Draft of June 5, 2014

Pattern Matching Without K

Jesper Cockx

Dominique Devriese

Frank Piessens

iMinds-DistriNet, KU Leuven, 3001 Leuven, Belgium.
firstname.lastname@cs.kuleuven.be

Abstract

Dependent pattern matching is an intuitive way to write programs
and proofs in dependently typed languages. It is reminiscent of
both pattern matching in functional languages and case analysis
in on-paper mathematics. However, in general it is incompatible
with new type theories such as homotopy type theory (HoTT). As a
consequence, proofs in such theories are typically harder to write
and to understand. The source of this incompatibility is the reliance
of dependent pattern matching on the so-called K axiom — also
known as the uniqueness of identity proofs — which is inadmissible
in HoTT. The Agda language supports an experimental criterion to
detect definitions by pattern matching that make use of the K axiom,
but so far it lacked a formal correctness proof.

In this paper, we propose a new criterion for dependent pat-
tern matching without K, and prove it correct by a translation to
eliminators in the style of Goguen et al. (2006). Our criterion both
allows more good definitions than existing proposals, and solves
a previously undetected problem in the criterion offered by Agda.
It has been implemented in Agda and is the first to be supported
by a formal proof. Thus it brings the benefits of dependent pattern
matching to contexts where we cannot assume K, such as HoTT. It
also points the way to new forms of dependent pattern matching, for
example on higher inductive types.

Categories and Subject Descriptors F.3.3 [Logics and Meanings
of Programs]: Studies of Program Constructs — functional constructs,
program and recursion schemes; D.3.3 [Programming Languages]:
Language Constructs and Features — data types and structures,
patterns, recursion

Keywords Dependent Pattern Matching, K Axiom, Homotopy
Type Theory, Agda

1. Introduction

The case for dependent pattern matching. Dependent pattern
matching (Coquand 1992) is a technique for writing functions in
languages based on dependent type theory, such as Agda (Norell
2007), Coq (Sozeau 2010), and Idris (Brady 2013). It allows us
to define functions in a style similar to functional programming
languages such as Haskell, by giving a number of equalities called

[Copyright notice will appear here once "preprint’” option is removed.]

Pattern matching without K

clauses. For example, the function half : N — N can be defined as

half: N — N
half zero = zero)
half (suc zero) = =zero

half (suc (suc k)) = suc (half k)

Note that pattern matching combines two powerful programming
features, namely case analysis and recursion.

Additionally, dependent pattern matching can be used to write
proofs (in the form of dependently typed functions). For example,
we can prove the transitivity of the propositional equality z = y
(Martin-Lof 1984) by pattern matching on its only constructor refl
of type x = x:

trans: (zyz: A) D=y —>y=z—>x==2

2
trans x |z| || refl refl = refl @

Inaccessible patterns, like |z | in this example, witness the fact
that only one type-correct argument can be in that position. Indeed,
matching on a proof of x = y with refl : z = x forces x and y to
be the same. Another example is the proof cong that any function
maps equal arguments to equal results:
cong: (f: A= B)(zy: A) wz=y—~>fz=fy 3
cong f = || refl = refl
Proofs by dependent pattern matching are typically much shorter
and more readable than ones that use the classical datatype elimi-
nators associated with each inductive family. For example, let <
be the usual ordering on N defined as an inductive family (Dybjer
1991) defined by the two constructors 1z and 1s:
1z: (n:N) - zero<n

ls: (mn:N)->m<n—sucm<sucn X
‘We can prove antisymmetry of this relation by pattern matching as
follows:
antisym: (mn:N) > m<n—-n<m-—om=n
antisym |zero] |zero] (1z |zero]) (1z |zero]) =
refl 5)
antisym |suc m| [sucn] (lsmnz) (Is |n]| |m] y) =
cong suc (antisymm n x y)

Pattern matching allows us to skip the two cases where one of the
arguments is 1z n and the other is 1s n’ m’ because zero can
never be of the form suc m/ (this is called the conflict rule). In the
second clause, m’ (the first argument of the second 1s) was replaced
by |n] because suc m’ and suc n were forced to be equal, and
similarly n’ (its second argument) is replaced by |m| (this is called
the injectivity rule).

Desugaring pattern matching. In a dependent type theory with
inductive families but without pattern matching, functions have
to be written using datatype eliminators. They will be defined

2014/6/5

antisym: (mn:N) > m<n—-n<m—-o>m=n
antisym = elim< (Am;n;_.n<m — m=n)
(Anse. elim< (An;m;_. m=zero - m=mn)
(An;e. e)
(Ak; 1555 e elimy (AL

(noConfy (suc l) zero e))

. suc |l =suc k)

n zero e refl)
(Am;n;_; H; q. cong suc
(H
(elim< (Mk;l;_. k=sucn —l=sucm —n<m)

(A e;_.elimy (A_.n<m)
(noConfy zero (suc n) e))

(Ak; L5z y. subst (An. n < m)
(noConfy (suc k) (suc n) x)
(subst (Am. k <m)

(noConfy (suc) (suc m) y) e))

(suc n) (suc m) y refl refl)))

Figure 1. This proof of the antisymmetry of < is more complex
than the proof by pattern matching (5) because it uses only the stan-
dard datatype eliminators (see Section 3.1) and the “no confusion”
property of the natural numbers. No confusion can be constructed
from the eliminator for N as well (see Section 3.4).

formally in Section 3.1, but Figure 1 already gives an alternative
definition of antisym as an example using eliminators only. All the
equational reasoning that was done automatically in the definition
by pattern matching now has to be done explicitly. The proof with
eliminators also requires considerable cleverness for the construction
of the motive (McBride 2002) of each eliminator, while this is done
automatically in the definition by pattern matching. So it is clearly
preferable to use pattern matching for this proof.

As shown by Goguen et al. (2006), all definitions by dependent
pattern matching can be translated to ones that only use eliminators.
However, for this translation they depend on the so-called K axiom.
Coquand (1992) already observed that pattern matching allows
proving this K axiom:

K:(P:a=a— Set) —
(p: Prefl)(e:a=a) —» Pe (6)
K Pprefl=p

The K axiom is equivalent with the uniqueness of identity proofs
principle (UIP), which states that any two proofs of = y must be
equal. As observed by Hofmann and Streicher (1994), the K axiom
does not follow from the standard rules of type theory, but it is
compatible with them.

So far, none of the examples we gave needs the K axiom for
the translation to eliminators (except for the definition of K itself).
For the next example, remember that in type theory there is no
strict boundary between types and terms, so we can form equations
between types as well, for example Bool = Bool. Given such an
equation between types, we can coerce terms of the first type to the
other using the function coerce : A=B — A — B (which can be
constructed by pattern matching). Now we can use pattern matching
to prove that coercing true by any proof of Bool = Bool results in

Pattern matching without K

true:
coerce-id: (e : Bool = Bool) — coerce e true = true

(O]

coerce-id refl = refl
This can be desugared to
coerce-id = Xe. K (\e. coerce e true = true) refle (8)

The K axiom is necessary to deal with reflexive equations such as
Bool = Bool in this example.

Pattern matching in HoTT. An emerging field within dependent
type theory is homotopy type theory (HoTT) (The Univalent Foun-
dations Program 2013). It gives a new interpretation of terms of
type « = y as paths from x to y. Many basic constructions in HoTT
can be written very elegantly using pattern matching, for exam-
ple trans (2) corresponds to the composition of two paths, and
cong (3) can be interpreted as a proof that all functions in HoTT are
continuous (in a certain sense).

One of the core elements of HoTT is the univalence axiom. This
axiom states roughly that any two isomorphic types can be identified,
i.e. if there is a function f : A — B which has both a left and a
right inverse, then it gives us a proof ua f of A = B. Moreover,
this proof satisfies coerce (ua f) x = f z. Univalence captures
the common mathematical practice of informal reasoning “up to
isomorphism” in a nice and formalized way. It also has a number of
useful consequences, such as functional extensionality.

However, the univalence axiom is incompatible with dependent
pattern matching. For example, we can construct a function swap :
Bool — Bool such that swap true = false and vice versa.
This function is its own inverse, so by univalence it gives us a
proof ua swap of Bool = Bool such that coercing true along this
proof results in false. Together with the proof coerce-id (7), this
leads to a proof of the absurdity true = false. This has forced
people working on HoTT to avoid using pattern matching or risk
unsoundness.

Avoiding K. The source of the incompatibility between univalence
and dependent pattern matching is that pattern matching relies on
the K axiom. If we could somehow restrict definitions by pattern
matching so that we could translate them to type theory with
eliminators but without the K axiom, then we would be able to use
pattern matching in HOTT. One attempt to achieve this is an option
in Agda called —without-K (Norell et al. 2012). When enabled, Agda
attempts to detect definitions by pattern matching that make use of
the K axiom by means of a syntactic check. In theory, this option
should allow people to use pattern matching in a safe way when it is
undesirable to assume K. However, the option has been criticized
many times, for being too restrictive (Sicard-Ramirez 2013), for
having unclear semantics (Reed 2013), and for containing errors
(Altenkirch 2012; Cockx 2014). These errors allowed one to prove
(weaker versions of) the K axiom. While errors are typically fixed
quickly after being found, this situation really calls for a more in-
depth investigation of dependent pattern matching without K.

Contributions.

* We present a new criterion that describes what kind of definitions
by pattern matching are still allowed if we do not assume K. This
criterion is strictly more general than previous attempts.

* We give a formal proof that definitions by pattern matching
satisfying this criterion are conservative over standard type
theory by translating them to eliminators in the style of Goguen
et al. (2006), but without relying on the K axiom.

* Our criterion has been implemented as a patch to Agda. We test it
on a body of examples in order to show its adequacy, soundness,
and generality. As of Agda version 2.3.4, our implementation
will replace the old version of —without-K.

2014/6/5

* Finally, we give an idea how to make pattern matching without K
even less restrictive by analyzing which types satisfy K without
assuming it as an axiom. Future work is still needed to make this
analysis more robust.

Overview. The rest of this paper is organized as follows. In section
2, we describe our criterion for pattern matching without K and
compare our implementation with the current one in Agda. Section
3 contains the main technical contribution of this paper: a proof
that definitions by pattern matching satisfying our criterion can be
translated to eliminators without using K. In section 4, we discuss
how pattern matching without K can be made less restrictive. Finally,
we discuss related work in section 5.

Supplementary material for this paper can be found
online at http://people.cs.kuleuven.be/~ jesper.cockx/
Without-K/. This page contains the implementation of our cri-
terion in Agda, Agda files containing the examples given in this
paper, and Agda files illustrating parts of the proof in Section 3.

2. The criterion

A definition by pattern matching can be thought of as given by a
number of case splits on the arguments. For example, the function
half : N — N in Definition 1 is defined by first doing a case
split on the argument n : N — giving us two cases n = zero and
n = suc m — and then another case split on m. For definitions like
this one, each case split corresponds exactly to one application of
the standard eliminator for N, hence the K axiom is not needed.

Things get more complicated for an inductive family (Dybjer
1991) such as Fin n, the canonical finite set of n elements, or
m < n, the type of proofs that m is smaller than or equal to n.
When splitting on a type from an inductive family, we need to apply
unification in order to determine the possible cases. This unification
algorithm depends crucially on the K axiom, so we have to restrict
it in order to remove this dependence.

In this section, we first describe the unification algorithm used
by Goguen et al. (2006). Next, we describe our restricted unification
algorithm that does not depend on K. We also compare our criterion
with the syntactic criterion for pattern matching without K in Agda.
Finally, we give a short evaluation of our implementation.

2.1 Case splitting by unification of the indices

When checking a definition by pattern matching, we must decide
which constructors can be used to construct a term of a particular
type, and under which constraints. For example, consider the
inductive family m < n with constructors 1z and 1s as given in
Definition 4. Suppose we want to do a case split on a variable of type
k < k, then we have to decide for what kind of arguments the two
constructors give a result of the form k& < k. In the case of 1z, this
is when both & and the argument n are equal to zero, while for 1s,
this is when the two arguments m and n are equal and £ = suc n.

In general, suppose we are case splitting on a variable x : D @
where D is an inductive family with indices 4 (we consider D
to already be applied to its parameters, if any). Suppose D has
constructors c; with return type D v; for ¢ = 1,...,k, then we
have to unify @ with each of the v;. Unification is the process of
searching for unifiers, i.e. substitutions o such that uoc = v;o0.
A unification problem is represented as a list of equations u; =
Vi1, ..., Un = Vin, and the following five unification transitions are
used to simplify the problem step by step:

Deletion: x = z,0 = ©

Solution: z = ¢,© = Oz — t] (if z is not free in)
Injectivity: c 5=ct,0 =5=1¢,0

Conflict: ¢; 5 =cy¢,0 = L (if c1 # c2)

Pattern matching without K

Cycle: © = c p[z],© = L (ifz < ¢ p[z])

Exhaustively applying these rules whenever they are applicable
terminates by the usual argument (Jouannaud and Kirchner 1990),
with three possible outcomes:

Positive success: All equations have been solved, yielding a most
general unifier o.

Negative success: Either the conflict or the cycle rule applies,
meaning that there exist no unifiers.

Failure: An equation is reached for which no transition applies,
meaning that the problem is too hard to be solved (by this
unification algorithm).

This algorithm is complete for constructor forms: if both 4 and v
are built from constructors and variables only, then unification will
never result in a failure.

Case splitting succeeds if unification of % with each of the v;
succeeds (either positively or negatively). If all of them succeed
negatively, we replace z by an absurd pattern (), marking that case
splitting resulted in zero cases.' If on the other hand at least one
of them succeeds positively, we get the same number of new cases
where x has been replaced by c; g and g : A; are fresh variables.
To each of these cases, we then apply the substitution ¢; constructed
by unification. For example, a function f : (k: N) - k<k — Pk
can be defined by the following patterns:

f |zero] (1z |zero]) = ...
flsucn| (Isn;|n])=...
Here, |...| marks an inaccessible pattern: it is not part of a case
split, but rather computed by unification. The substitution o; is also
applied to the result type: in the first clause, the right-hand side

should have type P zero, while in the second one it should have
type P (suc n).

©)

2.2 Restricting the unification rules

Our criterion for pattern matching without K works by limiting the
unification algorithm in two ways:

* It is not allowed to use the deletion step.

* When applying the injectivity step on the equation ¢ § = ¢ ¢
where ¢ 5,ct : D 1, the indices @ should be self-unifiable, i.e.
unification of % with itself should succeed positively (while still
adhering to these two restrictions).

This inevitably means that unification will fail more often.
However, if unification results in a success (a positive or negative
one) then we know that the original rules would have given the same
result. Where the original algorithm was complete for constructor
forms, our modified version is only complete for linear constructor
forms (i.e. ones where each variable occurs only once).

As a first example, our criterion allows the definition of the
standard J-eliminator for the propositional equality (also known as
the principle of based path induction in HoTT) by pattern matching:

J:(P:(b:A) > a=b— Set) —
(p: Parefl)(b: A)(e:a=b) > Pbe (10)
J Ppla]refl=p
The unification problem for the case split on e : a = b with the
constructor refl : @ = a is given by b = a. Unification succeeds
positively after one solution step, with the most general unifier

[b — a] as the result. Likewise, the definitions of trans (2), cong
(3), and antisym (5) in the introduction are also accepted.

! The reason for replacing « by an absurd pattern instead of removing the
pattern entirely, is to keep coverage checking decidable (Goguen et al. 2006).

2014/6/5

http://people.cs.kuleuven.be/~jesper.cockx/Without-K/
http://people.cs.kuleuven.be/~jesper.cockx/Without-K/

In contrast, the definition of K by pattern matching is not allowed,
as case splitting on the argument of type a =a produces a unification
problem a = a, which fails without the deletion step of the
unification algorithm.

K:(P:a=a— Set) —
(p: Prefl)(e:a=a) —» Pe (11)
K Pprefl=p

This already explains the need for the first restriction to the unifi-
cation algorithm. As an example of why the second restriction is
needed, consider the following weaker variant of K:

weakK : (P : refl =,=, refl — Set) —
(p: Prefl)(e: refl =,=, refl) —» P refl (12)
weakk P prefl=p

Like the regular K, this weakK does not follow from the standard
rules of type theory and is incompatible with univalence (Kraus
and Sattler 2013). However, since refl is a constructor without
any arguments, it would be accepted if we did not have the second
restriction.

2.3 Comparison with the syntactic criterion

So far, the only credible proposal of a criterion for pattern matching
without K was the syntactic criterion used by Agda. So how does
our criterion compare to it? One reason to prefer our criterion is that
it is more amenable to the correctness proof given in Section 3. But
we should also compare their generality, i.e. what kind of definitions
are still allowed by each. The criterion currently used in Agda for
pattern matching without K is specified as follows:

If the flag is activated, then Agda only accepts certain
case-splits. If the type of the variable to be splitis D pars
ixs, where D is a data (or record) type, pars stands for
the parameters, and ixs the indices, then the following
requirements must be satisfied:

* The indices ixs must be applications of constructors (or
literals) to distinct variables. Constructors are usually not
applied to parameters, but for the purposes of this check
constructor parameters are treated as other arguments.

* These distinct variables must not be free in pars.

This criterion implies that the deletion rule is never used during
unification. To see why this is true, note that it guarantees that
all unification problems generated by pattern matching are of the
form @ = ©v; where @ consists of constructors applied to free
variables and each variable occurs only once in @. Moreover, since
new constructors introduced by case splitting are applied to fresh
variables, the variables in @ are not free in ;. Both the solution and
the injectivity step preserve these three properties, hence we will
never reach an equation of the form x = .

On the other hand, the syntactic criterion does not imply that
the indices are self-unifiable when applying the injectivity rule. But
this is actually a bug in the syntactic criterion, allowing one to prove
a weaker version of the K axiom (Cockx 2014). So the fact that our
criterion is more restrictive in this case is actually a good thing.

Apart from that issue, our criterion is in fact strictly more general
than the syntactic one. For example, the syntactic criterion allows us
to pattern match with ref1 on an argument of type k£ +1=m (where
k,l,m : N are previous arguments), but not on an argument of type
m = k + . This asymmetry is created by a technical detail in the
standard definition of propositional equality as an inductive family:
the first argument is a parameter (so it can be anything), while the
second one is an index (so it must consist of constructors applied
to free variables). In contrast, our criterion allows both variants
because we look at the unifications that are performed instead of

Pattern matching without K

syntactical artefacts like the distinction between a parameter and
an index. Similarly, Agda’s syntactic criterion does not allow us to
pattern match on an argument of type n < n because the variable n
occurs twice. But this turns out to be over-conservative, as evidenced
by the fact that it is allowed by our criterion.

Another advantage of our criterion is that unlike the syntactic cri-
terion, it does not put any requirements on the datatype parameters.
This is very useful when we need injectivity of a constructor of a
parametrized data type. For example, the syntactic criterion does not
allow case splitting on an argument of type = :: xs =y :: ys where
:: is the list constructor, since the type A of z and y is a parameter
and the constructor :: is considered to be applied to this parameter.
Our criterion has no such problems.

Unfortunately, our criterion still has some limitations. For exam-
ple, when working with the < relation on finite sets Fin n, we can-
not pattern match on an argument of type ¢ <¢ where ¢ : Fin n. This
is because unification gets stuck on the problem fs n x = fsn y,
where the deletion rule is needed to remove the equation n = n.
However, this definition is also refused by the syntactic criterion. In
Section 4, we discuss a possible solution to this problem.

2.4 Implementation and evaluation

Our new criterion for pattern matching without K has been imple-
mented as a patch to Agda. We used it with a number of Agda
programs in order to test it for adequacy, soundness, and generality.

Adequacy. In order to test the adequacy of our approach, we tested
it on a number of small examples that should be definable without K,
such as the functions half (1), trans (2), cong (3), and antisym
(5) from the introduction. We also tested it on a body of Agda code
related to propositional equality and HoTT by Danielsson (2013),
which was written with Agda’s current —without-K flag in mind. All
these examples are accepted without problems.

Soundness. To test the soundness of our criterion, we also tested
it on a number of variations on the K axiom and weaker versions of
it. For example, when we try to define K as in Definition 11, we get
the following error message:

Cannot eliminate reflexive equation x = x of type A because
K has been disabled (when checking that the pattern refl
has type = = x).

Pattern matching with refl on a proof of Bool = Bool is also
prohibited by our check. Similarly, the elimination rule for heteroge-
neous equality given by McBride (2000) (which is equivalent with
K) is rejected, as are the weaker versions of K given by Altenkirch
(2012) and Cockx (2014).

Generality. Finally, to test the generality of our approach, we gave
it some definitions that are rejected by Agda’s syntactic criterion,
but does not actually rely on the K axiom. For example, definitions
involving case splitting on types such as m < m, k =1 + m, and
x = f y are accepted. Another notable advantage of our criterion is
that adding parameters to a data type will never change the validity
of a definition by pattern matching. This is especially useful in Agda
since module parameters are also considered to be parameters of the
datatypes defined inside that module (Norell 2007, chapter 4). So
with the syntactic criterion, moving a definition to another module
can cause an error, but with our criterion this is no longer the case.

3. Eliminating pattern matching without K

In this section, we show that definitions by dependent pattern
matching satisfying our criterion can be translated to type theory
with universes and inductive families, without using the K axiom.
Our proof follows the same general outline as the proof by Goguen
et al. (2006), but there are two important differences:

2014/6/5

* We work with the homogeneous propositional equality instead
of the heterogeneous version. The reason is that the elimination
rule they use for the heterogeneous equality is equivalent with
K (McBride 2000), something we wish to avoid. Using the
homogeneous equality also means that we have to work a little
harder to express equality between two sequences of terms in
the same telescope.

* Working with the homogeneous equality leads us very natu-
rally to upgraded versions of the unification transitions given
by Goguen et al. (2006), where the return type is dependent on
the equality proof. The construction of these upgraded transi-
tions will make clear why the two restrictions to the unification
algorithm given in Section 2.2 are really needed.

The general idea of the proof is as follows. First, the definition
by pattern matching is translated to a case tree. This translation
is described in detail by Norell (2007), and we will not repeat
it here. Each leaf node of the case tree corresponds to a clause
f p = e, i.e. it defines £ on arguments that match the pattern p,
and each internal node corresponds to a case split of p on some
variable x : D @ into patterns pi, ..., pn. If we can assemble the
definitions of £ p1,..., f Pn into a definition of £ p, then we can
work backwards from the leaf nodes towards the root, ultimately
obtaining a definition of £ on arbitrary variables.

So we need to know how to assemble the definitions of
f p1,...,f pn into a definition of £ p. This assembly proceeds
in two steps. First we apply a technique called basic casep-analysis
at u; x. This splits the problem into one subproblem for each con-
structor ¢; of D, and gives us proofs of the equations % = ¥; and
x = ¢ g. The second step is to apply specialization by unification,
simplifying these equations step by step. The unification transitions
make sure that we do not have to fill in anything for a negative
success. So finally, we fill in the translated definition of £ p; for
each positive success.

In general there can be recursive calls to the function f in each
clause £ p = e. These recursive calls are required to be structurally
recursive on some argument x : D % of £. It is important for the proof
that the type of x in A is already a data type, not just the type of x
in each of the clauses separately. This allows us to use well-founded
recursion on D to obtain an inductive hypothesis H, asserting that
f is already defined on arguments structurally smaller than x. This
inductive hypothesis is then used to replace the recursive calls to £
ine.

The challenge is then to construct all these techniques (case
analysis, specialization by unification, and structural recursion) as
terms internal to type theory. Before we begin this construction, we
repeat some standard definitions from type theory (Section 3.1) and
dependent pattern matching (Section 3.2). We continue by showing
how the homogeneous propositional equality can be used to express
equality of sequences (Section 3.3). We then recall some standard
equipment for inductive datatypes given by McBride et al. (2006):
case analysis, structural recursion, no confusion, and acyclicity,
of which the latter two are slightly adapted to work with the
homogeneous equality (Section 3.4). No confusion and acyclicity
are subsequently used to construct the unification transitions as terms
inside type theory (Section 3.5). Finally, all these tools are brought
together for the translation of case trees to eliminators (Section 3.6).

3.1 Type theory

As our version of type theory, we use Luo’s Unified Theory of De-
pendent Types (UTT) with dependent products, inductive families,
and universes (Luo 1994). We omit the meta-level logical framework
and the impredicative universe of propositions because they are not
needed for our current work. The formal rules of the version of UTT
we use are summarized in Fig. 2.

Pattern matching without K

(Ctx-empty)

e valid
'+ A:Set; z ¢ FV(T)
" (Ctx-ext)
I'(z : A) valid
T valid x:Ael Var)
T'kz:A
I'Ht: A I'F Ay = Ay : Set;
(=Ty)
I l_ t: A2
I valid

(Set)

I'F Set; : Setit1

'+ A:Set; I'(z:A) & B:Set;
'k (x:A) = B:Setyax(,j)

I(z:A)Ft: B \

'Xe.t:(x:A)— B »

'-f:(x:A)— B 'kt: A

(App)
TFft: Bz {

I'z:A)Ft:B 's:A
(Az.t) s =t[z — s]: Blz —] @
'-f:(z:A) — B xz ¢ FV(f)

e, fa=f:(x:A)— B o

+ reflexivity, symmetry, transitivity and congruence rules for =

Figure 2. The core formal rules of UTT, including dependent
function types (z : A) — B, an infinite hierarchy of universes
Seto, Set1, Sets, . .., and Sn-equality.

Contexts and substitutions. We use Greek capitals T', A, ... for
contexts, capitals 7', U, . .. for types, and small letters ¢, u, . . . for
terms. A list of terms is indicated by a bar above the letter, for
example . Contexts double as the type of such a list of terms,
also called a felescope, so we can write for example ¢ : T where
I'=(m: N)(p: m=zero) and { = zero;refl. Note that the
empty context e is inhabited by the empty list (). The simultaneous
substitution of the terms £ for the variables in the context I" is written
as [I' — %]. We denote substitutions by small Greek letters o, 7, . . .
Elimination operators. For any telescope =, we define a =-
elimination operator (McBride 2002) to be any function with a
type of the form

(P:E—>Seti)—>
(m1:A1—>P§1).H(mn:An—>P§n)—> (13)
(t:E)—> Pt

We call = the target, P the motive, and my, . . . , my, the methods of
the elimination operator. The reader may think of a Z-elimination
operator as a way to transform a problem into a set of subproblems.
In the type shown above, the original problem is to construct a result
of type P t when given an arbitrary list of values ¢ in the telescope
=. This original problem is transformed into n sub-problems given
by each of the methods: the ith subproblem is to construct a result
of type P 5; when given an arbitrary value satisfying telescope
A;. The elimination operator’s type can be read as a function that

2014/6/5

transforms solutions for the sub-problems into a solution for the
original problem.

Inductive families. Inductive families (Dybjer 1991) are (depen-
dent) types inductively defined by a number of constructors, for ex-
ample N is defined by the constructors zero : N and suc : N — N.
Inductive families can also have parameters and indices, for exam-
ple Vec A n is an inductive family with one parameter A : Set,
one index n : N, and two constructors nil : Vec A zero and
cons : (n: N) > A — Vec A n — Vec A (suc n). Each
inductive family comes equipped with a datatype eliminator, for
example the eliminator for N is

elimy : (P : N — Set;) — (Myero : P zero) —
(Meye : (n:N) - Pn — P (sucn)) — (14)
(n:N)—>Pn
In general, let D be an inductive family. Since everything we do in
this paper is parametric in the datatype parameters of D, we consider
D to be already applied to (arbitrary) parameters. So D is defined by
the telescope = of the indices and the constructors
CiZAiﬁ (q)ﬂ *)D@il) — ... (q)znl *}D@ini)%Dﬂi
(15)
fori =1,..., k. We write D for the telescope (% : Z)(x : D @). The

standard eliminator for D is a D-elimination operator with methods
mi, ..., m; Where

ms: (t:
(®i1 > DTi1) ... (zn; : Pin; — D Tin,) —
(h1:(51:Pi1) > PUit (1 51)) > ... — (16)

(hn; (8n; : Pin;) = P Uin; (@n; Sn;)) —

1

Pﬂi (Ci {1}1 linl)
i.e. it is of the form
elimp: (P:D— Seti)(m1:...)...(mg:...) —

(z:D) =Pz an

where the types of m1, ..., m; are as given above.

Definitional and propositional equality. In (intensional) type the-
ory, there are two distinct notions of equality. On the one hand,
two terms s and ¢ are definitionally equal (or convertible) if we
can derive I' - s = ¢ : T, i.e. if s and ¢ are equal up to 5n-
conversion. On the other hand, two terms s and ¢ are propositionally
equal if we can prove their equality, i.e. if we can give a term of
type s = t. Propositional equality was introduced by Martin-L&f
(1984). In UTT, it can be defined as an inductive family with two
parameters A : Set; and a : A, one index b : A, and one con-
structor refl : a = a. The standard eliminator for this datatype
is exactly the J rule (10). Substitution by a propositional equality
subst : (P: A — Set;) > x =y — P x — P y can readily
be defined from J by dropping the dependence of P on the equal-
ity proof in the type of J. In the style of HoTT, we write e, for
subst P e when P is clear from the context.

3.2 Definitions by pattern matching

A definition by pattern matching of a function £ consists of a number
of equalities called clauses, which are of the form £ p = t where pis
a list of patterns and ¢ is a term called the right-hand side. A pattern
is a term or a list of terms that is built from only (fully applied)
constructors and (non-applied) variables, which we call the pattern
variables. In dependent pattern matching, patterns can also contain
inaccessible patterns, which can occur when there is only one type-
correct term possible in a given position. Like Norell (2007), we
mark inaccessible patterns as |¢|. For example, let Square n be
an inductive family with one index n : N and one constructor

Pattern matching without K

Zero +—» zero

ny){ suc zero — zero
SUCI) N\ suc (suc k) — suc (half k)

Figure 3. A representation of the function half by a case tree. At
each internal node, the variable on which the case split is performed
is underlined.

f<t r<s s<t
fs=t r<t

Figure 4. The structural order < is used to check termination
(Goguen et al. 2006).

ti <cti ...ty

sq: (m : N) — Square m?. Then |m?| (sq m) is a pattern of
type (n : N)(p : Square n). Any other pattern |¢] (sq m) would
be ill-typed, so the use of an inaccessible pattern is justified. We
also define an operation [p] taking a pattern p back to its underlying
term.

Case Trees. A definition by pattern matching consists of one or
more case splits. We represent these case splits by a case tree. The
nodes of a case tree for a function £ : A — T are labeled by patterns
of type A, where the label of the root node consists of variables
only. Each internal node of a case tree corresponds to a case split,
while each leaf node corresponds to a clause of the definition. An
example of a case tree is given in Figure 3.

Using case trees has a number of advantages. First, the patterns
at the leaves of a case tree always form a covering, hence case trees
guarantee completeness. Secondly, they give an efficient method
to evaluate functions defined by pattern matching. Thirdly and
most importantly for our purposes, each internal node in a case
tree corresponds exactly to the application of an eliminator for an
inductive family, so constructing a case tree is a useful first step in
the translation of dependent pattern matching to pure type theory as
demonstrated by Goguen et al. (2006).

Structural recursion. In order to guarantee termination, functions
are required to be structurally recursive. This means that the
arguments of recursive calls should be structurally smaller than
the pattern on the left-hand side. The structural order < is defined
in Figure 4 . For functions with multiple arguments, the function
should be structurally recursive on one of its arguments, i.e. there
should be some k such that s < py for each clause £ p = ¢ and
each recursive call £ 5in ¢t.

3.3 Homogeneous telescopic equality

There is a reason why it is hard to see where exactly the K axiom
is used in the translation from pattern matching to eliminators
by Goguen et al. (2006): they do not use the axiom directly, but
instead depend on the heterogeneous propositional equality. The
heterogeneous equality allows the formation of equalities between
terms of different types, but still only allows a proof when the types
are in fact the same. This heterogeneous equality is convenient for
expressing equality between sequences of data in a given telescope.
Unfortunately, the elimination rule for this heterogeneous equality
proposed by McBride is equivalent with the K axiom (McBride
2000). Heterogeneous equality (and its elimination rule) is used
almost everywhere in the translation, making it impossible to see
where the K axiom is really needed. So instead we work with the
homogeneous propositional equality and the standard J eliminator.

Working with homogeneous equality also means we have to
work a little harder to express equality of two sequences of terms in
the same telescope. We define telescopic equality 5 = ¢ inductively

2014/6/5

on the length of the telescope as follows:

0= 0_ = ¢
88 = it = (e:s=t)(e:ex5=1) (18)
where e, (s1;...;8n) = (€x S1;...;€x Spn). Note that the

substitution e, is needed to make the equation between 5 and ¢ again
homogeneous. Telescopic inequality is defined by s Z¢ := 5=t —
1. Foreacht: A, we define refl : t =t asrefl;...;refl. We
also have the telescopic eliminator

J:(P:(5:A) - 7=5— Set;) 19
Prrefl— (5:A)— (e:7=35) —» P3se 1
It is defined by eliminating the equations & from left to right using J.
Each elimination of an equation e; : r; = s; fills in refl for all
occurrences of e;, allowing the next equations to reduce and in
particular ensuring that the following equation is of the correct
form. Telescopic substitution subst is defined by dropping the
dependence of ® on 7 = 5 in the definition of J. Again, we write é.
for subst P & when P is clear from the context. A formalization
of homogeneous telescopic equality and the constructions in this
section can be found in the file TelescopicEquality.agda in the
supplementary material.

3.4 A few homogeneous constructions on constructors

McBride et al. (2006) developed tools for working with induc-
tive families of datatypes: case analysis, recursion, no confusion
(subsuming both injectivity and disjointness), and acyclicity. In
this section, we present these rules adapted to work with homo-
geneous instead of heterogeneous equality. We refer to the ap-
pendix for the actual construction of these tools, as the differ-
ences with the work of McBride et al. are minor and rather techni-
cal. A computer-checked version of these constructions for some
concrete data types (binary trees, dependent sums, finite sets, the
identity type, and indexed containers) can be found in the file
ConstructionsOnConstructors.agdain the supplementary ma-
terial. For the rest of this section, let D : = — Set; be an inductive
family.

Case analysis casep is a weakened version of the standard elimi-
nator elimp that we get by dropping the inductive hypotheses of
the methods. For example, casey has type

(P:N — Set;) — (Mgero : P zero) —

(Mewe : (n:N) = P (sucn)) > (n:N) - Pn 20)

Recursion is given in two levels. First, for « : D @, Belowp P 4 x
is a tuple type that is inhabited whenever P ¥ y holds for
all y : D v which are structurally smaller than = : D @. For
example for N, we have Belowy P zero = T (the unit type)
and Belowy P (suc n) = Belowy P n X P n. Secondly, the
helper function belowp constructs this tuple:

belowp : (P : (Z:D) — Set;) —
((z : D) — Belowp P T — P Z) — 21
(Z :D) — Belowp P T
Finally,
recp : (P: (Z:D) — Set;) —
((z :D) — Belowp P T — P T) — (22)
(z:D) > Pz

is used for well-founded recursion over values of type D.

Pattern matching without K

No confusion is also given in two levels. First, NoConfusiony :
D — D — Setgq is a type such that

NoConfusionp (@;c3) (v;¢ct) =5=1

23
NoConfusiony (4;c 5) (7;¢) = L (whenc # ¢) (@

Secondly, we construct
noConfp : (T §:D) = T =y — NoConfusionp Ty (24)
We also construct an inverse

noConfp ' : (Z g : D) — NoConfusion, Zg — Z=7 (25)

and give a proof isLeftInvp that (noConfp, ' Z §) o
(noConf Z %) is the identity on Z =.? The need for this inverse
will become clear when we construct the unification transitions
in Section 3.5.

Acyclicity is yet again given in two levels. First, T £ g is defined
as a tuple type stating that Z : D is not structurally smaller than
7 : D. For example, x £ 2 = (z £ 0) X (z £ 1). Secondly,
noCyclep : (Z §y: D) = T=y — T £ ¥ states that no term
can be structurally smaller than itself.

Basic analysis. Note that elimp, casep, and recp are all D-
elimination operators, i.e. for a motive P : D — Set; they return
something of type (¢ : E)(z : D 4) — P (u;x). However,
we often need a return type where the indices % of x are more
specialized, for example to construct a function of type (k : N)(y :
k < zero) — zero = k. McBride (2002) solves this problem by
adding the constraints on the indices as additional arguments to the
motive P, and filling in ref1 as soon as the constraints are satisfied.
This technique is called basic analysis. In the example above, the
basic case<-analysis of zero = k at k; zero; y has type

(mi1:(m:N)(k:N)(y: k< zero) —

(zero;m;1lz m) = (k;zero;y) — zero = k) —
(m2:(mn:N)(z:m<n)(k:N)(y:k<zero) —

(suc m;suc n;1s mn x) = (k;zero;y) — zero = k) —
(k:N)(y: k <zero) - zero=k

(26)

Note that applying case< directly to y : k < zero would lead
to loss of the information that the second index of y is zero, thus
leaving us unable to provide mi and mea.

In general, let elim be any =-elimination operator, and suppose
we want to construct a function of type A — & by applying this
eliminator to ¢ where A ¢ : Z. Then we apply elim to the motive
A(5:E). A —» 5=% — ®.Filling in for 5 and ref1 for the proof
of 5 =t gives us the basic elim-analysis of ® at t:

AML; ... My T o7
elim(As. A 5=t — ®)mq ... my ¢ T refl
which is of type
mi i AA 5=t P) > ...
(ma 1 1) 28)

(mp : ARA -8, =t ®) > A - P
Basic analysis will be used thoughout the proof: once with recp
for structural recursion, and once with casep for each case split.
3.5 Unification without K

In order to translate a node of the case tree to the application of an
eliminator, we need terms that give an account of the unification

2We could also prove that (noConfp # §) o (noConfp~! Z §) is the
identity on NoConfusionp Z ¥, thus establishing that noConfp Z ¥ is an
equivalence. However, this is not needed for the present work.

2014/6/5

solution : (®: (z: A)(e: o =x) — Set;) —

(
(m: ® xg refl) —
A)e:xo=x) > Dxe

(z:
solution Pmze=JAzocPmze

A

injectivity: (@ : (é: Us;c S=1us;ct) — Set;) —
(m:(e:5=1)
— & (noConfp ' (@s;c 5) (G ct)e)) —
(e:tus;cs5=1uct) >Pe
injectivity ® m é = (isLeftInvp (Us;c 8) (U;c i) €)«
(m (noConfp (us;c 5) (tr;ct)e))

conflict: (P : (&: Us;ci 5§ =1 cat) — Set;) —
(e:1Us;c1 5=1Up;cal) > Pe
conflict ®ée=-elim, (A_. D €)
(noConfp (Us;ci 5) (4t ca) €)
cycle: (P: (e: w;xz =7;c §[z]) — Set;) —
(e: a; v e

cycle ®é=-elim; (A_.De)
(7 (noCyclep (;x) (T;c 5[z]) €) refl)

(where 7 : @;x £ U5 ¢ 5[z] = Gy £ U; x)

Figure 5. The unification transitions represented as type-theoretic
terms. Compared to the transitions given by Goguen et al. (2006),
these work with the homogeneous equality and ¢ has an additional
dependence on the equality proof. While these unification transitions
are the most general ones we can construct, they are not the ones
that we use for case splitting in practice. Rather, injectivity,
conflict, and cycle are replaced by their more specialized
variants injectivity’ (33), conflict’ (34), and cycle’ (35).

process inside of type theory itself. In order to do this, we use
the “no confusion” and “no cycle” properties from the previous
section. The unification transitions are given in Figure 5. A computer-
checked construction of them for some concrete data types can be
found in the file Unification.agda in the supplementary material.
Compared to Goguen et al. (2006), working with homogeneous
equality leads us very naturally to upgraded unification transitions
which are dependent on the equality proof. For example, consider
acontext Z = (a : A)(b : B a) and a E-elimination operator
elim. Basic elim-analysis requires us to construct methods of type
A — a;b=a’;b’ — T, orif we expand the definition of telescopic
equality:

A= (es:a=d) = (e)s b= =T (29)

The motive for eliminating a = a’ is (eq)« b=b" — T, which
depends on the proof e,. So the dependence of ® on the equality
proofs is caused by the need to use substitution in the definition of
homogeneous telescopic equality. Intuitively, it is not surprising that
not assuming UIP leads us to consider identity proofs relevant!

The first thing we want to point out about Figure 5 is the lack
of a deletion transition. The non-dependent version of deletion
given by Goguen et al. (2006) has type

(®:Set;)) > (m:P) = (e:xo=w0) > D (30)

Pattern matching without K

which can be constructed without K but would be quite useless in
our situation because ¢ cannot depend on e. In contrast, a dependent
deletion rule would look like

deletion: (P : (e: xo =x0) — Set;) —
(m: ® refl) — (31)
(e:xo=m0) > De

which is exactly the K axiom. This is the reason for the first
restriction on the unification algorithm in our criterion, namely
that the deletion rule cannot be used.

A second point of interest in Figure 5 is the type of ® in the
injectivity function: it is indexed over the equality proof of the
indices % and @ as well as the equality proof of ¢ 5 and c . But this
does not correspond exactly to the injectivity rule from Section 2.1.
Rather, we need a more specialized version of injectivity where
the indices @, and . are already definitionally equal:

injectivitypaa : (P:(e:c5=ct)— Set;) —
(m:(e:5=t) > ®777) — (32)
(e:c5=ct) > De

However, unlike injectivity such a function can not be con-
structed from noConfp. This is because in order to fill in the ques-
tion marks, we need a function g : 5 =% — ¢ 5 = c ¢ such that we
can prove g (noConfp (@s; c 5) (Us; c t) refl e) = e for arbitrary
e, but no such g can be found. In fact, wrongly using this transition
caused a bug in Agda’s —without-K option, allowing one to prove a
weaker version of the K axiom (Cockx 2014).
What we can construct from noConfy is the following:

injectivity’ : (®:(e: 4;c5=u;ct) — Set;) —
(m:(e:5=t) >

® (noConfp ! (@;c§) (u;ct)e) — e

(e:cs5=ct) > Prefle

This rule is simply a specialized version of the injectivity rule in
Figure 5. However, there is still a problem with this rule. Suppose we
want to use it to construct a function of type (e : c 5=ct) — &' e
where ®' : ¢ 5=c ¥ — Set;, and we want to apply injectivity’.
Then we need to find ® : #4;c §=14;c t — Set; such that
® refl e = ®’ e for arbitrary e : ¢ § = c t. This is problematic
because we cannot eliminate the equations u = « in general without
using the K axiom. This is the reason for the second restriction on
the unification algorithm in our criterion, namely that the indices
4 should be self-unifiable. This condition guarantees that we can
construct ® from ®’ by applying the unification transitions used in
the self-unification of u by applying specialization by unification
(see below).

At first sight, the conflict and cycle rule suffer from the same
problem as the injectivity rule because their motive ® depends
on the proof of s = u: as well. However, in these cases the
problem can be solved because both conflict and cycle factor
through the empty type L. To illustrate this, suppose we want to
construct a function of type (e : ¢c; §=cy) — ® e. First we
apply conflict with & = Xé. L, giving us a function of type
(é:@;c1 5=u;co t) — L. Filling in refl for the equations & =14
givesus (e : c1 §=c, t) = L. Now by L-elimination, we also get
a function (e : ¢c1 3=cy t) — @’ e. This gives us the following
rule:

conflict’ : (®:(e:c1 §=cot) — Set;) —

34
(e:ci18=cot) > Pe 39
Analogously we can construct a function
cycle’ : (®: (e:xz=c 3[z]) = Set;) — (35)
(e:x=c3z]) > Pe
2014/6/5

In our proof, we will use the primed variants injectivity’,
conflict’, and cycle’.

Specialization by unification. Given any type of the form A —
% =0 — T (for example the types of m1,...,m, in the basic
casep-analysis), we may seek to construct an inhabitant of this
type, called a specializer, by exhaustively iterating the unification
transitions as applicable. In case of a positive success, a specializer
is found, given some m : A’ — To where o : A’ — Aisa
substitution. In the case of a negative success, a specializer is found
without any additional assumptions.

The solution rule removes one variable from A, while
injectivity’ keeps it the same. Hence in the case of a positive
success we have A’ C A, and o is idempotent. So for any ¢ : A,
we can define an inverse o' [£] : A’ by selecting the variables of
A’ from A. If specialization by unification delivers a specializer s
satisfying

(m:A'To)Fs:A—u=v—T (36)
and ¢ : A is such that u[A — f] = 9[A > t], then we have
st refl ~ m o~ '[f]. It is clear why this holds for solution, it

also holds for injectivity’ since both noConf and isLeftInv
map refl to refl, hence injectivity’ ® m refl ~» m refl.

3.6 From case trees to eliminators

Now we use the tools described in the previous sections to translate
a function £ : (£ : A) — T given by a structurally recursive case
tree to another one £ : (¢ : A) — T constructed from eliminators
only. As arunning example, let f = antisym from Definition (5).
For this example, we have A = (mn: N)(z : m <n)(y : n <m)
and T =m =n. Define {e}+* by replacing all occurrences of £
by £ in e. Then we have moreover that £ * satisfies £7 £ ~* {u}¢"’
whenever f ¢ ~ u, i.e. it has the same reduction behaviour as f.
Without loss of generality, let £ be structurally recursive on
some t; : D v, the jth variable in A. In our example, antisym is
structurally recursive all four arguments, so we arbitrarily choose to
do structural recursion on x : m < n. The basic recp-analysis of 7'
at v;t; is
Am®;t. recy P m® (v5t;) t refl 37

which has type
:(z:D) - Belowy Pz — Px) —
(A)—=T
where P = A\Z. (t : A) - z=v;t; — T. In our example, we
have P = Am/;n’; 2. A—)(= (m;n;z) > m=n.
Suppose we have anm : (I : A) — Belowp P (T;t;) — T,
then we construct m*® : (Z : D) — Belowpy P T — (t: A) —
T =v;t; — T by applying the telescopic equality eliminator J on
the equations T = v; t;. More precisely, m?® is defined as
\T; H;t;e. J (A\Z;e. Belowp Pz — T) (mt) (syme) H (39)
:T=y—y=2. Foranyt:A, we have
m® (v;t;) Htrefl~mtH (40)
We will define £° as
M. recy Pm® (v5t;) trefl: (t: A) =T (41)

(3%

where sym

once we have constructed a suitable m. Note that m may make
‘recursive calls’ to £’ on arguments structurally smaller than ¢;
using its argument of type Belowp P (¥;t;). Also note that

£t ~"recp Pm® (U5t;) t refl
~*m?® (v;t;) (belowp P m® (v;t;)) t refl 42)
~* m t (belowp P m’ (v;t;))

Pattern matching without K

In order to construct m, we proceed by induction on the structure
of £’s case tree. So suppose that we have arrived at some node with
label p where p has pattern variables from a context © and we
wish to construct m : © — Belowp P (U;t;)T — T'T where
7 = [A — [p]]. Note that we have © = A at the root node. There
are three cases:

Internal node. In this case, the context is split on some variable
y where © = O1(y : D’ T,)©2 and D’ is an inductive family.
The basic casep:-analysis of Belowp P (U;t;)7 — T'T at Ty; y
has type

.=
(me:(3:Ac) > O > Us;¢c 3
Belowp P (U5t;)T — T'T) — (43)
.=
© — Belowp P (U5t5)T — T'T

= Uy Yy —

where there is one method m. for each constructor c of D’. In
our example, the first case split is on x : m < n, and the basic
case<-analysis has type
(miz: (Emn:N)(z:m<n)(y:n<m) —
(zero;k;1z k) =
Below Pmmnx — m =n)
(mis: (k1 N)(u:k<Il)—
(mn:N)(z:m<n)(y:n<m) — (44)
(suc k;suc l;1s klu) = (myn;x) —

(m;n;z) —

Below Pmnxz —m=n)
(mn:N)(z:m<n)(y:n<m) —
Below Pmnx —-m=n
To construct the methods m., we apply specialization by uni-
fication on the equations %4s; ¢ § = ¥y; y, which we know will
succeed by definition of a valid case tree. For the method
ma, above, the first step is to apply solution to the equation
zero = m, simplifying the goal type to
mi, : (kn:N)(z:zero <n)(y: n < zero) —
(k;1z k) = (nyjz) — (45)
Below P zeron x — zero =n
As another example, later on conflict is applied to the equa-
tion suc [= zero to construct a function
mazis : (k1 :N)(u: k <I)(y: suc k < zero)

(sucl;1s kLl u) = (zero;y) — 46)
Below< P zero (suc k) (1z (suc k)) —
zero = suc k
For each ¢ with positive success, we have to deliver a
m, : © — Belowp P (¥;tj)70 — T70 47)

where o : ©' — A.O is the substitution found by unification.
But the inductive hypothesis for the subtree corresponding to
the constructor ¢ gives us exactly such a function. For m;,, the
goal type becomes

miy : (k:N)(y
Below P zero k (1z k) — zero =k

1 k < zero) —
(43)

after applying solution two more times, at which point we
proceed with another case split on y.

2014/6/5

For any #1; ¢ 5;12 : ©1(y : D’ ¥,)O2, we have
m (t1; ¢ 8;t2) ~" mc 5 (t1; ¢ §;t2) refl 49)
~*ml 0_1[5; t1;c 5;t2]
Empty node. We follow the same construction as in the previous
case, noting that all unifications will succeed negatively, hence
no methods m. are needed. Absurd clauses have no right-hand
side, so they describe no reduction behaviour.

Leaf node. At each leaf node, we have the right-hand side A;
e; : T'T. We wish to instantiate m; = A5; H. e;, but e; may still
contain recursive calls to £. In our example, the goal type for
the second leaf node is

mo: (kL N)(u:k<Dw:1<k)—
Below< P (suc k) (sucl) Is klu) —

suc k = suc l

(50)

and the right-hand side is cong suc (antisym k [u v). We
first have to replace these recursive calls by appropriate calls
to H : Belowp P (U;t;)7. So consider a recursive call £ 7 in
e;. Since £ is structurally recursive, we have r; < [p;;] where
rj : D w. By construction of Belowp, we have a projection 7
such that w H : (t : A) — w;r; =v;t; — T. Hence we can
define ¢} by replacing £ ¥ by m H 7 refl : T[A — 7] ine;,
and take m; = \5; H. e;. For antisym, we have
mH:(mn:N)(z:m<n)(y:n<m)— 51
(k;Liu) = (mynsz) > m=n
so we replace the recursive call antisym k [w v by
m H kluwvrefl.

When we fill in H = belowp P m® (7;t;), we get
7 (belowp P m® (v;t;)) T refl

~"m?® (w;7r;) (belowp P m® (w;r;)) ¥ refl (52)
~*m 7 (belowp P m® (w;r;)) =17
By induction, we now have the required m : (f : A) —
Belowp P v x — T, thus finishing the construction of £°.
For each clause
fpi=ei (53)

with pattern variables § : A; at a leaf node of £’s case tree, we have
£ [pi] ~" m [pi] (belowy P m® u [pi;])
~" mec ... (working our way down the case tree)
~*'m; § (belowp P m® @ [pij]) (54)
~" e5[H v belowp P m® @ [pi;]]
" {ei}ff’
Hence we can conclude that whenever £ ¢ ~ u, we also have
£2 £ ~* {u}:", as we wanted to prove.

4. Making pattern matching without K less
restrictive

In Section 2.3, we remarked that our criterion was more general than
the syntactic one. However, it still has some problems of its own.
Suppose for example we are working with the inequality < indexed
over finite sets Fin n, and we try to unify two successors in the same
finite set. The problem fs n = fs n y requires solving n = n,
but then we get stuck because we cannot use deletion. It can be
proven that K is not really needed for this example, so the criterion
is still overly conservative. We now discuss a possible solution to
handle cases like this one.

Pattern matching without K

Ky: (n:N)(P:n=n— Set) —
Prefl » (e:n=n)— Pe

Ky zero Pprefl=p

Ky (sucn) Ppe=subst P (add-drop e)
(Kn n (P oadd) p (drop e))
where
add I M=n-—>rsucn=sucn
add = mnoConfy ™' (suc n) (suc n)
drop :osucn=sucn—n=n
drop = noConfy (suc n) (suc n)
add-drop (e: suc n=sucn) — add (drope) =e
add-drop = isLeftInvy (suc n) (sucn)

Figure 6. A proof that the type N of natural numbers satisfies K,
using dependent pattern matching with our criterion. The match on
refl in the first clause passes our criterion because the unification
problem is zero = zero, which can be solved by injectivity. The
recursive call to Ky in the second clause is permitted because the
first argument decreases from suc n to n. We use the functions
noConf, noConf ' and isLeftInv constructed from eliminators
in the appendix, but we could define these functions using pattern
matching as well.

Looking back at the construction of the unification transitions
in Section 3.5, we disallowed using deletion on an equation x = «
because in general this requires assuming K. However, for certain
types of z, K can actually be proven without assuming it as an axiom.
These types are called (homotopy) sets in HoTT. For example, N is
a set (see Figure 6 for a proof of this fact), so it would be fine to
use deletion on n = n when n : N. This would already solve the
problem described above.

The question then remains how to detect which types are sets and
which are not. One possible solution is to require the user to prove
K manually for a particular type, and then use this proof during
unification by means of a typeclass-like system such as given by
Devriese and Piessens (2014).

A nicer, but probably also harder approach is to try to detect sets
automatically. This problem is very hard in general, but we could
at least try to detect easy cases like N, using Hedberg’s theorem or
a generalization of it (Kraus et al. 2013). Hedberg’s theorem states
that if a type A has decidable equality, then it is a set. In particular,
if D is a simple (non-indexed) data type such that each constructor
is of the form ¢ : A - D — ... — D — D where all of the
types in A, have decidable equality, then D itself also has decidable
equality, hence it is a set by Hedberg’s theorem. For example, this
can be used to see that N is a set. This criterion can be used to
reintroduce the deletion step of the unification algorithm on a more
limited basis, namely to delete an equation « = «x only if the type
of = can be seen to be a set based on the criterion.

5. Related work

Most implementations of dependent pattern matching in the style
of Coquand (1992) do this by assuming the K axiom. Examples
include Agda (when —without-K is not enabled), Idris (Brady 2013),
and the Equations package for Coq (Sozeau 2010).

Coq also support a more primitive notion of pattern matching via
the match construct in Gallina (The Coq development team 2012).

2014/6/5

The full version of this construct is

match e as ¢ in D 4 return P with

‘ c1 Y1 => e1
(55)
‘ Cn gn = €n
end
In the language of this paper, this corresponds to
casep (A@;z. P) (Aj1.e1) ... (AGn-en) e (56)

Coq also allows skipping the parts labeled by as, in, and return, in
which case it will attempt to construct the motive P automatically.

Note that the motive P must be fully generalized over the indices
4, ensuring that no unification is necessary. Hence this kind of
matching also prevents us from proving K. However, it is more
low-level than the kind of pattern matching described in this paper,
because it requires the user to give each case split explicitly, and
does not perform any unification.

An unpublished first version of dependent pattern matching by
McBride (1998) also used homogeneous equality with telescopic
substitution and hence a proof-relevant unification algorithm. Sim-
ilar to our present work, he observes that the innocent-looking
deletion rule turns into the rather less innocent K. However, the
published version of this work uses the heterogeneous equality, thus
making it rely on K.

6. Conclusion and future work

Dependent pattern matching is an important tool for writing depen-
dently typed functions and proofs in a readable way, but so far it
needed the K axiom to function. What this paper shows, is that there
is no need to throw away the baby with the bath water: by carefully
analysing where K is used, we can give a restricted formulation of
dependent pattern matching that does not need it. We hope that this
is enough to convince the HoTT community that pattern matching
does not require K an sich, and maybe even helps in the creation of
a practical language based on HoTT.

One thing we noticed during the writing of this proof is how
easily a small mistake can have grave impact on the soundness. For
example, it was only after a long time that we realized just disabling
deletion was not enough, but that the injectivity rule also subtly
depends on K. To increase our confidence, we should make the
type checker of our languages perform the translation from pattern
matching to a core calculus in practice. This is already done in the
Equations package for Coq by Sozeau (2010), but they still need
the K axiom for the translation. It would be interesting to see if
our criterion could be integrated into this approach. Another very
appealing idea is to write a compiler for dependent pattern matching
inside the type theory by means of datatype-generic programming
as described by Dagand (2013).

Our criterion makes it possible to do pattern matching on
regular inductive families without assuming K. But HoTT also
introduces the concept of higher inductive types, which can have
nontrivial identity proofs between their constructors. This implies
that in general they do not satisfy the injectivity, disjointness, or
acyclicity properties. Luckily, the proof given in this paper is entirely
parametric in the actual unification transitions that are used. So in
order to allow pattern matching in a context with higher inductive
types, we should just limit the unification algorithm further. Our
present paper gives a glimpse of how a theory of pattern matching
with higher inductive types might look like, but future research will
have to show how much of the original pattern matching algorithm
can be salvaged.

Pattern matching without K

Acknowledgments

This research is partially funded by the Research Fund KU Leuven,
and by the Research Foundation - Flanders under grant number
GO004321N. Jesper Cockx and Dominique Devriese both hold a
Ph.D. fellowship of the Research Foundation - Flanders (FWO).

References

T. Altenkirch. Without-K problem, 2012. URL https://lists.
chalmers.se/pipermail/agda/2012/004104.html. On the Agda
mailing list.

E. Brady. Idris, a general purpose dependently typed programming language:
Design and implementation. Journal of Functional Programming, 23(5),
2013.

J. Cockx. Yet another way Agda —without-K is incompatible with uni-
valence, 2014. URL https://lists.chalmers.se/pipermail/
agda/2014/006367 .html. On the Agda mailing list.

T. Coquand. Pattern matching with dependent types. In Types for proofs and
programs, 1992.

P-E. Dagand. A cosmology of datatypes: reusability and dependent types.
PhD thesis, University of Strathclyde, 2013.

N. A. Danielsson. Experiments related to equality, 2013. URL http:
//www.cse.chalmers.se/ nad/repos/equality/. Agda code.

D. Devriese and F. Piessens. Instance arguments in Agda. Higher-order and
symbolic computation, 2014.

P. Dybjer. Inductive sets and families in martin-16f’s type theory and their
set-theoretic semantics. In Proceedings of the first workshop on Logical
frameworks, 1991.

H. Goguen, C. McBride, and J. McKinna. Eliminating dependent pattern
matching. In Algebra, Meaning, and Computation. 2006.

M. Hofmann and T. Streicher. The groupoid model refutes uniqueness of
identity proofs. In Logic in Computer Science, pages 208-212, 1994.
J.-P. Jouannaud and C. Kirchner. Solving equations in abstract algebras: A

rule-based survey of unification. 1990.

N. Kraus and C. Sattler. On the hierarchy of univalent universes: U(n) is not
n-truncated. arXiv preprint arXiv:1311.4002, 2013.

N. Kraus, M. Escardd, T. Coquand, and T. Altenkirch. Generalizations of
Hedberg’s theorem. In Typed Lambda Calculi and Applications, pages
173-188. Springer, 2013.

Z. Luo. Computation and reasoning: a type theory for computer science,
volume 11 of International Series of Monographs on Computer Science.
1994.

P. Martin-Lof. [Intuitionistic type theory. Number 1 in Studies in Proof
Theory. 1984.

C. McBride. Towards dependent pattern matching in lego. TYPES meeting,
1998.

C. McBride. Dependently typed functional programs and their proofs. PhD
thesis, University of Edinburgh, 2000.

C. McBride. Elimination with a motive. In Types for proofs and programs,
2002.

C. McBride, H. Goguen, and J. McKinna. A few constructions on construc-
tors. In Types for Proofs and Programs, 2006.

U. Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Chalmers University of Technology, 2007.

U. Norell, A. Abel, and N. A. Danielsson. Release notes for Agda
2 version 2.3.2, 2012. URL http://wiki.portal.chalmers.se/
agda/pmwiki.php?n=Main.Version-2-3-2.

J. Reed. Another possible without-K problem, 2013. URL https://lists.
chalmers.se/pipermail/agda/2013/005578.html. On the Agda
mailing list.

A. Sicard-Ramirez. —without-K option too restrictive?, 2013. URL https:
//lists.chalmers.se/pipermail/agda/2013/005407 .html. On
the Agda mailing list.

M. Sozeau. Equations: A dependent pattern-matching compiler. In Interac-
tive theorem proving, 2010.

2014/6/5

https://lists.chalmers.se/pipermail/agda/2012/004104.html
https://lists.chalmers.se/pipermail/agda/2012/004104.html
https://lists.chalmers.se/pipermail/agda/2014/006367.html
https://lists.chalmers.se/pipermail/agda/2014/006367.html
http://www.cse.chalmers.se/~nad/repos/equality/
http://www.cse.chalmers.se/~nad/repos/equality/
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.Version-2-3-2
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.Version-2-3-2
https://lists.chalmers.se/pipermail/agda/2013/005578.html
https://lists.chalmers.se/pipermail/agda/2013/005578.html
https://lists.chalmers.se/pipermail/agda/2013/005407.html
https://lists.chalmers.se/pipermail/agda/2013/005407.html

The Coq development team. The Coq proof assistant reference manual.
LogiCal Project, 2012. URL http://coq.inria.fr. Version 8.4.

The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations of Mathematics. http://homotopytypetheory.org/
book, Institute for Advanced Study, 2013.

A. A few homogeneous constructions on
constructors

Case Analysis. casep is given by dropping the inductive hypothe-
ses from the eliminator, i.e. it is itself a D-elimination operator with
methods

ms (T A;) —
(z1: Pi1 = D Uin) ... (Tn; : Pin, = D Uin,) = (57)
Pi; (citm ... op;)
fort=1,...k.
Recursion. In order to define Belowy P, we apply the eliminator

elimp to the motive & = \ _. Set;. For the method m; correspond-
ing to the constructor c; we give the following:

m; = M1 ... i B -
(Pi1 — h1 Di1 X P i1 (x1 @i1)) X ...

i.e. Belowp P x is atuple asserting P y for all y structurally smaller
than z.

Next, to define belowp P p, we apply elimp with the motive
Belowp P. We give the following for the method m;:

m; = M5 @155 Ty R B
(AD@;1. h1 @s1, p Ts1 1 (h1 Pin)), ...,
(APin;. hny Ping, P Ving Tny (hn; Pin,))
Finally, we define recp P pD := p D (belowp P p D).

R

(5%)

(59)

No Confusion. First, we define NoConfusiony @ b by applying
casep with the motive A _. Set; on a. For each method m; Z, we
apply casep again with the same motive, but this time on b. This
gives us k* methods m;;; to fill in, one for each pair of constructors.
On the diagonal (where ¢ = 5) we define mi; = A\Z;%’. Z=2, and
if i # j we simply give m;; = AZ; Z’. L (the empty type).

Next, we define noConfp a b. By telescopic substitution subst
with motive NoConfusiony a, it is sufficient to give a function of

type (a : D

D) — NoConfusionp @ a. But this can be done using
casep with motive A a. NoConfusionp @ a: for each method m; =
we can fill in refl.

For the inverse noConfp ™' @ b, we need to do a little more work.
First, we apply casep twice as in the definition of NoConfusiony.
Now we are left to give methods

m;; : NoConfusionp (@;;ci T) (ﬂ;, cj :f/) — "

u; (ci 7) =) (cj ') (60)

When i # j, this is easy: we get an element of type L from

NoConfusionp, from which we can conclude anything. On the

diagonal (where i = j) we get a proof of T = zZ’. Applying subst

to this equality leaves us the goal @} (c; ') =@} (cy '), which
we can fill in with refl.

Finally, we prove that this is indeed a (left) inverse by construct-
ing a function of type

(@b:D)(e:a=b) — noConfy ' @b (noConfp @ be)=eé

(61)
By J, it is sufficient to give a function of type
(@ :D) — noConfp ' @@ (noConfp @ @ refl) =refl (62)
Pattern matching without K

But this we can do by applying casep with methods m; & = refl.

Acyclicity. The relation # is defined using Belowp: @ ¢ b :=
Belowp (Ab'.@a#b') b. Wealsodefinea £ b:=a ¢ bx azb.If
x :D @ andy : D v then we often write x £ y and z £ y instead of
u;x £ v;y and u; x £ U3y to avoid too much clutter (of which we
have enough already). Note that z £ ¢; A; 21 ... Tn, = (Ps1 —
x L a1 ®in) X ... X (Pin; = = L Tpn; Pin,) by definition of
Belowp and <.

Now to construct noCyclep, we start by eliminating the equation
@ = b using J, which leaves us the goal (@ : D) — a £ a. Next we
apply elimp with motive Aa. a £ a, producing for each constructor
ci 1 A — (‘I)il —)D’l_)il) - ... = (¢ini — D'l_)ini) — D u;

the subgoal (£ : A;) = (1 : ®i1 = D Ui1) ... (Tn; : Pin, —
D @ini) — (hl D — 1 (IZil £ x1 (I>i1) _(hnl Dy, —
Tn; Ping £ Tn; Pin,) 2 citxr ... Tny £citxr ... T,

In order to continue, we first define the auxiliary types Step;; :

éi — (wl :®;; — D 771‘1) (.Tn,i : ®ip, — D @im) — ®;; —
D —Setqyfori=1,...,kandj =1,...,n, as follows:
Stepij txy ... Tn,; CI)ij ('EL; b) =

_ 63
(; Pij) £b—(citmr ... xpn;) £b ©63)
Now suppose that we can construct steps; : (£ : A;) — (21 :

(o) —)D@il) (ZCTL7 t Do, —)DT)Z‘W) — Oy — (d:ﬁ) —

Stepij t T1 ... Tn, P;; a. Then we can solve the subgoal by
filling in
M T3 h.
(>\<I)i1~ stepi1 tz ®i1 Ui ((L‘l CIZ‘H) (h1 q)il)), (64)
()‘q)ini' stepin; tz q:'ini Vin, (:C"z q)iﬂi) (hni CI)“%))
So we only need to construct the stepsj.
The construction of steps; £ 1 ... Zn; Pi; : (@ : D) —

Stepsj t 1 ... In,
motive Stepij t T1 ...
(AL (2] 1 ®py = Dpy) ...
(h1: (8] : ®p1) — Stepsj t & @4 U,y (7 51)) ...
(hn, (§'np i

pnp

®;; a proceeds by applying elimp with
ZTn; Pi;. The new subgoals are of the form

I &
(Tp, + @

—/
prp — D Tpn,) —

) — Stepsj t T Pij Uy, (Th, 55,)) =

Stepij £ T ®ij Uy (cp ¥ T')

(65)

We solve them by giving:

Af’;x’lg...;a:'np;hl;...;hnp;H.a,ﬁ (66)
where we still have to construct

a:cifml...a:niyicpf/xll...xilp (67)
and

,Bzcifxl...zni;‘écpf/x'l...x'np (68)
For any 5 : ®;;, we have H : x; 5 £ ¢, Ay 2} ... i, or, by

definition of £, H = (Hi,...,Hn,) where Hy : (3 : ®p,4) —
zj 5Ly, 5.

The construction of « reduces to the construction of components
ag: Py, > ciltar ... xn; €y Dy, But these we can give as
ag = A§'. hy (m1 (H, §')) (where 1 is projection onto the first
component).

For constructing (3, we assume c; © m T, =

cp U) 7, and derive an element of 1. By noConfy,

it suffices to consider the case where i = p, A; = AL, and

T1j...;Tn; =T1,...,%,,. Butthen we have H; 5: 2, § £ x5 §,
hence w2 (H; ®;;) refl : L. This finishes the construction of
noCyclep.

2014/6/5

http://coq.inria.fr
http://homotopytypetheory.org/book
http://homotopytypetheory.org/book

	Introduction
	The criterion
	Case splitting by unification of the indices
	Restricting the unification rules
	Comparison with the syntactic criterion
	Implementation and evaluation

	Eliminating pattern matching without K
	Type theory
	Definitions by pattern matching
	Homogeneous telescopic equality
	A few homogeneous constructions on constructors
	Unification without K
	From case trees to eliminators

	Making pattern matching without K less restrictive
	Related work
	Conclusion and future work
	A few homogeneous constructions on constructors

