
Modular Confluence for Rewrite Rules in MetaCoq
Jesper Cockx1, Nicolas Tabareau2, and Théo Winterhalter2

1 TU Delft, Delft, Netherlands
2 Gallinette Project-Team, Inria, Nantes, France

Dependently typed languages provide strong guarantees of correctness for our programs and
proofs, but they can be hard to use and extend. To increase their practicability and expressivity,
they can be extended with user-defined rewrite rules [2]. For example, rewrite rules allow us
to define ‘parallel’ plus that reduces on both sides. It is defined by one symbol pplus and the
following rules:

m : N ` pplus 0 m _ m n,m : N ` pplus (S n) m _ S (pplus n m)
n : N ` pplus n 0 _ n n,m : N ` pplus n (S m) _ S (pplus n m)

Since rewrite rules are applied to expressions appearing at the type level, they interact directly
with the type system. Hence they can very easily break expected good properties of these systems,
e.g., termination, confluence, canonicity or subject reduction [3]. Among those, confluence is a
key ingredient to retain subject reduction and as such is essential.

We present a new criterion to ensure confluence of rewrite rules – and thus subject reduction
of the system – for the predicative calculus of cumulative inductive constructions (PCUIC) as
formalised in MetaCoq [6]. This criterion is modular : adding new rewrite rules that satisfy the
criterion again yields a confluent system without having to check new properties of pre-existing
rewrite rules. We have formalized this criterion in MetaCoq and extended the existing proof of
confluence. The proof however is not particular to the system and should adapt easily to other
settings such as Agda, allowing us to extend the Agda implementation [2] with a confluence
checker.

Rewrite rules in our setting. We extend PCUIC with blocks consisting of symbol decla-
rations and rewrite rules where the head of each rule is one of the locally defined symbols. A
rewrite rule is given as ∆ ` l _ r where:
• ∆ is the telescope of pattern variables, which should be the only free variables in l and r,

all pattern variables appear linearly in l (i.e., exactly one time);

• l is the elimination of some symbol declared in the same block, where eliminations include
application to a pattern, projection from a record type, and pattern-matching where the
return predicate and branches are also patterns;

• patterns can be pattern variables applied to locally bound variables, bound variables, or
λ-abstractions where the type and body are both patterns;

• r is unconstrained (except its free variables).

In order to preserve subject reduction, we also ask that there exists a type A such that ∆ ` l : A
and ∆ ` r : A. Rewrite rules are interpreted as follows (σ instantiates the pattern variables):

σ : Γ→ ∆

lσ −→ rσ



Modular Confluence for Rewrite Rules in MetaCoq Cockx, Tabareau, Winterhalter

The Tait–Martin-Löf criterion. This method to prove confluence [5] has been used in
MetaCoq to show the confluence of PCUIC [7]. Basically, it requires to introduce—beside the
standard reduction (−→)—a notion of parallel reduction (V) which may do one-step reduction
in all its subterms and such that:

−→ ⊆V ⊆ −→?

so that confluence of parallel reduction is sufficient to get confluence of reduction. In particular,
parallel reduction is reflexive.

Confluence of V relies on the existence of an auxiliary function ρ such that ρ(t) is the best
parallel reduct of t, i.e., whenever tV u we also have uV ρ(t). This means that tV ρ(t) holds
as well. The existence of such a function ρ is called the triangle property and allows us to derive
confluence by glueing two triangles as illustrated below:

t
p|


�
".u

 -
v

q~
ρ(t)

Modular confluence for rewrite rules. For a given set S of rewrite rules to be confluent
with the rest of the system, we ask that it satisfies the triangle property locally in the following
sense. Assuming that the set S of rewrite rules is ordered (for instance, by their order of
appearance), we define the function ρS by applying the first rule in S that matches and applying
ρS recursively on the pattern variables. For instance, for the rule x, y : A ` F (G x) y _ H x y,
the definition of ρS is ρS(F (G x) y) = H (ρS x) (ρS y). Then, the local triangle property for
S asks that ρS satisfies the triangle property for the rules in S.

Assuming this local triangle property for S and that the theory satisfies the triangle property
(with function ρ), we can show that the theory extended with the new set S of rewrite rules
still satisfies the triangle property, and thus is confluent. The new auxiliary function ρ is just
obtained merging ρS into ρ; replacing every recursive call to ρS by a recursive call to ρ.

One key ingredient in the proof is the fact that if a term matches one of the rules in S, it
still matches this rule after applying any of the ‘old’ rules to (subterms of) this term. This is
very important for the modular reasoning to go through, and it is not satisfied by non-linear
rewrite rules. Indeed, when a non-linear rule matches, this match is easily broken by rewriting
only one of the two occurrences of the non-linear pattern, whatever this reduction is. Thus, the
confluence of non-linear rewrite rules cannot be analyzed this way.

Coming back to the example of parallel plus, the local triangle property is satisfied after
adding the following (admissible) reduction rule, with high priority:

n,m : N ` pplus (S n) (S m) V S (S (pplus n m))

Extended this way, our criterion shows that adding pplus to the theory does not break confluence.
Compared to the literature on higher-order rewriting [4, 1, 8], our criterion may look very

restrictive. The reason is that we focus on modularity and formal provability, and we work with
PCUIC rather than a simpler Pure Type System as is usually the case in the literature.

Formalisation. The formalisation of this modular approach to confluence can be found
at https://github.com/TheoWinterhalter/template-coq/tree/rewrite-rules. It is a fork
of the MetaCoq repository where we add rewrite rules to the global environment. The confluence
proof is in the process of being updated accordingly although there are still remaining assumptions
at the time of submission.

2

https://github.com/TheoWinterhalter/template-coq/tree/rewrite-rules


Modular Confluence for Rewrite Rules in MetaCoq Cockx, Tabareau, Winterhalter

References
[1] Frédéric Blanqui, Claude Kirchner, and Colin Riba. On the confluence of lambda-calculus with

conditional rewriting. Theor. Comput. Sci., 411(37):3301–3327, 2010.
[2] Jesper Cockx and Andreas Abel. Sprinkles of extensionality for your vanilla type theory. In Types

for Proofs and Programs, TYPES, 2016.
[3] Jesper Cockx, Nicolas Tabareau, and Théo Winterhalter. How to tame your rewrite rules. In Types

for Proofs and Programs, TYPES, 2019.
[4] Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their confluence. Theoretical

computer science, 192(1):3–29, 1998.
[5] Gert Smolka. Confluence and normalization in reduction systems. Lecture Notes, 2015.
[6] Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen, Yannick Forster, Fabian Kunze,

Gregory Malecha, Nicolas Tabareau, and Théo Winterhalter. The MetaCoq Project. To appear in
Journal of Automated Reasoning, 2020.

[7] Matthieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau, and Théo Winterhalter. Coq
Coq correct! verification of type checking and erasure for Coq, in Coq. PACMPL, 4(POPL), 2020.

[8] Vincent van Oostrom. Confluence by decreasing diagrams. In Rewriting Techniques and Applications,
RTA 2008, volume 5117 of Lecture Notes in Computer Science, 2008.

3


