆1 → D ū1 and c2 : ∆2 → D ū2 be two distinct constructors of
the datatype D : Ξ → Setℓ. Then we have an equivalence

conflictc1,c2 : (ū1[∆1 7→ x̄1];c1 x̄1 ≡D ū2[∆2 7→ x̄2];c2 x̄2) ≃ ⊥ (27)

where x̄1 : ∆1 and x̄2 : ∆2.

Lemma 38. Let D : Ξ → Setℓ be a datatype and let (ū;x),(v̄; t) : D be such that x ≺ t.
Then we have an equivalence

cyclex,t : (ū;x ≡D v̄; t) ≃ ⊥ (28)

Again, we postpone the proof of this lemma until Section 7. The unification rules
are summarized in Figure 8. To these basic rules, we will add rules for η-equality for
record types (Section 4.3, generalized rules for conflict and acyclicity (Section 6.1),
and higher-dimensional unification (Section 6.2). We give a complete list of the
unification rules with all these additions in Figure 9.

Example 39. Consider the indexed datatype Vec A : N → Set with the two con-
structors nil : Vec A zero and cons : (n : N) → A → Vec A n → Vec A (suc n). The
injectivity rule for cons gives us the following equivalence:

(suc m;cons m x xs ≡Vec A suc n;cons n y ys)
≃ (m;x;xs ≡(n:N)(x:A)(xs:Vec A n) n;y;ys) (29)

ZU064-05-FPR paper April 17, 2018 16:19

Proof-relevant unification 21

solution : (x : A)(e : x ≡A u) ≃ () (where x ̸∈ F V (u))

deletion : (e : u ≡A u) ≃ ()

injectivityc : (ū[∆ 7→ x̄];c x̄ ≡D ū[∆ 7→ x̄′];c x̄′) ≃ (x̄ ≡∆ x̄′)

conflictc1,c2 : (ū1[∆1 7→ x̄1];c1 x̄1 ≡D ū2[∆2 7→ x̄2];c2 x̄2) ≃ ⊥ (where c1 ̸= c2)

cyclex,t : (ū;x ≡D v̄; t) ≃ ⊥ (where x ≺ t)

Figure 8: The basic unification rules can be formulated as equivalences.

This rule not only simplifies the equation between the two cons constructors, but
simultaneously simplifies the equation between the indices suc m and suc n. Now
let’s see how this rule works in action:

(m n : N)(x y : A)(xs : Vec A m)(ys : Vec A n)
(e1 : suc m ≡N suc n)(e2 : cons m x xs ≡Vec A e1 cons n y ys)

≃ (m n : N)(x y : A)(xs : Vec A m)(ys : Vec A n)
(e1 : m ≡N n)(e2 : x ≡A y)(e3 : xs ≡Vec A e1 ys)

≃ (n : N)(x : A)(xs : Vec A n)

(30)

The first step is an application of the injectivity rule, while the next step consists
of three applications of the solution rule.

To apply injectivity of cons, the type of the equation has to be of the form
Vec A e where e refers to a previous equation. This implies that this rule cannot
be applied directly to an equation of the form cons n x xs ≡Vec A (suc n) cons n y ys
where xs : Vec A n and ys : Vec A n have the same length ‘on the nose’. We show
how to solve this deficiency in Section 6.

Example 40. In the previous example, it was not really necessary to simplify the
equation between the indices together with the equation between the constructors,
as we could also have applied injectivitysuc to the equation suc m ≡N suc n.
However, sometimes this simplification gives a real increase to the power of unifi-
cation. For example, let f : A → B be a (possibly very complex) function, then in
general there is no way to solve an equation of the form f x ≡B f y. Now consider
the following datatype:

data Im f : B → Set where
image : (x : A) → Im f (f x) (31)

The injectivity rule for image simultaneously solves the equations e1 : f x ≡B f y

and e2 : image x ≡Im f e1 image y:

(x y : A)(e1 : f x ≡B f y)(e2 : image x ≡Im f e1 image y)
≃ (x y : A)(e : x ≡A y)
≃ (x : A)

(32)

Having an injectivity rule that works in this way is useful when giving semantics
to an embedded language (Danielsson, 2015).

ZU064-05-FPR paper April 17, 2018 16:19

22 J. Cockx and D. Devriese

Contrast this with the unification problem

(x y : A)(e1 : Im f (f x) ≡Set Im f (f y))(e2 : image x ≡e1 image y) (33)

Here, it is not allowed to use injectivity on the second equation e2 since its type is
not a datatype but a variable e1. Like in Example 2, there is no way to distinguish
between these two cases unless we keep track of the dependency of the type of e2
on the equation e1. Wrongly applying injectivity in situations like this led to the
problems described by Abel (2015a,c) on the Agda bug tracker.

Example 41. Let D : Bool → Set be an indexed datatype with two constructors
tt : D true and ff : D false. Then the conflict rule between tt and ff gives us the
following equivalence:

(e1 : true ≡Bool false)(e2 : tt ≡D e1 ff) ≃ ⊥ (34)

On the other hand, the conflict rule cannot be applied if the first equation is
between the types D true and D false:

(e1 : D true ≡Set D false)(e2 : tt ≡e1 ff) ̸≃ ⊥ (35)

Allowing the conflict rule to apply in this case would mean that we can distinguish
between D true and D false, which means that the type constructor D is injective.
In particular, this would be incompatible with univalence: there is an equivalence
between D true and D false under which tt is identified with ff, so univalence
allows us to prove that D true ≡Set D false. Note again that we need information
about how the type of e2 depends on e1 to distinguish between these two cases.
Wrongly applying conflict in situations like this led to the problems described by
Danielsson (2010) and Vezzosi (2015) on the Agda bug tracker.

Example 42. This example is based on issue #1071 on the Agda bug tracker
(Danielsson, 2014). Let A : Set, F : Set → Set and P : Set → Set1 be a datatype
with one constructor c : (A : Set) → P (F A). Then we have:

(f : F A)(R : Set)(f ′ : F R)
(e1 : F A ≡Set F R)(e2 : f ≡e1 f ′)(e3 : c A ≡P e1 c R)

≃ (f : F A)(R : Set)(f ′ : F R)(e′
3 : A ≡Set R)(e2 : f ≡F e′

3
f ′)

≃ (f : F A)(f ′ : F A)(e2 : f ≡F A f ′)

≃ (f : F A)

(36)

At each point during the unification process, there is only one valid way to proceed.
At the first step, the second equation f ≡e1 f ′ cannot be solved right away as the
type is heterogeneous and the solution rule only applies to homogeneous equations.
The first equation cannot be solved either as this would require injectivity of
the functor F . The only possibility is to apply the injectivity of c to the third
equation. At the second step, f ≡F e′

3
f ′ cannot be solved because the type F e′

3 is
heterogeneous, so e′

3 has to be solved first instead.

ZU064-05-FPR paper April 17, 2018 16:19

Proof-relevant unification 23

4.3 Rules for record types

One of the big advantages of having a general notion of ‘unification rule’ and ‘most
general unifier’ is that we have an easy way to check the soundness of new unification
rules. Alternatively it can be used to assess the impact of adding a new unification
rule to the algorithm. In this section, we extend our algorithm with two unification
rules that deal with η-equality for record types.

A record type is a type for grouping values together. One of the properties that
sets a record type apart from a regular datatype with a single constructor, are the
additional laws for equality of records called η-laws (not to be confused with the
η-law for functions).

Definition 43. A record type R : Setℓ is defined by a number of fields (also called
projections):

f1 : (r : R) → A1
f2 : (r : R) → A2 (f1 r)

...
fn : (r : R) → An (f1 r) . . . (fn−1 r)

(37)

To construct an element of the record type from values x1 : A1, . . . ,xn : An x1 . . . xn−1,
we use the syntax record{f1 = x1; . . . ;fn = xn}. Applying one of the projections to
a record constructed this way gives back the field:

fi (record{f1 = x1; . . . ;fn = xn}) = xi (38)

The type Ai of each field can depend on the values of the previous fields fj r

for j < i. For example, Σx:A (B x) can be defined as a record with two projections
fst : Σx:A (B x) → A and snd : (p : Σx:A (B x)) → B (fst p). Then x,y is shorthand
for record{fst = x;snd = y}.

The η-law states that for any r : R, we have

r = record{f1 = f1 r; . . . ;fn = fn r} (39)

We use the η-law to construct two unification rules. The first rule applies η to
expand a variable of record type into its constituent fields, while the second rule
performs a similar expansion on an equation between two elements of a record
type.4

Lemma 44. Let R : Setℓ be a record type with fields given by (37). Then we have
an equivalence:

ηvarR : (r : R) ≃ (f1 : A1) . . .(fn : An f1 . . . fn−1) (40)

Construction of ηvarR. We define ηvarR r by f1 r; . . . ;fn r, and ηvarR
−1 f1 . . . fn

by record{f1 = f1; . . . ;fn = fn}. The proofs of both isLinv and isRinv is refl:
in the former case this is type-correct because of the η-law (39), and in the latter
case because of the computation rules for projections (38).

4 A cubical type theorist might say these are two instances of the same rule.

ZU064-05-FPR paper April 17, 2018 16:19

24 J. Cockx and D. Devriese

Example 45. This rule is especially useful for solving equations where one side is
a projection applied to a variable. Consider the type A × B = Σ_:AB. Then we can
solve the equation fst p ≡N zero as follows:

(p : N × N)(e : fst p ≡N zero)
≃ (x : N)(y : N)(e : x ≡N zero)
≃ (y : N)

(41)

Here the composite telescope mapping σ : (y : N) → (p : N × N)(e : fst p ≡N zero)
from bottom to top is λy.(zero,y);refl.

Lemma 46. Let R : Setℓ be a record type with fields given by (37). Then we have
an equivalence:

ηeqR : (e : r ≡R s) ≃ (e1 : f1 r ≡A1 f1 s) . . .(en : fn r ≡An e1 ... en−1 fn s) (42)

Construction of ηeqR. To construct ηeqR, we rely on ηvarR and cong: we define
ηeqR e = cong ηvarR e and ηeqR

−1 ē = cong ηvarR
−1 ē. The proofs of isLinv and

isRinv are straightforward applications of J.

Example 47. This rule is useful when one side of an equation is of the form
record{. . .}. If f : N → N × N, then we can solve the equation x,y ≡N×N f z as
follows:

(x y z : N)(e : x,y ≡N×N f z)
≃ (x y z : N)(e1 : x ≡N fst (f z))(e2 : y ≡N snd (f z))
≃ (y z : N)(e2 : y ≡N snd (f z))
≃ (z : N)

(43)

5 Computational behaviour of unification rules

Until now, we have only been interested in an equivalence representing a most
general unifier insofar that it has the correct type. But as a term in type theory,
it also has a certain computational behaviour. This computational behaviour is
important for the applications we have in mind, in particular the translation of
pattern matching to eliminators (Cockx et al., 2016b).

In particular, an important step during the translation of a case split to the
application of an eliminator is to generate auxiliary equations that are then solved
by unification (Definition 27). However, in the end these equations are filled in with
refl.

Example 48. Consider the definition of the function tail (Example 1):

tail : (n : N) → Vec A (suc n) → Vec A n

tail .m (cons m x xs) = xs (44)

To translate this definition to eliminators, the first step is to generalize the problem
to constructing tail′ : (k n : N) → Vec A k → k ≡N suc n → Vec A n and then let
tail n xs = tail′ (suc n) n xs refl. Note in particular that the final argument to
tail′ is refl!

ZU064-05-FPR paper April 17, 2018 16:19

Proof-relevant unification 25

The next step in the translation is to apply case analysis on xs, which instantiates
k with zero in the case for nil and suc m in the case for cons. The equations
zero ≡N suc n and suc m ≡N suc n are then solved by unification:

• In the first case, we get a negative unifier

f1 : (n : N)(zero ≡N suc n) ≃ ⊥ (45)

and in particular f n e : ⊥, so the case can be handled by applying absurd :
(A : Setℓ) → ⊥ → A.

• In the second case, we get a positive unifier

f2 : (m n :N)(x : A)(xs : Vec A m)(suc m ≡N suc n) ≃ (m :N)(x : A)(xs : Vec A m)
(46)

This unifier is used in the further translation of the right-hand side of tail.

When (the translated version of) tail is called with arguments m and cons m x xs,
it will evaluate to tail′ (suc m) m (cons m x xs) refl by definition. In particular,
the proof of suc m ≡N suc n that is passed to the equivalence f2 is refl.

So if we care about the computational behaviour of the output of this translation,
we should worry about what happens when we apply a unification rule to refl, i.e.
when the equations on one side of the equivalence hold in fact definitionally.

Intuitively, a unification rule r : Γ(ē : ū ≡∆ v̄) ≃ Γ′(ē′ : ū′ ≡∆′ v̄′) should satisfy
the property that if the equations on the left hold definitionally then the ones on
the right also hold definitionally and vice versa. Moreover, the proofs isLinv r and
isRinv r should be trivial in those cases. In other words, the various components
of the equivalence should satisfy the principle ‘refl in, refl out’. This leads us to
the following definition of a strong unification rule:

Definition 49 (Strong unification rule). A positive unification rule r : Γ(ē : ū ≡∆
v̄) ≃ Γ′(ē′ : ū′ ≡∆′ v̄′) is a strong unification rule if for any Γ0 and for any s̄ and s̄′

such that Γ0 ⊢ refl : ū[Γ 7→ s̄] ≡∆ v̄[Γ 7→ s̄] and Γ0 ⊢ refl : ū′[Γ′ 7→ s̄′] ≡∆′ v̄′[Γ′ 7→ s̄′],
it satisfies the following five properties:

1. Γ0 ⊢ r s̄ refl = (t̄′;refl) : Γ′(ē′ : ū′ ≡∆′ v̄′) for some t̄′ : Γ′.
2. Γ0 ⊢ linv r s̄′ refl = (t̄1;refl) : Γ(ē : ū ≡∆ v̄) for some t̄1 : Γ.
3. Γ0 ⊢ rinv r s̄′ refl = (t̄2;refl) : Γ(ē : ū ≡∆ v̄) for some t̄2 : Γ.
4. Γ0 ⊢ isLinv r s̄ refl = refl : linv r (r s̄ refl) ≡Γ(ē:ū≡∆v̄) (s̄;refl).
5. Γ0 ⊢ isRinv r s̄′ refl = refl : r (rinv r s̄′ refl) ≡Γ′(ē′:ū′≡∆′ v̄′) (s̄′;refl).

The trivial equivalence id : Γ(ē : ū ≡∆ v̄) ≃ Γ(ē : ū ≡∆ v̄) is clearly a strong
unification rule, and we can compose strong unification rules:

Lemma 50. If r and r′ are strong unification rules, then r ◦ r′ is one as well.

Proof. This follows directly from the definition of a strong unification rule and the
composition of two equivalences.

Most of the unification rules we have seen up until now are strong:

Lemma 51. solution and injectivityc are strong unification rules.

ZU064-05-FPR paper April 17, 2018 16:19

26 J. Cockx and D. Devriese

Proof. This follows directly from the construction of these rules (see Lemma 29 for
solution, and Lemma 81 for injectivityc.).

For the deletion rule (30), the computational behaviour depends on the type of
the equation being eliminated and the construction of the proof of K. In a theory
with a general K rule, the deletion rule is also a strong unification rule. However,
if we construct K for a specific datatype such as N from the basic eliminator, then
the resulting unification rule won’t be strong as evaluation gets stuck in case the
left- and right-hand side of the equation are not of the form zero or suc m.

Lemma 52. ηvarR and ηeqR are strong unification rules.

Proof. For ηvarR, the first three properties are trivial as this rule does not involve
equations, and the last two properties holds as well since isLinv ηvarR r and
isRinv ηvarR r are equal to refl by definition.

For ηeqR, the functions ηeqR, ηeqR
−1, isLinv ηeqR and isRinv ηeqR all map refl

to refl by definition of cong and J, so it is also trivially a strong rule.

In the special case of a most general unifier, the telescope ∆′ on the right becomes
trivial so we can give a simpler definition of strongness. In particular, the first
property always holds so we may omit it, and for the second, third, and fifth
property it is sufficient to require that they hold in the case that s̄′ is a list of
variables Γ′ (since there are no equations in ∆′ that should hold as a precondition).
This leads us to the following definition of a strong unifier:

Definition 53 (Strong unifier). A most general unifier f : Γ(ē : ū ≡∆ v̄) ≃ Γ′ is
strong if it satisfies the following four properties:

1. Γ′ ⊢ linv f Γ′ = (t̄1;refl) : Γ(ē : ū ≡∆ v̄) for some t̄1.
2. Γ′ ⊢ rinv f Γ′ = (t̄2;refl) : Γ(ē : ū ≡∆ v̄) for some t̄2.
3. For any Γ0 and s̄ such that Γ0 ⊢ refl : ū[Γ 7→ s̄] ≡∆ v̄[Γ 7→ s̄], we have Γ0 ⊢

isLinv f s̄ refl = refl : linv f (f s̄ refl) ≡Γ(ē:ū≡∆v̄) (s̄;refl).
4. Γ′ ⊢ isRinv f Γ′ = refl : f (rinv f Γ′) ≡Γ′ Γ′.

From the first two properties we deduce in particular that the equations ū ≡∆ v̄

are indeed satisfied definitionally under the substitution embedded in the most
general unifier f .

Lemma 54. If f = r1 ◦ r2 ◦ . . . ◦ rn : Γ(ē : ū ≡∆ v̄) ≃ Γ′ is composed of strong
unification rules r1, r2, . . . , rn, then f is a strong unifier.

Proof. Since a strong unifier is a special case of a strong unification rule, this follows
directly from Lemma 50.

Lemma 55. If f : Γ(ē : ū ≡∆ v̄) ≃ Γ′ is a strong unifier, then Γ′ ⊢ linv f Γ′ =
rinv f Γ′ : Γ.

Proof. By the second property of a strong unifier, we have s̄2 such that

Γ′ ⊢ rinv f Γ′ = (s̄2;refl) : Γ(ē : ū ≡∆ v̄) (47)

ZU064-05-FPR paper April 17, 2018 16:19

Proof-relevant unification 27

In particular, (s̄2;refl) has type Γ(ē : ū ≡∆ v̄), so we know that

Γ′ ⊢ refl : ū[Γ 7→ s̄2] ≡∆ v̄[Γ 7→ s̄2] (48)

By the third property of a strong unifier, this implies that

Γ′ ⊢ isLinv f s̄2 refl = refl : (s̄2;refl) ≡Γ(ē:ū≡∆v̄) (s̄2;refl) (49)

Since the left- and right-hand side of a definitional equality always have definition-
ally equal types, it follows in particular that the type of isLinv f s̄2 refl must be
definitionally equal to the type of refl, i.e.

Γ′ ⊢ linv f (f s̄2 refl) = (s̄2;refl) : Γ(ē : ū ≡∆ v̄) (50)

By similar reasoning, the fourth property gives us that the type of isRinv f Γ′ must
be definitionally equal to that of refl, so in particular

Γ′ ⊢ f (rinv f Γ′) = Γ′ : Γ′ (51)

But rinv f Γ′ = s̄2;refl, so we also have

Γ′ ⊢ f s̄2 refl = Γ′ : Γ′ (52)

Applying linv f to both sides of this equations gives us that

Γ′ ⊢ linv f (f s̄2 refl) = linv f Γ′ : Γ(ē : ū ≡∆ v̄) (53)

Putting this together with (50) gives us that

Γ′ ⊢ linv f Γ′ = (s̄2;refl) : Γ(ē : ū ≡∆ v̄) (54)

Since rinv f Γ′ = (s̄2;refl), this gives us that Γ′ ⊢ linv f Γ′ = rinv f Γ′ : Γ, as we
wanted to prove.

This lemma implies that we can write f−1 for both linv f and rinv f when f

is a strong unifier.
When applying specialization by unification to construct a function m : (x̄ : Γ) →

(ē : ū ≡∆ v̄) → T x̄ ē from the subgoal ms : (x̄′ : Γ′) → T (linv f x̄′) we expect m to
have ‘the same’ computational behaviour as ms in case the equations ū ≡∆ v̄ are
actually satisfied. This is the content of the following lemma.

Lemma 56. If f is a strong unifier (Definition 53), then the function m constructed
through specialization by unification (Definition 27) satisfies the definitional equality
m (f−1 x̄′) = ms x̄′ for any x̄′ : Γ′.

Proof. Remember that for a strong unifier f , linv f and rinv f are definitionally
equal, so it is fine to write f−1 here. By the first property of a strong unifier,
we have f−1 x̄′ = s̄;refl for some s̄ : Γ. By the third property, this implies that
isLinv f (f−1 x̄′) = refl. By the fourth property, we also have f (f−1 x̄′) = x̄′. So
we have

m (f−1 x̄′) = subst T (isLinv f (f−1 x̄′)) (ms (f (f−1 x̄′)))
= subst T refl (ms x̄′)
= ms x̄′

(55)

ZU064-05-FPR paper April 17, 2018 16:19

28 J. Cockx and D. Devriese

The fact that m (t̄ refl) evaluates to ms (f t̄ refl) ensures that the computa-
tional behaviour corresponds to the clause written by the user in the translation of
pattern matching to eliminators.

Discussion about the definition of a strong unifier. There are other pos-
sible definitions of a strong unifier. In particular, to guarantee the good compu-
tational properties of functions constructed through specialization by unification
(Lemma 56), we only need properties 1, 3, and a weaker version of property 4. In
our previous work (Cockx et al., 2016a) we used an even weaker definition of a
strong unifier:

Definition 57 (DEPRECATED, version from Cockx et al. (2016a)). A most
general unifier f : Γ(ē : ū ≡∆ v̄) ≃ Γ′ is strong if for any x̄′ : Γ′, it satisfies the
following two properties:

• f (f−1 x̄′) = x̄′

• isLinv f (f−1 x̄′) = refl

This definition ensures exactly the properties needed for Lemma 56 to hold.
However, we require another property in order to preserve clauses as definitional
equalities in the translation of dependent pattern matching to eliminators (Cockx,
2017), namely that f−1 x̄′ must be definitionally equal to something of the form
s̄;refl. Additionally, in various places we relied implicitly on the fact that linv f

and rinv f should be definitionally equal. These discoveries lead to our current
definition of a strong unifier.

6 Higher-dimensional unification

When constructing the indexed versions of the injectivity, conflict, and cycle rules
(Section 4.2), we required that the telescope of the equations on the left-hand side
should be exactly D = (ū : Ξ)(x : D ū). This means these rules can only be applied
to an equation where the type is fully general, i.e. a datatype applied to distinct
equality proofs for its indices. This is convenient when the equations we start with
are of this form because it allows us to simplify all equations at the same time.

The main question posed in this section is what we can do if we encounter an
equation of the form c ū ≡D v̄ c v̄ but the indices v̄ are not fully general.

Example 58. Suppose the unification algorithm is trying to solve an equation

(e : cons n x xs ≡Vec A (suc n) cons n y ys) (56)

of type Vec A (suc n) where n is a regular variable rather than an equality proof.
In this case it is not possible to apply the injectivitycons rule directly.

There is no fundamental reason why unification should fail on this example. On
the other hand, always applying the injectivity rule even when the indices are not
fully general is unsound (Example 4). This is not just a theoretical problem either:
see for example issues #1411 and #1775 on the Agda bug tracker (Abel, 2015b;
Sicard-Ramírez, 2016).

ZU064-05-FPR paper April 17, 2018 16:19

Proof-relevant unification 29

In previous work, we tried different approaches to solve this problem that worked
in some cases but were ultimately unsatisfactory. In Cockx et al. (2014) we restricted
all unification rules to homogeneous equations and additionally imposed a self-
unifiability criterion to the indices of the datatype when applying the injectivity
rule. In practice, this meant that the injectivity rule could only be applied when
the indices consisted of closed constructor forms only (e.g. suc (suc zero), but not
suc n), a severe restriction to the applicability of the rule. In Cockx et al. (2016a)
we used the general (heterogeneous) version of the injectivity rule and relied on
reverse unification to generalize the indices. This method had some potential in
theory, but turned out to be too difficult to implement in practice. Neither did
we take into account the type of the constructor in question, so we were unable
to include useful heuristics such as forced constructor arguments (Brady, McBride,
and McKinna, 2004).

In this section, we describe a general technique for solving equations between
constructors of indexed datatypes. First, we study why the problem is so difficult
by looking at the analogous problem for the conflict and cycle rules, and make a first
attempt at generalizing the injectivity rule (Section 6.1). We continue to show how
to generalize the equality proofs in the indices in the general case by introducing
new equations between equality proofs (Section 6.2). Borrowing terminology from
homotopy type theory, we call them higher-dimensional equations. To solve these
higher-dimensional equations, we show how to lift existing unification rules to higher
dimensions (Section 6.3).

6.1 Generalizing unification rules

Before we try to tackle the problem of how to apply the injectivity rule on an
equation when the indices are not fully general, we first consider the analogous
problem for the conflict and cycle rules. The reason to take on these rules first is
because they shed some light on why the problem is harder for the injectivity rule.

Lemma 59. Consider a unification problem of the form s̄1;c1 t̄1 ≡Φ(x:D v̄) s̄2;c2 t̄2
where D : Ξ → Setℓ is a datatype and c1 : ∆1 → D ū1 and c2 : ∆2 → D ū2 are two
distinct constructors of D. Then we have an equivalence

conflict′
c1,c2 :

(
s̄1;c1 t̄1 ≡Φ(x:D v̄) s̄2;c2 t̄2

)
≃ ⊥ (57)

The indices v̄ are arbitrary, i.e. they do not have to be variables like in the
standard conflict rule (Lemma 37). However, the type of the final equation still has
to be the datatype D applied to these indices. In particular it cannot be a variable
itself, or else we would run into the problem described in Example 41.

Before we give the proof of this lemma, we first want to show how a naive proof at-
tempt fails. It goes as follows: to construct a function

(
s̄1;c1 t̄1 ≡Φ(x:D v̄) s̄2;c2 t̄2

)
→

⊥, it suffices (by the J rule) to construct a function c1 t̄1 ≡D v̄ c2 t̄2 → ⊥. This
function is constructed by calling the indexed conflict rule (37) with refl for the
proof of ū1[∆1 7→ t̄1] ≡Ξ ū2[∆2 7→ t̄2]. Since any function to ⊥ is an equivalence, we
are done.

ZU064-05-FPR paper April 17, 2018 16:19

30 J. Cockx and D. Devriese

Think a moment about what is wrong with this proof. It uses the J rule to
eliminate the equations s̄1 ≡Φ s̄2, but there is no guarantee that s̄1 or s̄2 are in fact
variables. Moreover, their structure as a term may be important for satisfying the
assumptions of the lemma, so simply generalizing the statement of the lemma is
not possible. In other words, the error in this proof attempt stems from a confusion
about the status of s̄1 and s̄2 as variables at the meta-level, while they can be
arbitrary terms at the object level!

We work around this issue by using the following lemma:

Lemma 60. Let f : A → B, P : B → Set, e : s ≡A t, u : P (f s) and v : P (f t).
Then the types u ≡P (f e) v and u ≡P (cong f e) v are equivalent.

Proof. Notice the rather subtle difference between these two types: the first one
expands to

subst (P ◦f) e u ≡P t v (58)
while the second one expands to

subst P (cong f e) u ≡P t v (59)

To prove that they are equivalent, it is sufficient to prove that subst (P ◦f) e u ≡P t

subst P (cong f e) u. But this follows directly by eliminating e using J.

Construction of conflict′
c1,c2 . We start by expanding the definition of telescopic

equality: we have to derive an element of ⊥ from

(ē1 : s̄1 ≡Φ s̄2)(e2 : c1 t̄1 ≡D v̄[Φ 7→ē1] c2 t̄2) (60)

By Lemma 60, the type of e2 is equivalent to c1 t̄1 ≡D (cong (λΦ. v̄) ē) c2 t̄2. So we call
the conflict rule (37) with arguments (cong (λΦ. v̄) ē1);e2 to get an element of type
⊥. Since any function to ⊥ is an equivalence, this finishes the proof.

Similarly, we can generalize the cycle rule:

Lemma 61. Consider a unification problem of the form s̄1; t1 ≡Φ(x:D v̄) s̄2; t2 where
D : Ξ → Setℓ is a datatype and t1 ≺ t2. Then we have an equivalence

cycle′
t1,t2 :

(
s̄1; t1 ≡Φ(x:D v̄) s̄2; t2

)
≃ ⊥ (61)

Construction of cycle′
t1,t2 . Analogously to the construction of conflict′

c1,c2 .

For injectivity, it is not as easy to generalize the rule to arbitrary indices like we
just did for conflict and cycle. The problem here is harder because we also have to
construct an inverse function and prove that it is indeed a left and right inverse,
while this was trivial for the two negative rules. In the special case where the index
telescope Ξ satisfies UIP, we can construct the generalization:

Lemma 62 (Generalized injectivity). Consider a unification problem of the form
s̄1;c t̄1 ≡Φ(x:D v̄) s̄2;c t̄2 where D : Ξ → Setℓ is a datatype with (at least) one construc-
tor c : ∆ → D ū, and assume Ξ satisfies UIP, i.e. we have deletionx̄ : (ē : x̄ ≡Ξ x̄) ≃ ()
for all x̄ : Ξ. Then we have an equivalence

injectivity′
c :

(
s̄1;c t̄1 ≡Φ(x:D v̄) s̄2;c t̄2

)
≃ (s̄1; t̄1 ≡Φ∆ s̄2; t̄2) (62)

ZU064-05-FPR paper April 17, 2018 16:19

Proof-relevant unification 31

In case Φ is the empty telescope, this generalized injectivity rule is similar to the
specialized injectivity rule from Cockx et al. (2014), but here we ask that the types
of the indices Ξ satisfy UIP, instead of asking that the indices ū are self-unifiable.

Construction of injectivity′
c. As for the previous lemma, we expand the defini-

tion of telescopic equality and apply Lemma 60 to get to

(ē1 : s̄1 ≡Φ s̄2)(e2 : c t̄1 ≡D (cong (λΦ. v̄) ē1) c t̄2) (63)

Since Ξ satisfies UIP, it follows that (e′
1 : v̄[Φ 7→ s̄1] ≡Ξ v̄[Φ 7→ s̄2]) is equivalent to

(). So the previous telescope is equivalent to

(ē1 : s̄1 ≡Φ s̄2)(ē′
1 : v̄[Φ 7→ s̄1] ≡Ξ v̄[Φ 7→ s̄2])

(e2 : c t̄1 ≡D (cong (λΦ. v̄) ē1) c t̄2) (64)

Again by UIP, we have that the proofs cong (λΦ. v̄) ē1 and ē′
1 of type v̄[Φ 7→ s̄1] ≡Ξ

v̄[Φ 7→ s̄2] are equal. This means the previous telescope is equivalent to

(ē1 : s̄1 ≡Φ s̄2)(ē′
1 : v̄[Φ 7→ s̄1] ≡Ξ v̄[Φ 7→ s̄2])(e2 : c t̄1 ≡D ē′

1
c t̄2) (65)

Finally, we can apply the injectivity rule (36) to prove that the part of the telescope
containing ē′

1 and e2 is equivalent to t̄1 ≡∆ t̄2, so the previous telescope is equivalent
to

(ē1 : s̄1 ≡Φ s̄2)(ē2 : t̄1 ≡∆ t̄2) (66)
which is what we wanted to prove.

Like for the deletion rule, this generalized injectivity rule usually won’t be a
strong rule because its computational behaviour depends on the construction of
the proof UIP for the index types.

6.2 A generalized injectivity rule

The generalized injectivity rule from the previous section is unsatisfactory because
it requires the index types of the datatype to satisfy UIP. This means we didn’t
actually solve the problem of depending on UIP yet, we only moved it to the indices.
However, the proof taught us something about how to solve the problem in general:
it introduced new equality proofs ē′

1 and used UIP to substitute these for the indices
of D, allowing us to apply the injectivity rule. In other words, it moved the problem
from talking about equalities between terms to equalities between equality proofs.

In this section, we show how to apply this idea in a more general way to remove
the dependency on UIP completely. We do this by applying—what else—unification
to the equations between the indices of the datatype. Since the indices in the type
of an equation can depend on the equality proofs of the previous equations, this
means we have to solve not just equalities between terms but also equalities between
other equality proofs, i.e. higher-dimensional equations.

At first sight, it would seem that an entirely new set of unification rules is needed
to solve higher-dimensional equations (except for the solution rule, which can be
used at any dimension). However, it is possible to reuse the existing unification

ZU064-05-FPR paper April 17, 2018 16:19

32 J. Cockx and D. Devriese

rules on higher-dimensional problems. For example, the injectivitysuc rule can
be used not just to simplify equations of the form suc x ≡N suc y to x ≡N y, but
also cong suc e1 ≡suc x≡Nsuc y cong suc e2 to e1 ≡x≡Ny e2.

In general, whenever the unification algorithm encounters a higher-dimensional
unification problem ū ≡x̄≡∆ȳ v̄ it lowers it by one dimension to the problem ū ≡∆ v̄

where the equation variables in ū and v̄ are treated as regular variables. If it manages
to find a solution to this one-dimensional problem, it can then lift this solution to
get a solution to the original problem. The technical result that makes this possible
is Lemma 72 in the next section.

Let’s first take a look of how this works on an example.

Example 63. Consider the unification problem:

Γ(e : cons n x xs ≡Vec A (suc n) cons n y ys) (67)

where Γ = (n : N)(x y : A)(xs ys : Vec A n). The injectivitycons rule cannot be
applied, as the index suc n is not fully general (i.e. it is not an equation variable).
Instead, we solve this unification problem in three steps: in the first step, we
generalize over the indices in order to apply the injectivity rule, generating higher-
dimensional equations in the process. In the second step, we bring down these
equations by one dimension so we can solve them by applying known unification
rules. Finally, we lift the one-dimensional unifier to the higher-dimensional problem.

Step 1: generalizing the indices. We generalize the problem by introducing an
extra equation e1 : suc n ≡N suc n to the telescope, together with a proof p that
e1 is equal to refl:

Γ(e : cons n x xs ≡Vec A (suc n) cons n y ys)

≃ Γ(e1 : suc n ≡N suc n)(e2 : cons n x xs ≡Vec A e1 cons n y ys)
(p : e1 ≡suc n≡Nsuc n refl)

(68)

This is nothing but an application of the solution rule in the reverse direction,
as applying solution to p would bring us back to the first equation.5
Since the index in the type of e2 is now fully general, we are free to apply the
injectivitycons rule:

Γ(e1 : suc n ≡N suc n)(e2 : cons n x xs ≡Vec A e1 cons n y ys)
(p : e1 ≡suc n≡Nsuc n refl)

≃
Γ(e′

1 : n ≡N n)(e′
2 : x ≡A y)(e′

3 : xs ≡Vec A e′
1

ys)
(p : cong suc e′

1 ≡suc n≡Nsuc n refl)

(69)

Applying the injectivity rule to e2 has instantiated the variable e2 with cong suc e′
1.

This instantiation is determined by the computational behaviour of injectivitycons

5 This is the exact same technique as used by McBride (1998b): to do a case split on a
variable x : Vec A m where m is not fully general, he introduces a new variable n : N
together with an equality e : m ≡N n. This means that now x : Vec A m where m are
just variables, so it is possible to perform a case split on x. The only difference in our
case is that we are working one dimension higher, i.e. we work with equations between
elements of the datatype instead of elements of the datatype itself.

ZU064-05-FPR paper April 17, 2018 16:19

Proof-relevant unification 33

(Lemma 31). As you can see, p is a non-trivial equation between equality proofs,
i.e. a higher-dimensional equation.

Step 2: lowering the dimension of equations. To solve the higher-dimensional
equation p, we first consider a one-dimensional version of this problem:

(w′
1 : N)(w′

2 : A)(w′
3 : Vec A w′

1)(p : suc w′
1 ≡N suc n) (70)

The equality proofs e′
1, e′

2 and e′
3 from (69) have been replaced by regular

variables w′
1, w′

2 and w′
3. To reflect this change, cong suc e′

1 : suc n ≡N suc n

has been replaced by suc w′
1 and refl : suc n ≡N suc n by suc n.

Now this is a problem we know how to solve: we apply injectivitysuc and
solution to find an equivalence f between this telescope and (w′

2 : A)(w′
3 : Vec A n).

This solves the one-dimensional problem.
Step 3: lifting unifiers to a higher dimension. How does this help us with

the higher-dimensional problem? By Lemma 72 (Section 6.3), we can lift the
equivalence f to get a new equivalence f↑:

(e′
1 : n ≡N n)(e′

2 : x ≡A y)(e′
3 : xs ≡Vec A e′

1
ys)

(p : cong suc e′
1 ≡suc n≡Nsuc n refl)

≃ (e′′
2 : x ≡A y)(e′′

3 : xs ≡Vec A n ys)
(71)

This solves the higher-dimensional equation p, as well as the reflexive equation
e′

1, without relying on the fact that N satisfies uniqueness of identity proofs!

Finally, we apply the solution rule twice to solve the equations e′′
2 and e′′

3 . So
putting everything together, we have found an equivalence between the original
telescope (67) and (n : N)(x : A)(xs : Vec A n), solving the unification problem.

Now that we have seen how to solve the problem in an example, let’s try to
generalize the solution. The main result of this section is the following theorem.

Theorem 64. Let D : Ξ → Setℓ be a datatype and c : ∆ → D ū be a constructor of
D. Consider a unification problem of the form

(ē : s̄1;c t̄1 ≡Φ(z:D v̄) s̄2;c t̄2) (72)

Suppose we have an equivalence f : Φ∆(p̄ : ū ≡Ξ v̄) ≃ ∆′ Then we also have an
equivalence injectivity′′f

c of type

(ē : s̄1;c t̄1 ≡Φ(z:D v̄) s̄2;c t̄2) ≃ (ē′ : f s̄1 t̄1 refl ≡∆′ f s̄2 t̄2 refl) (73)

Moreover, if f is a strong unification rule then so is this new equivalence.

The computational behaviour of the unifier f suddenly becomes relevant for the
type of the resulting unification problem! In particular, we need the behaviour of f

applied to refl to calculate the left- and right-hand sides of the new equations ē′.

Construction. We follow the same three steps as in Example 63, so if something is
unclear it may help to take a look at the corresponding step in the example.

Step 1: generalizing the indices. First, we unfold the telescopic equality in (72)
and apply Lemma 60 to get an equivalence with (ē1 : s̄1 ≡Φ s̄2)(e2 : c t̄1 ≡D v̄e c t̄2)

ZU064-05-FPR paper April 17, 2018 16:19

34 J. Cockx and D. Devriese

where v̄e = cong (λΦ. v̄) ē1. The equality proofs v̄e have type ū1 ≡Ξ ū2 where ū1
and ū2 stand for ū[∆ 7→ t̄1] and ū[∆ 7→ t̄2] respectively. To generalize v̄e, we
introduce new variables ı̄ : ū1 ≡Ξ ū2 together with equalities p̄ : ı̄ ≡ū1≡Ξū2 v̄e:

(ē1 : s̄1 ≡Φ s̄2)(e2 : c t̄1 ≡D v̄e c t̄2)

≃ (ē1 : s̄1 ≡Φ s̄2)(̄ı : ū1 ≡Ξ ū2)(e2 : c t̄1 ≡D ı̄ c t̄2)
(p̄ : ı̄ ≡ū1≡Ξū2 v̄e)

(74)

Since ı̄ consists of distinct equation variables, it’s now possible to apply injectivityc

to the equation e2. This gives us an equivalence:

(ē1 : s̄1 ≡Φ s̄2)(̄ı : ū1 ≡Ξ ū2)(e2 : c t̄1 ≡D ı̄ c t̄2)(p̄ : ı̄ ≡ū1≡Ξū2 v̄e)
≃ (ē1 : s̄1 ≡Φ s̄2)(ē′

2 : t̄1 ≡∆ t̄2)(p̄ : ūe ≡ū1≡Ξū2 v̄e) (75)

where ūe = cong (λ∆. ū) ē′
2.

Step 2: lowering the dimension of equations. Consider the one-dimensional
version of this unification problem Φ∆(p̄ : ū ≡Ξ v̄), where the equality proofs
ūe and v̄e have been replaced by their lower-dimensional variants ū and v̄ re-
spectively. Since this is a one-dimensional unification problem, we can apply the
known unification rules from Figure 8 to solve it. By assumption of the theorem,
unification succeeds positively with most general unifier f as a result.

Step 3: lifting unifiers to a higher dimension. Now we have to lift this solu-
tion back to the higher-dimensional problem. This lifting is explained in the next
subsection. Lemma 72 gives us a lifted equivalence f↑:

(ē1 : s̄1 ≡Φ s̄2)(ē′
2 : t̄1 ≡∆ t̄2)(p̄ : ūe ≡ū1≡Ξū2 v̄e)

≃ (ē′ : f s̄1 t̄1 refl ≡∆′ f s̄2 t̄2 refl) (76)

This is exactly what we need to solve the problem in (75).

Now we combine the equivalences in (74), (75) and (76) to get the final equiva-
lence (73).

To see why this is a strong unification rule, note that it is the composition of
four equivalences: Lemma 60, solution−1, injectivityc and f↑. By Lemma 50,
it is sufficient to prove that these four equivalences are strong unification rules
individually. The first two are strong by construction, and injectivityc is a strong
unification rule by Lemma 51. Finally, f↑ is strong too by Lemma 73.

This finishes the application of higher-dimensional unification to the equation e.
We have solved the injectivity problem e, and there are no more higher-dimensional
unification problems in the resulting equations ē′

1, so we can continue unification
on the new problem as normal.

Having given the rule for higher-dimensional unification, the presentation of our
full unification algorithm is finished. The rules are summarized in Figure 9, including
η-rules for record types (Lemma 44 and Lemma 46), generalized conflict and cycle
(Lemma 59 and Lemma 61) and higher-dimensional unification (Theorem 64).

ZU064-05-FPR paper April 17, 2018 16:19

Proof-relevant unification 35

solution : (x : A)(e : x ≡A u) ≃ () (where x ̸∈ F V (u))

deletion : (e : u ≡A u) ≃ ()

injectivity′′f
c : (ē : s̄1;c t̄1 ≡Φ(z:D v̄) s̄2;c t̄2) ≃ (ē′ : f s̄1 t̄1 refl ≡∆′ f s̄2 t̄2 refl)

(where c : ∆ → D ū and f : Φ∆(p̄ : ū ≡Ξ v̄) ≃ ∆′)

conflict′
c1,c2 :

(
s̄1;c1 t̄1 ≡Φ(x:D v̄) s̄2;c2 t̄2

)
≃ ⊥ (where c1 ̸= c2)

cycle′
t1,t2 :

(
s̄1; t1 ≡Φ(x:D v̄) s̄2; t2

)
≃ ⊥ (where t1 ≺ t2)

ηvarR : (r : R) ≃ (f1 : A1) . . .(fn : An f1 . . . fn−1)

ηeqR : (e : r ≡R s) ≃ (e1 : f1 r ≡A1 f1 s) . . .(en : fn r ≡An e1 ... en−1 fn s)

Figure 9: The complete list of rules of the unification algorithm.

It is impossible for higher-dimensional unification to end in a negative success,
as this would mean we are trying to solve an ill-typed equation. For example, we
can never encounter a higher-dimensional conflict:

cong c1 ē1 ≡??? cong c2 ū′ v̄′ ē2 (77)

because the left-hand side has a type of the form c1 ū ≡ c1 v̄ while the right-hand
side has type c2 ū′ ≡ c2 v̄′. Likewise, a higher-dimensional cycle would be:

e ≡??? cong c e (78)

where the left-hand side has some type u ≡ v but the right-hand side has type
c ū′ ≡ c v̄′ where u and v occur in ū′ and v̄′ respectively.

To see how higher-dimensional unification can be applied in a concrete situation,
we now show a more limited but still very useful corollary of Theorem 64. In par-
ticular, this corollary formally justifies the notion of a forced constructor argument
(Brady et al., 2004).

Definition 65 (Forced constructor argument). A variable x occurs rigidly in a
term t if either t = x or t is of the form c t1 . . . tn where x occurs rigidly in one of
the ti and ti is not a forced argument of c.

An argument of a constructor c : ∆ → D ū is forced if it occurs rigidly in one of
the indices ū.

As an example, the argument (n : N) is a forced argument of cons : (n : N)(x :
A)(xs : Vec A n) → Vec A (suc n). The concept of a forced constructor argument
was introduced by Brady et al. (2004) for efficiently compiling dependently typed
programs. We use it here to describe when it is safe to apply the injectivity rule.

Definition 66 (Invertible constructor). A constructor c : ∆ → D ū is invertible if
the indices ū consist only of invertible constructors and variables bound in ∆, and
no variable from ∆ occurs more than once in a non-forced position in ū.

In particular, constructors of non-indexed datatypes such as N are always invert-
ible. Likewise, the constructor cons : (n : N)(x : A)(xs : Vec A n) → Vec A (suc n) is

ZU064-05-FPR paper April 17, 2018 16:19

36 J. Cockx and D. Devriese

invertible. In contrast, refl : u ≡A u is not an invertible constructor unless u consists
itself completely of invertible constructors: refl : zero ≡N zero is invertible, but
refl : n ≡N n for variable n : N is not.

Now we can justify why forced constructor arguments (of invertible constructors)
can be skipped during unification.
Corollary 67. Let c : ∆ → D ū be an invertible constructor (Definition 66) of the
datatype D : Ξ → Setℓ and t̄1, t̄2 : ∆. Then we have an equivalence

(e : c t̄1 ≡D v̄ c t̄2) ≃ (ē′ : t̄1|∆′ ≡∆′ t̄2|∆′) (79)

where v̄ = ū[∆ 7→ t̄1] = ū[∆ 7→ t̄2], ∆′ is the telescope of non-forced arguments of c
with the forced arguments filled in with the corresponding values from t̄1, and t̄|∆′

is the sublist of t̄ corresponding to the variables occurring in ∆′.
From the well-formedness of the type c t̄1 ≡D v̄ c t̄2, it follows that the forced

arguments of t̄1 and t̄2 are equal, so it doesn’t matter from which side we take
them.

Construction. By definition of an invertible constructor, applying unification to
the unification problem ∆(p̄ : ū ≡Ξ v̄) ends in a positive success with result f :
∆(p̄ : ū ≡Ξ v̄) ≃ ∆′ where the computational behaviour of f is to select the non-
forced arguments of c from ∆. Applying Theorem 64 to f gives us the desired
equivalence.

In particular, when applying injectivity to an equation c s̄ = c t̄, this corollary
tells us that it is safe to skip unification of the forced arguments of c. This allows
us to avoid some situations where unification would otherwise require the deletion
rule.
Example 68. Let Fin : N → Set be the following datatype:

data Fin : N → Set where
fzero : (n : N) → Fin (suc n)
fsuc : (n : N) → Fin n → Fin (suc n)

(80)

We apply Corollary 67 to solve the equation fsuc n x ≡Fin (suc n) fsuc n y. Since the
first argument of the constructor fsuc is forced, the corresponding equation n = n

can be skipped. So we get an equivalence of type fsuc n x ≡Fin (suc n) fsuc n y ≃
x ≡Fin n y In particular, we do not need to solve the (forced) equation n ≡N n.

6.3 Lifting unifiers to higher dimensions

We have seen how to apply higher-dimensional unification to make the injectivity
rule more generally applicable. In this section, we dive into the heart of the problem.
Our core result that makes higher-dimensional unification work is Lemma 72, telling
us exactly how to update the left- and right-hand sides of the equations when lifting
a unifier.

Suppose we have a unifier that we want to lift to a higher dimension. As a first
attempt, we try to apply the following theorem from The Univalent Foundations
Program (2013):

ZU064-05-FPR paper April 17, 2018 16:19

Proof-relevant unification 37

w x

y z

t

b

l r
p

(a) Horizontal filling

w x

y z

t

b

l rq

(b) Vertical filling

Figure 10: The Square type represents the possible ways to fill a square defined by
four equality proofs.

Theorem 69. If a function f : A → B is an equivalence and x,y : A, then cong f :
x ≡A y → f x ≡B f y is also an equivalence.

Construction. This is Theorem 2.11.1 from The Univalent Foundations Program
(2013).

Applying this theorem to a unifier f : Γ(p̄ : ā ≡∆ b̄) ≃ Γ′ results in an equivalence
cong f : (ē : ū; r̄ ≡Γ(p̄:ā≡∆b̄) v̄; s̄) ≃ (ē′ : f ū r̄ ≡Γ′ f v̄ s̄), or expanding the definition
of telescopic equality:

cong f : (ē : ū ≡Γ v̄)(q̄ : r̄ ≡āe≡∆e b̄e
s̄) ≃ (ē′ : f ū r̄ ≡Γ′ f v̄ s̄) (81)

where ū, v̄ : Γ, r̄ : āu ≡∆u b̄u, s̄ : āv ≡∆v b̄v, and ·x is shorthand for ·[Γ 7→ x̄]. This is
already almost what we need for higher-dimensional unification, but not quite.

To better visualize the problem, we make use of the concept of a square, also
called a 2-path by The Univalent Foundations Program (2013):

Definition 70 (Square). Let A : Setℓ, w,x,y,z : A, t : w ≡A x, b : y ≡A z, l : w ≡A y,
and r : x ≡A z. The square type Square t b l r is defined to be the dependent equality
type l ≡t≡Ab r.

The type l ≡t≡Ab r can be written a little more explicitly as l ≡t;b
≡A r, or even

more explicitly as subst (_ ≡A _) (t;b) l ≡x≡Az r. If we imagine a square with top
side t, bottom side b, left side l, and right side r, then Square t b l r can be thought
of as the type of identity proofs that fill this square horizontally as visualized in
Figure 10a.

There is a second way to construct a square type from four given points w,x,y,z :
A and equality proofs t : w ≡A x, b : y ≡A z, l : w ≡A y: we can ‘flip’ the square
around its w-z axis, as illustrated by Figure 10b. To get to our desired result, we
need to rely on the fact that both square types are in fact equivalent:

Lemma 71 (Flipping squares). Let A : Set, w,x,y,z : A, t : w ≡A x, b : y ≡A z,
l : w ≡A y, and r : x ≡A z. Then we have an equivalence flip t b l r : Square t b l r ≃
Square l r t b.

Proof. The proof of this lemma consists completely of repeated applications of J.
We start by constructing the function flip t b l r : Square t b l r → Square l r t b.

ZU064-05-FPR paper April 17, 2018 16:19

38 J. Cockx and D. Devriese

First, by J on t and b we can assume that w = x, y = z and both t and b are refl,
so we are left with the goal l ≡w≡Ay r → refl ≡l≡Ar refl. The identity type in the
function argument has become homogeneous, so we again apply J, giving us that
l = r and leaving us with the goal refl ≡l≡al refl. Finally, one more application
of J on l : w ≡A y leaves us with the goal refl ≡w≡Aw refl, which we solve with
refl.

For the construction of the left and right inverse of flip, we just change the
order of t,b, l and r in the construction of flip. For the proofs that they are in fact
inverses, the same sequence of applications of J as used in the construction of flip
suffices.

Now we prove the main lemma. When we applied this lemma in the last section,
we only used it for r̄ = refl and s̄ = refl, but the fully general version is not harder
to prove so that’s what we present here.

Lemma 72 (Lifting of unifiers). Suppose we have a unifier f : Γ(p̄ : ā ≡∆ b̄) ≃ Γ′

and ū, v̄ : Γ, r̄ : āu ≡∆u b̄u and s̄ : āv ≡∆v b̄v.6 Then we have a lifted unifier

f↑ : (ē : ū ≡Γ v̄)(p̄ : cong (λΓ.ā) ē ≡r̄≡∆e s̄ cong (λΓ.b̄) ē)
≃ (ē′ : f ū r̄ ≡Γ′ f v̄ s̄) (82)

Construction. By Theorem 69 we already have the equivalence in (81). By Lemma 60,
the type of q̄ is equivalent to r̄ ≡cong (λΓ.ā) ē≡∆e cong (λΓ.b̄) ē s̄. If we think of this
type as a square type, then Lemma 71 gives us that this type is equivalent to
cong (λΓ.ā) ē ≡r̄≡∆e s̄ cong (λΓ.b̄) ē. This is illustrated in Figure 11. Composing
this equivalence with cong f gives us the desired equivalence f↑.

Lemma 73. If f : Γ(p̄ : ā ≡∆ b̄) ≃ Γ′ is a strong unifier, then so is f↑.

Proof. f↑ is constructed as a composition of the equivalences cong f (Theorem 69),
Lemma 60, and flip (Lemma 71). By Lemma 50, we just have to verify that each
of these equivalences is a strong unification rule. But this can be verified by looking
at their construction (in the case of cong f also using the fact that f is a strong
unifier).

7 Translation to eliminators

In this section, we translate the injectivity, conflict, and cycle rules from Section 4 to
the ‘bare metal’ of type theory: datatype eliminators. These eliminators encode the
basic induction principles associated to each datatype. By translating definitions
by pattern matching to eliminators, we can be confident that they do not add any
extra assumptions to the core theory.

For the rest of this section, let D : Ξ → Seti be an inductive family (where Ξ is
the telescope of the indices) with constructors c1, . . . ,ck. Without loss of generality,

6 We again write ·x for ·[Γ 7→ x̄]

ZU064-05-FPR paper April 17, 2018 16:19

Proof-relevant unification 39

āu b̄u

āv b̄v

r̄

s̄

cong (λΓ.ā) ē cong (λΓ.b̄) ē
p̄

(a) Horizontal filling p̄

āu b̄u

āv b̄v

r̄

s̄

cong (λΓ.ā) ē cong (λΓ.b̄) ēq̄

(b) Vertical filling q̄

Figure 11: To construct the equivalence in Lemma 72, we apply Lemma 71 to
transform the horizontal filling p̄ into a vertical one q̄.

we assume that the non-recursive constructor arguments come before the recursive
ones, so ci has type:

ci : ∆i → (Φi,1 → D v̄i,1) → . . . → (Φi,ni → D v̄i,ni) → D ūi (83)

We consider D to be already applied to its parameters, if it has any.

Definition 74. The standard datatype eliminator elimD for D has type

elimD : (P : D → Seti)(m1 : M1) . . .(mk : Mk)
→ (x̄ : D) → P x̄

(84)

where the methods m1, . . . ,mk have type

Mi = (t̄ : ∆i)(x1 : Φi,1 → D v̄i,1) . . . (xni : Φi,ni → D v̄i,ni)
→ (h1 : (s̄1 : Φi,1) → P v̄i,1 (x1 s̄1)) → . . .

→ (hni : (s̄ni : Φi,ni) → P v̄i,ni (xni s̄ni))
→ P ūi (ci t̄ x1 . . . xni)

(85)

The evaluation behaviour of the standard datatype eliminator is given by the
following rule for i = 1, . . . ,k:

elimD P m1 . . . mk ūi (ci t̄ x1 . . . xni) =
mi t̄ x1 . . . xni

(λs̄1.elimD P m1 . . . mk v̄i,1 (x1 s̄1))
. . .

(λs̄ni .elimD P m1 . . . mk v̄i,ni(xni s̄ni))

(86)

Example 75. Following the pedagogy of McBride, Goguen, and McKinna (2006),
we take binary trees as our example datatype. This type Tree is defined by the two

ZU064-05-FPR paper April 17, 2018 16:19

40 J. Cockx and D. Devriese

constructors leaf : Tree and node : Tree → Tree → Tree. The eliminator for Tree
is

elimTree : (P : Tree → Seti)(mleaf : P leaf)
→ (mnode : (l r : Tree) → P l → P r → P (node l r))
→ (x : Tree) → P x

(87)

The evaluation rules are

elimTree P mleaf mnode leaf = mleaf (88)

and
elimTree P mleaf mnode (node l r) =

mnode l r (elimTree P mleaf mnode l) (elimTree P mleaf mnode r) (89)

Case analysis caseD is a weakened version of the standard eliminator without the
inductive hypotheses.

Lemma 76. We have a function caseD of type

caseD : (P : D → Seti)(m1 : M1) . . .(mk : Mk)
→ (x̄ : D) → P x̄

(90)

where
Mi : (t̄ : ∆i) → (x1 : Φi,1 → D v̄i,1) . . . (xni : Φi,ni → D v̄i,ni)

→ P ūi (ci t̄ x1 . . . xni)
(91)

for i = 1, . . .k.

Example 77. For the Tree type, we have:

caseTree : (P : Tree → Seti) → P leaf
→ ((l r : Tree) → P (node l r)) → (x : Tree) → P x

caseTree P mleaf mnode t = elimTree P mleaf (λl r hl hr. mnode l r) t

(92)

Example 78. For the type m ≤ n, we have:

case≤ : (P : (m : N)(n : N)(x : m ≤ n) → Seti)
→ (mlz : (m : N) → P zero m (lz m))
→ (mls : (m : N)(n : N)(x : m ≤ n) → P (suc m) (suc n) (ls m n x))
→ (m : N)(n : N)(x : m ≤ n) → P m n x

(93)

Construction of caseD.

caseD P m1 . . . mk = elimD P (λt̄ x̄ h̄.m1 t̄ x̄) . . . (λt̄ x̄ h̄.mk t̄ x̄) (94)

7.1 No confusion

Two of the unification rules, injectivity and conflict, are instances of a more gen-
eral principle known as ‘no confusion’. In this section, we construct this principle
internally as an equivalence noConfD.

We first define an auxiliary type in order to give a general type to noConfD.

ZU064-05-FPR paper April 17, 2018 16:19

Proof-relevant unification 41

Lemma 79. We have a type NoConfusionD : D → D → Setd such that

NoConfusionD (ū;ci s̄) (v̄;ci t̄) = s̄ ≡∆i
t̄

NoConfusionD (ū;ci s̄) (v̄;cj t̄) = ⊥ (when i ̸= j) (95)

On the diagonal (where we have two times the same constructor), NoConfusionD

only requires s̄ ≡∆c t̄. From this it follows that ū ≡Ξ v̄ as well, since the indices are
determined by the choice of constructor and its arguments.

Example 80. For the Tree datatype, NoConfusion t1 t2 is defined as follows:

NoConfusion : Tree → Tree → Set
NoConfusion leaf leaf = ⊤
NoConfusion leaf (node l r) = ⊥
NoConfusion (node l r) leaf = ⊥
NoConfusion (node l1 r1) (node l2 r2) = (l1 ≡Tree l2) × (r1 ≡Tree r2)

(96)

Construction of NoConfusionD. We apply caseD with the motive λ _. D → Seti. For
each method mi x̄, we apply caseD again with motive λ_ → Set. This gives us k2

methods mi,j to fill in, one for each pair of constructors. On the diagonal (where
i = j) we define mii = λx̄; x̄′. x̄ ≡∆i

x̄′, and if i ̸= j we give mi,j = λx̄; x̄′. ⊥.

Lemma 81. We have an equivalence

noConfD : (x̄ ȳ : D) → (x̄ ≡D ȳ) ≃ NoConfusionD x̄ ȳ (97)

Moreover, for any constructor c : ∆ → D ū and s̄, s̄′ : ∆, this equivalence satisfies
noConfD

−1 (ū[∆ 7→ s̄];c s̄) (ū[∆ 7→ s̄′];c s̄′) = dcong (λx̄.ū;c x̄).

Example 82. For Tree, the function noConfTree gives for any two trees s and t

that are equal a proof of NoConfusionTree s t:

noConfTree : (s t : Tree) → (s ≡Tree t) ≃ NoConfusionTree s t (98)

If s and t are of the form node l1 r1 and node l2 r2 respectively, then this gives us
the injectivity rule (node l1 r1 ≡Tree node l2 r2) ≃ (l1 ≡Tree l2 × r1 ≡Tree r2). On the
other hand, if s is of the form leaf and t is of the form node l r, then we get the
conflict rule (leaf ≡Tree node l r) ≃ ⊥.

Construction of noConfD. First, we define the left-to-right function noConfD ā b̄. To
do this, we apply telescopic substitution subst with motive NoConfusionD ā. This
reduces the problem to finding a function of type

(ā : D) → NoConfusionD ā ā (99)

But this can be done using caseD with motive λ ā. NoConfusionD ā ā, filling in refl
for each method mi x̄.

For the inverse noConfD
−1 ā b̄, we need to do a little more work. First, we apply

caseD twice as in the definition of NoConfusionD. Now we are left to give methods

mi,j : NoConfusionD (ūi;ci x̄) (ū′
j ;cj x̄′) → ūi (ci x̄) ≡D ū′

j (cj x̄′) (100)

When i ̸= j, this is easy: we get an element of type ⊥ from NoConfusionD, from
which we can conclude anything. On the diagonal (where i = j) we get a proof of

ZU064-05-FPR paper April 17, 2018 16:19

42 J. Cockx and D. Devriese

x̄ ≡∆i
x̄′. Applying dcong to this equality gives us ūi; (ci x̄) ≡D ū′

i; (ci x̄′), which is
what we need.

Next, we prove that this is a left inverse by constructing a function of type

(ā b̄ : D)(ē : ā ≡D b̄) → noConfD
−1 ā b̄ (noConfD ā b̄ ē) ≡ā≡Db̄ ē (101)

By J, it is sufficient to give a function of type

(ā : D) → noConfD
−1 ā ā (noConfD ā ā refl) ≡ā≡Dā refl (102)

But this we can do by applying caseD with methods mi x̄ = refl.
All that’s left to do is to prove that it is a right inverse as well. To construct the

proof isRinv that

(ā b̄ : D)(e : NoConfusionD ā b̄) → noConf ā b̄ (noConf−1 ā b̄ e) ≡NoConfusionD ā b̄ e

(103)
we first apply case analysis on ā and b̄. In the cases where we have two distinct
constructors ci and ck, we have e : ⊥ so we can conclude by elim⊥. In the diagonal
cases we have e : s̄ ≡∆i

t̄. Eliminating these equations with J leaves us with the goal
refl ≡s̄≡∆i

s̄ refl, which we solve by giving refl.

7.2 Acyclicity

The other property of datatypes we need is acyclicity: a term can never be struc-
turally smaller than itself. This property is used for implementing the cycle de-
tection rule of the unification algorithm. Internally, it is represented by the term
noCycleD. To express its type, we first define what it means for a term to (not) be
structurally smaller than some other term.

We first define the auxiliary type BelowD: BelowD P ū x is defined as a tuple type
that is inhabited whenever P v̄ y holds for all y : D v̄ that are structurally smaller
than x : D ū.

Lemma 83. Let P : D → Seti. For any x : D ū, we have a type BelowD P ū x such
that for any y ≺ x we have a projection π : BelowD P ū x → P v̄ y.

Example 84. The type BelowTree P x expresses that the property P : Tree → Set
holds for any subtree of x : Tree. In other words, we have

BelowTree P leaf = ⊤
BelowTree P (node l r) = (BelowTree P l × P l) × (BelowTree P r × P r) (104)

Construction of BelowD P . We apply the eliminator elimD to the motive Φ = λ _. Seti.
For the method mi corresponding to the constructor ci we give the following:

mi = λt̄;x1; . . . ;xni ;h1; . . . ;hni .

((s̄1 : Φi,1) → h1 s̄1 × P v̄i,1 (x1 s̄1)) ×
·· · × ((s̄ni : Φi,ni) → hni s̄ni × P v̄i,ni (xni s̄ni))

(105)

To construct the projection π, consider x : D ū and any structurally smaller term
y : D v̄. If y is (an application of) a direct subterm of x, say x = c t̄ x1 . . . xn with

ZU064-05-FPR paper April 17, 2018 16:19

Proof-relevant unification 43

y = xi w̄, then we return the second component of the ith component of BelowD P x,
i.e. we define

π H = π2 (πi H w̄) : BelowD P ū x → P v̄ y (106)
Otherwise, y is a subterm of some direct subterm xi of x = c t̄ x1 . . . xn. In particular,
by induction we have some π′ : BelowD P v̄i xi → P v̄ y. This allows us to define π

as follows:
π H = π′ (π1 (πi H)) : BelowD P ū x → P v̄ y (107)

Lemma 85. We have a type _ ̸<D _ : D → D → Setd such that for any x : D ū and
y : D v̄ with x ≺ y, we have x ̸<D y → ⊥. We also define ā ̸≤D b̄ := ā ̸<D b̄ × ā ̸≡D b̄.

If x : D ū and y : D v̄ then we often leave the indices implicit and write x ̸<D y and
x ̸≤D y instead of ū;x ̸<D v̄;y and ū;x ̸≤D v̄;y.

Example 86. The type x ̸<Tree t expresses that x is not a subtree of t. In particular,
we have the following equalities:

x ̸<Tree leaf = ⊤
x ̸<Tree (node l r) = ((x ̸<Tree l) × (x ̸≡Tree l)) × ((x ̸<Tree r) × (x ̸≡Tree r))

(108)

Construction of ̸<D. We define ̸<D in terms of BelowD:

ā ̸<D b̄ := BelowD (λb̄′. ā ̸≡ b̄′) b̄ (109)

By definition of BelowD, we have a projection π : ū;x ̸<D v̄;y → ū;x ̸≡D ū;x whenever
x ≺ y. Filling in refl for the proof of ū;x ̸≡D ū;x gives us the desired proof of
x ̸<D y → ⊥.

Now we can state the property that no term can be structurally smaller than
itself.

Lemma 87. We have a function noCycleD : (ā b̄ : D) → ā ≡D b̄ → ā ̸<D b̄.

Example 88. noCycleTree is the proof that no tree can ever be a subtree of itself,
i.e. every well-typed tree is well-founded.

Construction of noCycleD. Note that

x ̸<D ci t̄ x1 . . . xni = ((s̄1 : Φi,1) → x ̸≤D x1 s̄1) × . . .

× ((s̄ni : Φi,ni) → x ̸≤D xni s̄ni)
(110)

by definition of BelowD and ̸≤D. Now to construct noCycleD, we start by eliminating
the equation ā ≡D b̄ using J, which leaves us the goal (ā : D) → ā ̸<D ā. Next we apply
caseD with motive λā. ā ̸<D ā, producing for each constructor ci : ∆i → (Φi,1 →
D v̄i,1) → . . . → (Φi,ni → D v̄i,ni) → D ūi the subgoal

(t̄ : ∆i)(x1 : Φi,1 → D v̄i,1) . . . (xni : Φi,ni → D v̄i,ni) →
(h1 : (s̄1 : Φi,1) → x1 s̄1 ̸<D x1 s̄1) . . .

(hni : (s̄ni : Φi,ni) → xni s̄ni ̸<D xni s̄ni) →
ci t̄ x1 . . . xni ̸<D ci t̄ x1 . . . xni

(111)

ZU064-05-FPR paper April 17, 2018 16:19

44 J. Cockx and D. Devriese

To continue, we define the auxiliary types Stepi,j for i = 1, . . . ,k and j = 1, . . . ,ni

as follows:
Stepi,j : (t̄ : ∆i)(x1 : Φi,1 → D v̄i,1) . . . (xni : Φi,ni → D v̄i,ni) →

(s̄ : Φi,j)(ā : D) → Setd

Stepi,j t̄ x1 . . . xni s̄ (ū;b) = (xj s̄) ̸<D b → (ci t̄ x1 . . . xni) ̸≤D b

(112)

In what follows, we will construct

stepi,j : (t̄ : ∆i)(x1 : Φi,1 → D v̄i,1) . . . (xni : Φi,ni → D v̄i,ni) →
(s̄ : Φi,j)(ā : D) → Stepi,j t̄ x1 . . . xni Φi,j ā

(113)

Once this is done, we solve the subgoal (111) by filling in

λt̄;x1; . . . ;xni ;h1; . . . ;hni .

(λs̄1. stepi,1 t̄ x̄ s̄1 (v̄i,1; (x1 s̄1)) (h1 s̄1)), . . . ,
(λs̄ni . stepi,ni t̄ x̄ s̄ni (v̄i,ni ; (xni s̄ni)) (hni s̄ni))

(114)

So we only need to construct stepi,j.
The construction of stepi,j t̄ x1 . . . xni s̄ : (ā : D) → Stepi,j t̄ x1 . . . xni s̄ ā proceeds

by applying elimD with the motive Stepi,j t̄ x1 . . . xni s̄. The new subgoals are of
the form

(t̄′ : ∆p)(x′
1 : Φp,1 → D v̄′

p,1) . . . (x′
np

: Φp,np → D v̄′
p,np

) →
(h′

1 : (s̄′
1 : Φp,1) → Stepi,j t̄ x1 . . . xni s̄ v̄′

p,1 (x′
1 s̄′

1)) . . .

(h′
np

: (s̄′
np

: Φp,np) → Stepi,j t̄ x1 . . . xni s̄ v̄′
p,np

(x′
np

s̄′
np

)) →
Stepi,j t̄ x1 . . . xni s̄ ū′

p (cp t̄′ x′
1 . . . x′

np
)

(115)

We solve them by giving:

λt̄′;x′
1; . . . ;x′

np
;h′

1; . . . ;h′
np

;H. α,β (116)

where we still have to construct

α : ūi; (ci t̄ x1 . . . xni) ̸<D ū′
p; (cp t̄′ x′

1 . . . x′
np

) (117)

and
β : ūi; (ci t̄ x1 . . . xni) ̸≡D ū′

p; (cp t̄′ x′
1 . . . x′

np
) (118)

We have H : xj s̄ ̸<D cp ∆′
p x′

1 . . . x′
np

or, by definition of ̸<D, H = (H1, . . . ,Hnp)
where Hq : (s̄′ : Φ′

pq) → xj s̄ ̸≤D x′
q s̄′. The construction of α reduces to the construc-

tion of components αq : (s̄′ : Φ′
p,q) → ci t̄ x1 . . . xni ̸≤D x′

q s̄′. But these we can give
as αq = λs̄′. h′

q s̄′ (π1 (Hp s̄′)).
For constructing β, we assume ūi; (ci t̄ x1 . . . xni) ≡D ū′

p; (cp t̄′ x′
1 . . . x′

np
) and

derive an element of ⊥. By noConfD, it suffices to consider the case where i =
p and t̄;x1; . . . ;xni = t̄′;x′

1, . . . ,x′
np

. But then we have Hj s̄ : xj s̄ ̸≤D xj s̄, hence
π2 (Hj s̄) refl : ⊥. This finishes the construction of noCycleD.

8 Implementation

Using our framework for proof-relevant unification described in this paper, we
reimplemented the unification algorithm used by Agda for checking definitions by

ZU064-05-FPR paper April 17, 2018 16:19

Proof-relevant unification 45

dependent pattern matching. As a result, we were able to replace previous ad hoc
restrictions with formally verified unification rules, fixing a number of bugs in the
process. It also enabled us to add new unification rules dealing with η-equality for
record types, as well as higher-dimensional unification for solving equations between
constructors of indexed datatypes. Another advantage of our approach is that the
implementation is now much cleaner than before, allowing it to be extended easily
in the future. In this section, we take a look at our implementation from the point
of view of an Agda user (Section 8.1) and an Agda developer (Section 8.2).

8.1 Impact on the Agda user

From the point of view of a user of Agda, unification happens behind the scenes
while checking definitions by pattern matching, so a different algorithm doesn’t
impact the syntax of the language directly. Instead, the main criterion a user of
Agda should judge the unification algorithm by is that it accepts the definitions
that should be accepted, and rejects the definitions that should be rejected. The
latter can be seen from the fact that our implementation directly resulted in a fix for
issue #1408 (Example 41), dealing with an incompatibility between heterogeneous
equations and the –without-K option (Vezzosi, 2015). Equally important, our im-
plementation provides a much more principled solution to issues #292 (Danielsson,
2010, see also Example 41), #1071 (Danielsson, 2014), #1406 (Abel, 2015a, see also
Example 40), #1411 (Abel, 2015b), and #1427 (Abel, 2015c, see also Example 40).
All these issues are fixed without introducing special cases in the code and without
limiting the power of the unification algorithm in any significant way, as can be
seen from the fact that Agda’s test suite and standard library are still typechecked
correctly. This is in contrast to the previous ad-hoc fixes to some of these issues,
which broke the unification algorithm in some cases, for example in issue #1435
(Danielsson, 2015).

The addition of the new unification rules for η-equality of record values also
significantly improved the way Agda handles records. Before these unification rule
were added to Agda, all variables of record type had to be fully eta-expanded
before calling the unifier, for example in issue #473 (Danielsson, 2011). This caused
a substantial overhead when dealing with deeply nested records, see issue #635
(Peebles, 2012). This also caused problems in combination with Agda’s instance
search mechanism, see for example issue #1613 (Abel, 2015d). In contrast, by
using this unification rule we only eta-expand a variable when it is useful for the
unification to proceed, thus eliminating this overhead.

We also implemented higher-dimensional unification (Section 6). This addition
allows Agda to typecheck more definitions, such as the example given in issue #1775
(Sicard-Ramírez, 2016).

8.2 Impact on the Agda codebase

For the further development of Agda, it is important that the unification machinery
is robust and easily extensible with further rules. For this reason, we separated it

ZU064-05-FPR paper April 17, 2018 16:19

46 J. Cockx and D. Devriese

data UnifyState = UState
{ varTel :: Telescope
, flexVars :: FlexibleVars
, eqTel :: Telescope
, eqLHS :: [Term]
, eqRHS :: [Term]
}

data UnifyStep
= Deletion { ... }
| Solution { ... }
| Injectivity { ... }
| Conflict { ... }
| Cycle { ... }
| EtaExpandVar { ... }
| EtaExpandEquation { ... }
| LitConflict { ... }
| StripSizeSuc { ... }
| SkipIrrelevantEquation { ... }
| TypeConInjectivity { ... }

Figure 12: The datatypes used for representing unification states and unification
rules closely follow the theory. In addition to the unification rules presented in this
paper, Agda also has unification rules for dealing with literals, sized types (Abel,
2012) and irrelevant equations (Abel, 2011), features not discussed in this paper.
There is also a rule for injective type constructors that is only used when this is
enabled explicitly by the user.

into two logical parts: a unification strategy and the unification engine. Both parts
make use of the same data structures for representing the unification state and
unification rules, as shown in Figure 12. The unification strategy takes a unification
state as an argument and produces a lazy monadic list of unification rules to try
(Figure 13), while the unification engine tries to apply these rules one by one until
one succeeds (Figure 14).

A big difference between our implementation and Agda’s previous unification
algorithm is that our version explicitly manipulates telescopes of free variables
(varTel) and equations (eqTel) as well as explicit substitutions between these
telescopes, while previously these had to be reconstructed after unification was
finished. This change resulted in a significant simplification of the code for checking
left-hand sides and coverage of definitions by pattern matching (the parts of Agda
that use the unification algorithm).

An important choice when constructing a unification strategy is whether to start
on the leftmost or the rightmost equation. It seems sensible to start on the left to
avoid heterogeneous equations as much as possible, and this was also the preferred
method for the old algorithm. However, our unification rules for indexed datatypes
actually benefit from having unsolved equations in the telescope, so a unification
strategy that starts from the right provides more opportunities to apply these rules.

ZU064-05-FPR paper April 17, 2018 16:19

Proof-relevant unification 47

type UnifyStrategy = UnifyState -> ListT TCM UnifyStep

skipIrrelevantStrategy basicUnifyStrategy
dataStrategy literalStrategy etaExpandVarStrategy
etaExpandEquationStrategy injectiveTypeConStrategy
simplifySizesStrategy checkEqualityStrategy

:: Int -> UnifyStrategy

Figure 13: A unification strategy takes a unification state and produces a list of
unification steps to try in order. For constructing unification strategies, we provide
a number of basic strategies that can be combined in any order.

unifyStep :: UnifyState -> UnifyStep
-> UnifyM (UnificationResult’ UnifyState)

unify :: UnifyState -> UnifyStrategy
-> UnifyM (UnificationResult’ UnifyState)

Figure 14: The unification engine consists of an auxiliary function unifyStep that
tries to apply one unification step, resulting in either a new state, an absurdity (e.g.
for the conflict and cycle rules), or a failure, and the main function unify that tries
all steps suggested by a given strategy, and continues until either the unification
problem is solved (i.e. the equation telescope is empty) or there are no more rules
left to try.

For this reason, our current implementation uses a right-to-left strategy, although
plugging in a different strategy would be trivial.

Our implementation of higher-dimensional unification closely follows the steps in
Section 6.2. In particular, when applying the injectivity rule to a unification problem
of the form (ē1 : s̄1 ≡Φ s̄2)(e2 : c t̄1 ≡D v̄e t̄2) the unification algorithm constructs the
new unification problem Φ∆(p̄ : ū ≡Ξ v̄) and recursively calls itself on this new
problem.

One noteworthy fact about the implementation is how the left- and right-hand
sides f s̄1 t̄1 refl and f s̄2 t̄2 refl of the new unification problem in (73) are com-
puted. The implementation doesn’t have an explicit representation of the function
f , so it’s not possible to calculate them directly. Instead, the recursive call produces
a substitution ρ of type ∆′ → Φ∆. This allows us to calculate f−1 : ∆′ → (x̄ : Φ)(ȳ :
∆)(p̄ : ū ≡Ξ v̄) as λx̄′. x̄′ρ;refl, but doesn’t give us a direct way to compute f .
To go in the opposite direction, we note that ρ is a pattern with free variables ∆′.
So we can match the values from Φ∆ against this pattern. The proofs of ū ≡Ξ v̄

(assumed to be refl in our implementation, since all the unifiers we compute are
strong unifiers) ensure that this matching cannot fail, so this allows us to recover the
values of the variables in ∆′, thus computing the function f : Φ∆(p̄ : ū ≡Ξ v̄) → ∆′.

ZU064-05-FPR paper April 17, 2018 16:19

48 J. Cockx and D. Devriese

9 Related work

Unification is a large area of research that we cannot hope to cover here in full.
We refer the interested reader to Jouannaud and Kirchner (1991) and Baader and
Snyder (2001) for a general overview of the subject. Most extensions to unification
that are studied, such as higher-order unification and E-unification, are orthogonal
to the work in this paper, although it would be interesting to see how they fit within
our framework.

Type checkers of dependently typed languages typically have some facility for
meta-variables that are solved by higher order pattern unification (Reed, 2009;
Abel and Pientka, 2011). This is not directly related to the work in this paper
as the requirements on the unification algorithm are different. For example, these
unification algorithms suppose all rigid symbols (including type constructors) to be
‘injective’ for the purpose of unification. Some algorithms even consider defined
functions to be rigid (Ziliani and Sozeau, 2015) or make use of user-provided
hints to choose one solution over the other (Asperti, Ricciotti, Sacerdoti Coen,
and Tassi, 2009), thereby giving up on finding most general unifiers in favour of
finding solutions more often. In this case, the only problem is that the solution to
the metavariable may not be what the user intended. In contrast, our algorithm
produces evidence of unification internal to the theory we’re working in, and it
is actually important that the unifier found by the algorithm is indeed the most
general one (otherwise we might lose e.g. coverage of functions by pattern matching).
Still, it would be interesting to further investigate the similarities and differences
between these two unification algorithms.

Goguen (1989) takes a categorical view on unification, representing most general
unifiers as equalizers in a category of types and substitutions. It shouldn’t be
surprising that many of the category-theoretic notions are analogous to the type-
theoretic ones presented in this paper. For example, giving an explicit type to
the domain of substitutions helps to avoid problems with non-uniqueness in the
definition of a most general unifier in other presentations. Compared to the category-
theoretical presentation of unification, our work adds support for indexed datatypes,
and it also differs in the fact that type theory allows an internal representation of
equations as (telescopic) equality types.

The idea to represent unification problems at the object level by using the identity
type stems from McBride (1998b). In McBride’s paper, the types of equations are
limited to simple (non-dependent) types, and the injectivity rule is likewise limited
to simple datatypes. Later, he solves this by introducing a heterogeneous identity
type (McBride, 2002). However, UIP is needed to turn heterogeneous equalities
back into homogeneous ones. Additionally, postponing equations is not supported,
as heterogeneous equations can only be turned into homogeneous ones if the types
are equal. In our previous work, we solved the problem of requiring UIP, but the
unification rules still only worked on the first equation in a telescope (Cockx et al.,
2014). As a consequence, we had to limit the injectivity, conflict, and cycle rules
to work only in homogeneous situations, while here we can use them in their fully
general form.

ZU064-05-FPR paper April 17, 2018 16:19

Proof-relevant unification 49

Our approach to unification is closely related to the notion of inversion of an
inductive hypothesis (Cornes and Terrasse, 1996; Monin, 2010). The usual approach
to inversion works by crafting a diagonalizer that is used as the motive for an
eliminator. Unification can also be as an alternative method for proving inversion
lemmas (McBride, 1998b). One advantage of the diagonalizer approach is that it
moves most of the work to the type level, potentially improving performance of the
resulting function. The process of constructing diagonalizers has recently also been
automated (Braibant, 2013). However, it requires that the indices of the inductive
hypothesis we are inverting can be written as a pattern, which is not always the
case (e.g. they may be non-linear), so the approach based on unification seems to
be more general. It would be interesting to try to implement an inversion tactic
based on the unification algorithm in this paper to compare the power of the two
approaches.

The idea to view equality proofs themselves as the subjects of unification is
inspired by cubical type theory, where equality proofs are terms viewed ‘one level
up’ (Cohen et al., 2016). In fact, if we were working in a cubical type theory,
there would be no difference between regular unification and higher-dimensional
unification, so the work in this paper could be seen as ‘backporting’ some of the
power of cubical type theory back to the (currently) better-understood world of
standard intuitionistic type theory.

Compared to our reverse unification rules from Cockx et al. (2016a), higher-
dimensional unification takes information into account from the types of the con-
structors as well as the types of the equation. This difference is similar to the
inversion of an inductive hypothesis by using a diagonalizer (Cornes and Terrasse,
1996) versus using unification for the problem (McBride, 1998b).

10 Discussion and future work

In this paper, we present a proof-relevant unification algorithm for use in dependent
type theory, where unification rules are represented as terms internal to the type
theory. Thus the type system itself enforces the soundness of these unification rules.
Moreover, this lets us extend the unification algorithm with new principles in a safe
and modular way. For example, we showed how to add two new unification rules
for η-equality of record types. As another example, higher-dimensional unification
augments the power of the injectivity rule by allowing us to skip unification of forced
arguments, yet would be impossible to even formulate for an untyped unification
algorithm.

Having an elegant theoretical framework for unification also helped us a lot when
implementing it in practice. As a result, the implementation of our algorithm for
Agda has become cleaner, more robust, and more easily extensible. We hope this
will also be the case for implementers of other dependently typed languages, as it
has already been for the Lean theorem prover and the Equations package for Coq.

Other applications of proof-relevant unification. In this work, we focus on
one application of proof-relevant unification, namely specialization by unification

ZU064-05-FPR paper April 17, 2018 16:19

50 J. Cockx and D. Devriese

and its role in the compilation of dependent pattern matching. However, we believe
firmly that it could also be applied elsewhere, for example for metaprogramming
or tactic systems.

More unification rules. It would be interesting to further explore the correspon-
dence between unification rules and new features of type theory. For example, it
seems that E-unification (unification modulo a set of equations) could correspond
to new unification rules for higher inductive types from HoTT. As another example,
higher-order (pattern) unification could correspond to functional extensionality as
a unification rule. And since the univalence axiom is itself an equivalence, maybe
it could be seen as a unification rule as well?

Custom unification rules. We can put the power of unification in the hands
of the user by allowing them to define custom unification rules in the form of
hints (Asperti et al., 2009). For example, if the user provides a proof of (f x ≡B

f y) ≃ (x ≡A y) for some function f : A → B, then this could be used as an injectivity
rule for f by the unifier. One obstacle is that these rules might not be strong
unification rules, so we either have to give up on some computational properties of
unifiers or implement a check of strongness of a given unification rule.

Unification with higher inductive types. HoTT introduces the concept of
higher inductive types, which can have non-trivial identity proofs between their
constructors. This implies that in general they do not satisfy the injectivity, disjoint-
ness, or acyclicity properties. So to adapt our unification algorithm to a context
with higher inductive types, we should start by limiting the unification algorithm
further, for example by cutting out the “no confusion” and “cycle” properties for
types to which they do not apply.

As a second step, these principles can be replaced by type-specific solvers that
exploit any extra structure that may be available.

Example 89. The interval I is a higher inductive type with two point constructors
0 : I and 1 : I and one path constructor line : 0 ≡I 1. We have the following
equivalence:

contract : (e : 0 ≡I 1) ≃ () (119)
By definition we have contract−1 () = line, so if we use this equivalence as a
unification rule, we won’t get a strong unification rule as a result. Maybe it is
possible to weaken this requirement a bit by not requiring refl as such, but merely
some canonical form. But this means that we also need computation rules for
functions applied to higher constructors, which is still an open problem. So for
now, we have to settle for a weaker kind of unification rules that do not have the
proper definitional behaviour, but still produce an equivalence of the correct type.

More generally, the “no confusion” principle is similar to the encode/decode
technique used by Licata and Shulman (2013) and McKinna and Forsberg (2015)
to calculate the fundamental group of the circle. In particular, they also construct
an equivalence between an equality/path type and a type of codes taking the role

ZU064-05-FPR paper April 17, 2018 16:19

Proof-relevant unification 51

of our NoConfusion type. So it may be possible to construct a new unification rule
for the circle type based on this equivalence. However, be aware that these custom
unification rules can introduce additional variables, for example the rule for the
circle introduces a variable of type Z!

Unification in cubical type theory. Our unification algorithm is developed for
an Agda-like theory based on standard MLTT. In such a theory, principles such as
functional extensionality or univalence can be postulated but they do not get any
computational behaviour. On the other hand, a new and promising theory called
cubical type theory gives a constructive interpretation to the univalence axiom, and
hence also functional extensionality (Bezem, Coquand, and Huber, 2014; Cohen
et al., 2016). In the future we would like to adapt the work in this paper to this
setting, so it would become usable in languages based on cubical type theory as
well.

One obstacle for this adaptation is the fact that the representation of datatypes in
our theory (and also that of Agda, Coq, Idris, . . .) is computationally incompatible
with functional extensionality. We give an example to illustrate the problem.7

Example 90. Let Favourite : (N → N) → Set be a datatype with one constructor
favourite : Favourite (λx. 0+x). We can give a proof p of (x : N) → 0+x ≡ x+0,
so we have funext p : λx. 0+x ≡ λx. x+0 and thence

subst Favourite (funext p) favourite : Favourite (λx. x+0) (120)

However, there is no closed canonical form of type Favourite (λx. x+0) so this term
doesn’t reduce to a canonical form. This cannot be fixed by taking the constructor
itself to be the canonical form (i.e. by letting favourite : Favourite (λx. x+0)), as
this would require the typechecker to check whether two functions are extensionally
equal, which is undecidable in general.

This incompatibility could be solved by disallowing indexed datatypes and in-
stead having each constructor carry explicit proofs of the constraints it imposes
on the former indices. For example, favourite would have the internal type (e :
f ≡ (λx. 0 + x)) → Favourite f . The surface-level constructor is then represented
as favourite refl, while subst Favourite (funext p) favourite computes to
favourite (funext p). With this representation of datatypes, the work done in
this paper is just as necessary as before, since we still need unification to solve the
(telescopic) equations embedded in the constructors, as well as equations between
these embedded equality proofs.

Example 91. We illustrate this by working out Example 63 again for a version of
the Vec datatype with embedded equality proofs instead of indices. Suppose Vec A n

is defined with constructors nil : n ≡N zero → Vec A n and cons : (m : N)(x : A)(xs :
Vec A m) → n ≡N suc m → Vec A n and consider the unification problem:

(e : cons n x xs refl ≡Vec A (suc n) cons n y ys refl) (121)

7 Thanks to Conor McBride for pointing out the problem and giving this example.

ZU064-05-FPR paper April 17, 2018 16:19

52 J. Cockx and D. Devriese

Since this version of the Vec datatype doesn’t have an index, we can apply the
injectivitycons rule to simplify this equation to:

(e1 : n ≡N n)(e2 : x ≡A y)(e3 : xs ≡Vec A e1 ys)
(e4 : refl ≡suc n≡Nsuc e1 refl) (122)

Now e4 is an equation between equality proofs, much like the one we obtained
in (69), except that the equality (p : suc e1 ≡suc n≡Nsuc n suc n) is replaced with
an equality (e4 : refl ≡suc n≡Nsuc e1 refl). Lemma 71 shows that these two types
are in fact equivalent. So higher-dimensional unification problems also occur in
languages without indexed datatypes, and hence that a general way to solve this
kind of equations is equally useful in these languages.

Bibliography

Andreas Abel. Irrelevance in type theory with a heterogeneous equality judgement.
In Martin Hofmann, editor, Foundations of Software Science and Computational
Structures, pages 57–71, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.
ISBN 978-3-642-19805-2.

Andreas Abel. MiniAgda: Integrating sized and dependent types. In Ekaterina
Komendantskaya, Ana Bove, and Milad Niqui, editors, PAR-10. Partiality and
Recursion in Interactive Theorem Provers, volume 5 of EPiC Series in Computing,
pages 18–33. EasyChair, 2012. . URL https://easychair.org/publications/
paper/RM.

Andreas Abel. Injectivity of type constructors is partially back. Agda refutes
excluded middle, 2015a. URL https://github.com/agda/agda/issues/1406.
(on the Agda bug tracker).

Andreas Abel. Order of patterns matters for checking left hand sides, 2015b. URL
https://github.com/agda/agda/issues/1411. (on the Agda bug tracker).

Andreas Abel. Circumvention of forcing analysis brings back easy proof of Fin
injectivity, 2015c. URL https://github.com/agda/agda/issues/1427. (on the
Agda bug tracker).

Andreas Abel. Eta-expanded implicit patterns are not used for instance search,
2015d. URL https://github.com/agda/agda/issues/1613. (on the Agda bug
tracker).

Andreas Abel and Brigitte Pientka. Higher-order dynamic pattern unification for
dependent types and records. In International Conference on Typed Lambda
Calculi and Applications, TLCA, pages 10–26. Springer, 2011.

Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico Tassi.
Hints in unification. In Stefan Berghofer, Tobias Nipkow, Christian Urban, and
Makarius Wenzel, editors, Theorem Proving in Higher Order Logics, pages 84–98,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. ISBN 978-3-642-03359-9.

Franz Baader and Wayne Snyder. Unification theory. In John Alan Robinson
and Andrei Voronkov, editors, Handbook of Automated Reasoning (in 2 volumes),
pages 445–532. Elsevier and MIT Press, 2001. ISBN 0-444-50813-9.

https://easychair.org/publications/paper/RM
https://easychair.org/publications/paper/RM
https://github.com/agda/agda/issues/1406
https://github.com/agda/agda/issues/1411
https://github.com/agda/agda/issues/1427
https://github.com/agda/agda/issues/1613

ZU064-05-FPR paper April 17, 2018 16:19

Proof-relevant unification 53

Marc Bezem, Thierry Coquand, and Simon Huber. A Model of Type Theory in
Cubical Sets. In Ralph Matthes and Aleksy Schubert, editors, 19th International
Conference on Types for Proofs and Programs (TYPES 2013), volume 26
of Leibniz International Proceedings in Informatics (LIPIcs), pages 107–128,
Dagstuhl, Germany, 2014. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
ISBN 978-3-939897-72-9. . URL http://drops.dagstuhl.de/opus/volltexte/
2014/4628.

Edwin Brady. Idris, a general-purpose dependently typed programming language:
Design and implementation. Journal of Functional Programming, 23(5):552–593,
2013. .

Edwin Brady, Conor McBride, and James McKinna. Inductive families need not
store their indices. In Stefano Berardi, Mario Coppo, and Ferruccio Damiani,
editors, Types for Proofs and Programs, pages 115–129, Berlin, Heidelberg, 2004.
Springer Berlin Heidelberg. ISBN 978-3-540-24849-1.

Thomas Braibant. A new Coq tactic for inversion, 2013. URL http://gallium.
inria.fr/blog/a-new-Coq-tactic-for-inversion.

Jesper Cockx. Dependent pattern matching and proof-relevant unification. PhD
thesis, KU Leuven, 2017.

Jesper Cockx and Dominique Devriese. Lifting proof-relevant unification to higher
dimensions. In 6th Conference on Certified Programs and Proofs, CPP. ACM,
2017.

Jesper Cockx, Dominique Devriese, and Frank Piessens. Pattern matching without
K. In 19th International Conference on Functional Programming, ICFP. ACM,
2014.

Jesper Cockx, Dominique Devriese, and Frank Piessens. Unifiers as equivalences:
proof-relevant unification of dependently typed data. In 21th International
Conference on Functional Programming, ICFP. ACM, 2016a.

Jesper Cockx, Dominique Devriese, and Frank Piessens. Eliminating dependent
pattern matching without K. Journal of Functional Programming, 26:e16, 2016b.
.

Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical type
theory: a constructive interpretation of the univalence axiom. CoRR, 2016. URL
http://arxiv.org/abs/1611.02108.

Thierry Coquand. Pattern matching with dependent types. In Bengt Nordstrom,
Kent Petersson, and Gordon Plotkin, editors, Proceedings of the 1992 Workshop
on Types for Proofs and Programs, TYPES, pages 66–79. Chalmers University of
Technology, 1992.

Cristina Cornes and Delphine Terrasse. Automating inversion of inductive
predicates in Coq. In Stefano Berardi and Mario Coppo, editors, Types for Proofs
and Programs, pages 85–104, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.
ISBN 978-3-540-70722-6.

Nils Anders Danielsson. Heterogenous equality is crippled by the Bool /= Fin 2 fix,
2010. URL https://github.com/agda/agda/issues/292. (on the Agda bug
tracker).

http://drops.dagstuhl.de/opus/volltexte/2014/4628
http://drops.dagstuhl.de/opus/volltexte/2014/4628
http://gallium.inria.fr/blog/a-new-Coq-tactic-for-inversion
http://gallium.inria.fr/blog/a-new-Coq-tactic-for-inversion
http://arxiv.org/abs/1611.02108
https://github.com/agda/agda/issues/292

ZU064-05-FPR paper April 17, 2018 16:19

54 J. Cockx and D. Devriese

Nils Anders Danielsson. The unification machinery does not respect η-equality,
2011. URL https://github.com/agda/agda/issues/473. (on the Agda bug
tracker).

Nils Anders Danielsson. Regression in unifier, possibly related to modules
and/or heterogeneous constraints, 2014. URL https://github.com/agda/agda/
issues/1071. (on the Agda bug tracker).

Nils Anders Danielsson. Dependent pattern matching is broken, 2015. URL https:
//github.com/agda/agda/issues/1435. (on the Agda bug tracker).

Nicolaas Govert de Bruijn. Telescopic mappings in typed lambda calculus.
Information and Computation, 91(2):189–204, 1991. ISSN 0890-5401. . URL
http://www.sciencedirect.com/science/article/pii/089054019190066B.

Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von
Raumer. The Lean theorem prover (system description). In 25th International
Conference on Automated Deduction, CADE, 2015.

Gabe Dijkstra. Disunifying non-fully applied constructors is inconsistent with
function extensionality, 2015. URL https://github.com/agda/agda/issues/
1497. (on the Agda bug tracker).

Peter Dybjer. Inductive sets and families in Martin-Löf’s type theory and their set-
theoretic semantics. In Proceedings of the first workshop on Logical frameworks,
1991.

Healfdene Goguen, Conor McBride, and James McKinna. Eliminating dependent
pattern matching. In Kokichi Futatsugi, Jean-Pierre Jouannaud, and José
Meseguer, editors, Algebra, Meaning, and Computation: Essays dedicated to
Joseph A. Goguen on the Occasion of His 65th Birthday, pages 521–540. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2006. ISBN 978-3-540-35464-2. .

Joseph A. Goguen. What is unification?: A categorical view of substitution,
equation and solution. In Hassan Aït-Kaci and Maurice Nivat, editors, Algebraic
Techniques, pages 217–261. Academic Press, 1989. ISBN 978-0-12-046370-1. .

Chung Kil Hur. Agda with the excluded middle is inconsistent?, 2010. URL
https://lists.chalmers.se/pipermail/agda/2010/001522.html. On the
Agda mailing list.

Jean-Pierre Jouannaud and Claude Kirchner. Solving equations in abstract
algebras: A rule-based survey of unification. In Jean-Louis Lassez and Gordon D.
Plotkin, editors, Computational Logic - Essays in Honor of Alan Robinson, pages
257–321. The MIT Press, 1991.

Daniel R. Licata and Michael Shulman. Calculating the fundamental group of the
circle in homotopy type theory. In 28th Symposium on Logic in Computer Science,
LICS, 2013.

Zhaohui Luo. Computation and Reasoning: A Type Theory for Computer Science,
volume 11 of International Series of Monographs on Computer Science. Oxford
University Press, Inc., New York, NY, USA, 1994. ISBN 0-19-853835-9.

Per Martin-Löf. An intuitionistic theory of types. In Twenty-five years of
constructive type theory (Venice, 1995), pages 127–172. Oxford University Press,
1972.

Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in Proof Theory.
Bibliopolis, 1984. ISBN 88-7088-105-9.

https://github.com/agda/agda/issues/473
https://github.com/agda/agda/issues/1071
https://github.com/agda/agda/issues/1071
https://github.com/agda/agda/issues/1435
https://github.com/agda/agda/issues/1435
http://www.sciencedirect.com/science/article/pii/089054019190066B
https://github.com/agda/agda/issues/1497
https://github.com/agda/agda/issues/1497
https://lists.chalmers.se/pipermail/agda/2010/001522.html

ZU064-05-FPR paper April 17, 2018 16:19

Proof-relevant unification 55

Conor McBride. Towards dependent pattern matching in LEGO. Unpublished,
1998a.

Conor McBride. Inverting inductively defined relations in LEGO. In Eduardo
Giménez and Christine Paulin-Mohring, editors, Types for Proofs and Programs,
pages 236–253, Berlin, Heidelberg, 1998b. Springer Berlin Heidelberg. ISBN 978-
3-540-49562-8.

Conor McBride. Dependently typed functional programs and their proofs. PhD
thesis, University of Edinburgh, 2000.

Conor McBride. Elimination with a motive. In Paul Callaghan, Zhaohui Luo,
James McKinna, and Robert Pollack, editors, Types for Proofs and Programs,
pages 197–216, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg. ISBN 978-
3-540-45842-5.

Conor McBride, Healfdene Goguen, and James McKinna. A few constructions
on constructors. In Jean-Christophe Filliâtre, Christine Paulin-Mohring, and
Benjamin Werner, editors, Types for Proofs and Programs, pages 186–200, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg. ISBN 978-3-540-31429-5.

James McKinna and Fredrik Nordvall Forsberg. The encode-decode method,
relationally, pages 63–64. Institute of Cybernetics at Tallinn University of
Technology, 2015. ISBN 978-9949-430-86-4.

Alexandre Miquel. Re: Agda with the excluded middle is inconsistent?,
2010. URL https://lists.chalmers.se/pipermail/agda/2010/001543.html.
Proof posted by Chung-Kil Hur on the Agda mailing list.

Jean-François Monin. Proof Trick: Small Inversions. In Yves Bertot, editor, Second
Coq Workshop, Edinburgh, United Kingdom, 2010. URL https://hal.inria.
fr/inria-00489412.

Ulf Norell. Towards a practical programming language based on dependent type
theory. PhD thesis, Chalmers University of Technology, 2007.

Daniel Peebles. Case splitting emits hidden record patterns that should remain
implicit, 2012. URL https://github.com/agda/agda/issues/635. (on the
Agda bug tracker).

Jason Reed. Higher-order constraint simplification in dependent type theory. In
4th International Workshop on Logical Frameworks and Meta-Languages: Theory
and Practice, pages 49–56. ACM, 2009.

Andrés Sicard-Ramírez. The --without-K option generates unsolved metas,
2016. URL https://github.com/agda/agda/issues/1775. (on the Agda bug
tracker).

Matthieu Sozeau. Equations: A dependent pattern-matching compiler. In Matt
Kaufmann and Lawrence C. Paulson, editors, Interactive Theorem Proving, pages
419–434, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. ISBN 978-3-642-
14052-5.

Thomas Streicher. Investigations into intensional type theory, 1993. Habilitation
thesis, Ludwig Maximilian University of Munich.

The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations of Mathematics. http://homotopytypetheory.org/book, Institute
for Advanced Study, 2013.

https://lists.chalmers.se/pipermail/agda/2010/001543.html
https://hal.inria.fr/inria-00489412
https://hal.inria.fr/inria-00489412
https://github.com/agda/agda/issues/635
https://github.com/agda/agda/issues/1775
http://homotopytypetheory.org/book

ZU064-05-FPR paper April 17, 2018 16:19

56 J. Cockx and D. Devriese

Andrea Vezzosi. Heterogeneous equality incompatible with univalence even
--without-k, 2015. URL https://github.com/agda/agda/issues/1408. (on
the Agda bug tracker).

Beta Ziliani and Matthieu Sozeau. A unification algorithm for Coq featuring
universe polymorphism and overloading. In International Conference on
Functional Programming, ICFP, 2015.

A Incompatibility of injective type constructors with univalence and
excluded middle

The proofs of these two theorems are not essential for the understanding of the
work in this paper. However, to our knowledge there is no easy reference for them
and we think they are interesting enough to mention here.

Theorem 92. MLTT extended with univalence and injective type constructors is
inconsistent.

Proof. Let D : Set → Set be an inductive family with no constructors. Then D ⊤ ≃
⊥ ≃ D ⊥, so D ⊤ ≡Set D ⊥ by univalence. But if D is injective, this means that

⊤ ≡Set ⊥, which is clearly a contradiction.

Theorem 93. MLTT extended with the excluded middle and injective type con-
structors is inconsistent.

Proof. This proof is based on the proof given by Hur (2010).
Assume the datatype D : (Set → Set) → Set is injective (it doesn’t matter what

the constructors of D are). We define a right inverse E of D as follows: if A is equal to
D F for some F : Set → Set, then E A is defined to be that F , otherwise it is λ_.⊥.
Formally, E is defined by case analysis on excluded-middle applied to (Image D A),
where Image D is a datatype with a single constructor image : (F : Set → Set) →
Image (D F).

We have
E (D F) ≡Set→Set F (A 1)

for any F : because D F is certainly in the image of D, E (D F) must be equal to G

for some G with D G ≡Set D F , but then this G must be equal to F by injectivity
of D.

Now we construct by diagonalization a C : Set → Set that is not in the image of E,
thus leading to a contradiction. C A is defined by case analysis on excluded-middle
applied to (E A A ≡Set ⊥): if E A A is equal to ⊥, then C A = ⊤, otherwise C A = ⊥.

To come to the contradiction, consider the term B = E (D C) (D C). By (A 1), we
have B ≡Set C (D C). Is B equal to ⊥ or not? By the excluded middle, there are two
cases:

B ≡Set ⊥: then we have B ≡Set C (D C) ≡Set ⊤ by definition of C, but this is a
contradiction with B ≡Set ⊥.

(B ≡Set ⊥) → ⊥: then we have B ≡Set C (D C) ≡Set ⊥ again by definition of C, but
this is a contradiction with (B ≡Set ⊥) → ⊥.

https://github.com/agda/agda/issues/1408

ZU064-05-FPR paper April 17, 2018 16:19

Proof-relevant unification 57

We have constructed an element of ⊥ in the empty context, so we conclude that
MLTT extended with the excluded middle and injective type constructors is incon-
sistent.

	Introduction
	Preliminaries
	Basic syntax and typing rules
	Inductive families of datatypes.
	The identity type
	Equivalences
	Telescopes
	Heterogeneous and telescopic equality

	Unification in dependent type theory
	Unification problems as telescopes
	Unifiers as equivalences
	The unification algorithm
	Specialization by unification

	Unification rules
	The basic unification rules
	Rules for indexed datatypes
	Rules for record types

	Computational behaviour of unification rules
	Higher-dimensional unification
	Generalizing unification rules
	A generalized injectivity rule
	Lifting unifiers to higher dimensions

	Translation to eliminators
	No confusion
	Acyclicity

	Implementation
	Impact on the Agda user
	Impact on the Agda codebase

	Related work
	Discussion and future work
	Incompatibility of injective type constructors with univalence and excluded middle

