
preprint

Lifting Proof-Relevant Unification to Higher Dimensions

Jesper Cockx Dominique Devriese
iMinds-DistriNet, KU Leuven, 3001 Leuven, Belgium.

firstname.lastname@cs.kuleuven.be

Abstract
In a dependently typed language such as Coq or Agda, unifi-
cation can be used to discharge equality constraints and de-
tect impossible cases automatically. By nature of dependent
types, it is necessary to use a proof-relevant unification al-
gorithm where unification rules are functions manipulating
equality proofs. This ensures their correctness but simultane-
ously sets a high bar for new unification rules. In particular,
so far no-one has given a satisfactory proof-relevant version
of the injectivity rule for indexed datatypes.

In this paper, we describe a general technique for solv-
ing equations between constructors of indexed datatypes.
We handle the main technical problem—generalization over
equality proofs in the indices—by introducing new equa-
tions between equality proofs. Borrowing terminology from
homotopy type theory, we call them higher-dimensional
equations. To apply existing one-dimensional unifiers to
these higher-dimensional equations, we show how unifiers
can be lifted to a higher dimension. We show the usefulness
of this idea by applying it to the unification algorithm used
by Agda, though it can also be applied in languages that
support identity types but not general indexed datatypes.

Categories and Subject Descriptors F.3.3 [Logics and
Meanings of Programs]: Studies of Program Constructs
– functional constructs, program and recursion schemes;
D.3.3 [Programming Languages]: Language Constructs and
Features – data types and structures, patterns

Keywords Unification, Type Theory, Dependent Types, In-
ductive Families, Agda

1. Introduction
When writing programs or proofs in a dependently typed
language, you often encounter equality proofs in the context
that you’d like to discharge. For example, doing a case analy-

[Copyright notice will appear here once ’preprint’ option is removed.]

sis on a vector of type Vec A m produces two cases: one for
the empty vector where m = zero and one for prepending
an element to a vector where m = suc n for some n.
Usually, these equations are not very interesting and you
want to solve them as soon as possible.

However, simply substituting by these equations is not
always sufficient because other terms and their types may
depend on the proofs of these equations. For example,
when you want to prove some property P v of a vector
v : Vec A m and you are in the case of an empty vector,
we cannot use P [] as the goal type since this is ill-typed:
P takes an argument of type Vec A m, not Vec A zero.
Instead, the equality proof e : zero ≡N m is needed to
construct the goal type P (subst (Vec A) e []).

To make progress on a large class of problems like this,
you can use a proof-relevant unification algorithm as we pro-
posed in previous work (Cockx et al. 2016). In this frame-
work, unification problems are represented as telescopes
containing flexible variables and equations, and unification
rules are type-theoretic equivalences between two such tele-
scopes.1 For example, the injectivity rule for the suc con-
structor for natural numbers is represented by an equiva-
lence of type (e : suc m ≡N suc n) ≃ (e : m ≡N n).
This means any use of possible axioms is made explicit in
the construction of the equivalence. Another advantage of
this approach is that the equivalence describes exactly how
a proof of suc m ≡N suc n can be transformed into a proof
of m ≡N n and vice versa, i.e. it has a certain computational
content. This is useful for the translation of pattern matching
to eliminators (Goguen et al. 2006; Cockx et al. 2014).

Another feature of unification in a dependently typed
setting is that the type of an equation can depend on the proof
of earlier equations. This is necessary when you encounter
equations between dependently typed terms. For example in
the unification problem (e1 : m ≡N n)(e2 : v ≡Vec A e1 w)
the two vectors v : Vec A m and w : Vec A n have a
different type but this poses no problem because we have a
proof e1 : m ≡N n (see Side note 1 for an explanation of our
notation for heterogeneous equalities).

Keeping track of the dependencies between equations
is important for dealing with equations between construc-

1 As standard in homotopy type theory, an equivalence consists of a function
between the telescopes together with a left and a right inverse.

Lifting Proof-Relevant Unification to higher dimensions 1 2016/11/24

tors of an indexed datatype such as Vec. For example, if
you have two equations (e1 : suc m ≡N suc n)(e2 :
cons m x xs ≡Vec A e1 cons n y ys) then you can sim-
plify both equations at once by applying the injectivity rule
for cons, resulting in the new set of equations (e′1 : m ≡N
n)(e′2 : x ≡A y)(e′3 : xs ≡Vec A e′1

ys).
In general, the injectivity rule is an equivalence:

(ē : ı̄ ≡Φ ȷ̄)(e : c ū ≡D ē c v̄) ≃ (ē′ : ū ≡∆ v̄) (1)

i.e. it can be applied to an equation between two equal
constructors where the type is a datatype applied to distinct
equality proofs for its indices (Cockx et al. 2016). In this
case we say that the indices are fully general.

Problem statement. The main question posed in this paper
is what you can do if you encounter an equation of the form
c ū ≡D ı̄ c v̄ but the indices ı̄ are not fully general. For
example, you may encounter an equation:

(e : cons n x xs ≡Vec A (suc n) cons n y ys) (2)

of type Vec A (suc n) where n is a regular variable rather
than an equality proof. In this case it is not possible to apply
the injectivitycons rule directly. However, we will see
that it is possible to construct an equivalence between this
equation and (e′1 : x ≡A y)(e′2 : xs ≡Vec A n ys), so there is
no fundamental reason why unification should fail. See also
issue #1775 reported by Sicard-Ramírez (2016) on the Agda
bug tracker for another instance of this problem.

In previous work, we tried different approaches to solve
this problem that worked in some cases but were ultimately
unsatisfactory. In Cockx et al. (2014) we restricted all uni-
fication rules to homogeneous equations and additionally
imposed a self-unifiability criterion to the indices of the
datatype when applying the injectivity rule. In practice, this
meant that the injectivity rule could only be applied when
the indices consisted of closed constructor forms only (e.g.
suc (suc zero)), a severe restriction to the applicability of
the rule. In Cockx et al. (2016) we used the general (hetero-
geneous) version of the injectivity rule and relied on reverse
unification to generalize the indices. This method had some
potential in theory, but turned out to be too difficult to im-
plement in practice. Neither did it take into account the type
of the constructor in question, so they didn’t include useful
heuristics such as forced constructor arguments (Brady et al.
2003).

Contributions.
• We show how the injectivity rule for indexed datatypes

can be made more generally applicable by generalizing
over the indices in the type of the equation, generating
higher-dimensional equations in the process.

• We prove that all regular unification rules can also be
applied to higher-dimensional equations by lifting them
to these higher dimensions.

• We explain how higher-dimensional unification formal-
izes the concept of forced constructor arguments, a
heuristic that allows unification to skip certain construc-
tor arguments if they are determined by the type of the
constructor.

• We describe our implementation of higher-dimensional
unification used in the implementation of the Agda lan-
guage, showing that the algorithm also works in practice.

Overview. Section 2 describes higher-dimensional unifica-
tion, first by means of an example and then in full gener-
ality. Section 3 contains the theoretical details that show
how higher-dimensional unification works behind the scenes.
Section 4 contains a more in-depth look at some interesting
aspects of higher-dimensional unification, and Section 5 dis-
cusses the implementation of our ideas in the Agda language.
Finally, Section 6 contains a few pointers to related work and
Section 7 concludes.

2. Higher-dimensional unification
The theory of higher-dimensional unification presented in
this paper builds on our previous work on proof-relevant
unification (Cockx et al. 2016), so we start with a quick
overview of the contents of that paper. After that, we explain
the idea of higher-dimensional unification on an example
before moving on to the general case.

2.1 Unifiers as Equivalences

Unification problems. Unification problems are repre-
sented by telescopes of the form Γ(ē : ū ≡∆ v̄) where Γ con-
tains the flexible variables, ∆ is the telescope of equations
and ū and v̄ are the left- and right-hand sides of the equations
respectively. Here, the telescopic identity type ē : ū ≡∆ v̄ is
defined inductively on the length of the telescope by:

() ≡() () := ()
(e; ē : s; s̄ ≡(x:A)∆ t; t̄) := (e : s ≡A t)

(ē : s̄ ≡∆[x 7→e] t̄)
(3)

where we write () for both the empty telescope and the
empty list of terms. The meaning of the heterogeneous equal-
ity s̄ ≡∆[x 7→e] t̄ is further explained in Side note 1.

Unifiers. A unifier for the unification problem Γ(ē : ū ≡∆

v̄) is represented by a reduced telescope Γ′ together with a
telescope map f : Γ′ → Γ(ē : ū ≡∆ v̄), i.e. a function
returning values for the variables in Γ plus proofs that the
equations are satisfied for these values.

A unifier is a most general one if the function f is an
equivalence Γ(ē : ū ≡∆ v̄) ≃ Γ′, i.e. if f has both a left and
a right inverse.

The unification algorithm. The unification algorithm tries
to construct an equivalence Γ(ē : ū ≡∆ v̄) ≃ Γ′ by succes-
sively applying the unification rules given in Figure 1 to the
unification problem, simplifying one or more equations in

Lifting Proof-Relevant Unification to higher dimensions 2 2016/11/24

Side note 1: cubical syntax. In this paper we use an un-
conventional notation for equality proofs inspired by cubi-
cal type theory (Cohen et al. 2015). Concretely, this notation
manifests itself in three places:

• If E : A ≡Seti B is an equality proof between two types
A and B and we have x : A and y : B, then x ≡E y
stands for the heterogeneous equality coerce E x ≡B y
where coerce : A ≡Seti B → A → B.

• Each term doubles as its own proof of reflexivity, i.e. if
u : A then we write u instead of reflu when giving a
proof of u ≡A u.

• Each function doubles as its own proof of congruence,
i.e. if f : A → B then we write f e instead of cong f e
when constructing a proof of f u ≡B f v from a proof
e : u ≡A v. Here, congruence cong (also called ap in
HoTT circles) has type (f : (x : A) → B x)(e : u ≡A

b) → f x ≡B e f y.

This notation allows us to define substitution of a variable x
with an equality proof e as u[x 7→ e] := (λx. u) e. Note that
x ≡P e y is nothing but the type PathOver P e x y from
The Univalent Foundations Program (2013).

each step. This process continues until one of three possible
situations occurs:

• If there are no more equations left, the algorithm suc-
ceeds positively. In this case, it returns an equivalence be-
tween the original problem Γ(ū ≡∆ v̄) and the reduced
telescope Γ′.

• If a contradictory equation is encountered, the algorithm
succeeds negatively. In this case, it returns an equivalence
between the original problem Γ(ū ≡∆ v̄) and the empty
type ⊥.

• If there are no more applicable rules, the algorithm results
in a failure.

2.2 Higher-dimensional unification by example
Before we describe higher-dimensional unification in full
generality, we start with a motivating example. Suppose we
are working on the unification problem:

Γ(e : cons n x xs ≡Vec A (suc n) cons n y ys) (4)

where Γ = (n : N)(x y : A)(xs ys : Vec A n). We
cannot apply the injectivitycons rule right away, as the
index suc n is not fully general (i.e. it is not an equation
variable). Instead, we solve this unification problem in three
steps: in the first step, we generalize over the indices in order
to apply the injectivity rule, generating higher-dimensional
equations in the process. In the second step, we bring down
these equations by one dimension so we can solve them by
applying known unification rules. Finally, we lift the one-
dimensional unifier back to the higher-dimensional problem.

Step 1: generalizing the indices. We can generalize the
problem by introducing an extra equation e1 : suc n ≡N
suc n to the telescope, together with a proof p that e1 is
equal to refl:

Γ(e1 : suc n ≡N suc n)
(e2 : cons n x xs ≡Vec A e1 cons n y ys)
(p : e1 ≡suc n≡Nsuc n refl)

(5)

This is nothing but an application of the solution rule in
the reverse direction, as applying solution to p would bring
us back to the first equation.

Now we are free to apply the injectivitycons rule to
e2, resulting in the unification problem:

Γ(e′1 : n ≡N n)(e′2 : x ≡A y)(e′3 : xs ≡Vec A e′1
ys)

(p : suc e′1 ≡suc n≡Nsuc n refl)
(6)

Note that applying the injectivity rule to e2 has instantiated
the variable e2 with the expression suc e′1 in the type of
p, which is cubical notation for cong suc e′1. This instan-
tiation is determined by the computational behavior of the
injectivitysuc rule (see Side note 2). As you can see, p
has become a non-trivial equation between equality proofs,
i.e. a higher-dimensional equation.

Step 2: lowering the dimension of equations. To solve the
higher-dimensional equation p, it is useful to first consider a
one-dimensional version of this problem:

(e′1 : N)(e′2 : A)(e′3 : Vec A e′1)(p : suc e′1 ≡N suc n)
(7)

We have kept the names e′1, e′2 and e′3 from (6) but they now
represent regular variables instead of equations. This is a
problem we know how to solve: we can apply injectivity
and solution to find an equivalence f between this tele-
scope and (e′2 : A)(e′3 : Vec A n). This solves the one-
dimensional problem.

Step 3: lifting unifiers to a higher dimension. How does
this help us with solving the higher-dimensional problem?
By Theorem 2 (see Section 3), we can lift the equivalence f
to get a new equivalence f↑:

(e′1 : n ≡N n)(e′2 : x ≡A y)(e′3 : xs ≡Vec A e′1
ys)

(p : suc e′1 ≡suc n≡Nsuc n suc n)
≃

(e′′2 : x ≡A y)(e′′3 : xs ≡Vec A n ys)

(8)

This solves the higher-dimensional equation p, as well as the
reflexive equation e′1 (we didn’t have to use the fact that N
satisfies uniqueness of identity proofs!).

Finally, we can apply the solution rule twice to solve
the equations e′′2 and e′′3 , setting y := x and ys := xs . So
putting everything together, we have found an equivalence
between the original telescope (4) and (n : N)(x : A)(xs :
Vec A n), solving the unification problem.

Lifting Proof-Relevant Unification to higher dimensions 3 2016/11/24

solution : (x : A)(e : x ≡A u) ≃ () (if x doesn’t occur freely in u)

deletion : (e : u ≡A u) ≃ () (if A satisfies UIP)

injectivityc : (k̄[∆ 7→ ū]; c ū ≡D̄ k̄[∆ 7→ v̄]; c v̄) ≃ (ū ≡∆ v̄) (if c : ∆ → D k̄ is a constructor)

conflictc1,c2 : (k̄1[∆1 7→ ū]; c1 ū ≡D̄ k̄2[∆2 7→ v̄]; c2 v̄) ≃ ⊥ (if ci : ∆i → D ūi are distinct constructors)

cyclex,u : (k̄;x ≡D̄ l̄;u) ≃ ⊥ (if x occurs strongly rigid in u)

Figure 1: The basic unification rules formulated as equivalences as given by Cockx et al. (2016). Here we only give the type
of each rule, but we also need the computational behavior of each rule to know their effect on other equations. For example,
because solution−1 () = u; refl we know that solution assigns u to the variable x. The computational behavior of the
other rules is given in Side note 2.

2.3 The general case
Now that we have seen how to solve the problem in an
example, let’s try to generalize the solution. We follow the
same three steps as in the example, so if anything is unclear
you can jump back to the corresponding step in the example.

In the general situation, we are trying to solve a unifica-
tion problem of the form:

Γ(ē1 : ū1 ≡∆1 v̄1)(e : c ū ≡D ı̄ c v̄)(ē2 : ū2 ≡∆2 v̄2) (9)

where c : ∆c → D k̄ is a constructor of the indexed datatype
D : Φ → Seti. Note that ı̄ are not just terms of type Φ but
proofs that the indices in the type of c ū and c v̄ are equal,
i.e. ı̄ : k̄[∆c 7→ ū] ≡Φ k̄[∆c 7→ v̄]. From here on, we write
k̄u for k̄[∆c 7→ ū] and k̄v for k̄[∆c 7→ v̄].

Step 1: generalizing the indices. If ı̄ is fully general (i.e.
consists of distinct variables from ē1), then we can apply the
injectivityc rule to simplify the equation e. Otherwise,
we first need to generalize the indices in order to proceed.

For now, we will focus on just the equation ē1 and e, the
rest of the telescope (Γ and ē2) will be added again in Step
3. To generalize the indices ȷ̄ in the type of e, we introduce
new variables ȷ̄ : k̄u ≡Φ k̄v together with equalities p̄ :
ı̄ ≡k̄u≡Φk̄v

ȷ̄:2

(ē1 : ū1 ≡∆1 v̄1)(e : c ū ≡D ı̄ c v̄)
≃

(ē1 : ū1 ≡∆1 v̄1)(ȷ̄ : k̄u ≡Φ k̄v)
(e : c ū ≡D ȷ̄ c v̄)(p̄ : ı̄ ≡k̄u≡Φk̄v

ȷ̄)

(10)

2 This is the exact same technique as used by McBride (1998): to do a case
split on a variable x : D ı̄ where ı̄ is not fully general, he introduces
new variables ȷ̄ : Φ together with equalities p̄ : ı̄ ≡Φ ȷ̄. This means
that now x : D ȷ̄ where ȷ̄ are just variables, so it is possible to perform
a case split on x. The only difference in our case is that we are working
one dimension higher, i.e. we work with equations between elements of the
datatype instead of elements of the datatype itself.

Since ȷ̄ consists of distinct variables, it’s now possible to
apply injectivityc to the equation e. This gives us an
equivalence:

(ē1 : ū1 ≡∆1 v̄1)(ȷ̄ : k̄u ≡Φ k̄v)
(e : c ū ≡D ȷ̄ c v̄)(p̄ : ı̄ ≡k̄u≡Φk̄v

ȷ̄)
≃

(ē1 : ū1 ≡∆1 v̄1)(ē
′ : ū ≡∆c

v̄)(p̄ : ı̄ ≡k̄u≡Φk̄v
k̄e)

(11)
where k̄e = k̄[∆c 7→ ē′]. Note in particular that we now have
a non-trivial higher-dimensional unification problem p̄.

Step 2: lowering the dimension of equations. At first sight,
it would seem that we need an entirely new set of unifica-
tion rules to solve higher-dimensional unification problems
(except for the solution rule, which can be used at any di-
mension). But as we will see, it is possible to reuse the ex-
isting unification rules on higher-dimensional problems. In
fact, our notation for equality proofs is already strongly sug-
gestive of how this works: for example, the injectivitysuc
rule can be used not just to simplify equations of the form
suc x ≡N suc y to x ≡N y, but also suc e1 ≡suc x≡Nsuc y

suc e2 to e1 ≡x≡Ny e2.
In general, whenever we encounter a higher-dimensional

unification problem ū ≡x̄≡∆ȳ v̄ we lower it by one dimen-
sion and consider the problem ū ≡∆ v̄ where the equation
variables in ū and v̄ are treated as regular variables. If we
manage to find a solution to this one-dimensional problem,
we can then lift this solution to the higher dimension. The
technical result that makes this possible is Theorem 2 in the
next section.

In the problem we have on hand now, this means we con-
sider the one-dimensional unification problem (ē1 : ∆1)(ē

′ :
∆c)(p̄ : ı̄ ≡Φ k̄e). Note that ē1 are now regular variables
of type ∆1, so the ı̄ in this equation are normal terms rather
than equality proofs. Since this is a one-dimensional unifica-
tion problem, we can apply the known unification rules from
Figure 1 to solve it. For what follows, we assume that we can
find a solution to this problem in the form of an equivalence:

f : (ē1 : ∆1)(ē
′ : ∆c)(p̄ : ı̄ ≡Φ k̄e) ≃ ∆′

1 (12)

Lifting Proof-Relevant Unification to higher dimensions 4 2016/11/24

Side note 2: computational behavior of unifiers. The com-
putational behavior of the unifier f suddenly becomes very
relevant for the type of the resulting unification problem! In
particular, we need to determine the behavior of the func-
tions f : Γ(ē : ū ≡∆ v̄) → Γ′ and f−1 : Γ′ → Γ(ē :
ū ≡∆ v̄). Here we give the computational behavior for the
unification rules in Figure 1:

• All the rules preserve the invariant that Γ′ ⊆ Γ, so
f : Γ(ē : ū ≡∆ v̄) → Γ′ picks out the variables from
Γ that also occur in Γ′.

• The rule solution−1 : () → (x : A)(e : x ≡A t)
returns t for the variable x and refl for the proof e,
and deletion−1 : () → (e : t ≡A t) returns refl.
Meanwhile, injectivityc−1 : (x̄ ≡∆ ȳ) → (ū[∆ 7→
x̄]; c x̄ ≡D̄ ū[∆ 7→ ȳ]; c ȳ) maps proofs ē : x̄ ≡∆ ȳ to
ū[∆ 7→ ē]; c ē.

Step 3: lifting unifiers to a higher dimension. Now we
have to lift this solution back to the higher-dimensional
problem. Theorem 2 gives us a lifted equivalence f↑:

(ē1 : ū1 ≡∆1 v̄1)(ē
′ : ū ≡∆c

v̄)(p̄ : ı̄ ≡k̄u≡Φk̄v
k̄e)

≃
(ē′1 : f ū1 ū refl ≡∆′

1
f v̄1 v̄ refl)

(13)
This is exactly what we need to solve the problem in (11).
To calculate the left- and right-hand sides of the equations
ē′1, we need to know the computational content of the unifier
f as detailed in Side note 2.

Now we can combine the equivalences in (10), (11) and
(13), to get the equivalence:

(ē1 : ū1 ≡∆1
v̄1)(e : c ū ≡D ı̄ c v̄)

≃
(ē′1 : f ū1 ū refl ≡∆′

1
f v̄1 v̄ refl)

(14)

To get a solution to the full unification problem in (9), we
have to add Γ and (ē2 : ū2 ≡∆2

v̄2) to both sides of the
equivalence. This gives us the final equivalence:

Γ(ē1 : ū1 ≡∆1 v̄1)(e : c ū ≡D ı̄ c v̄)(ē2 : ū2 ≡∆2 v̄2)
≃

Γ(ē′1 : f ū1 ū refl ≡∆′
1
f v̄1 v̄ refl)(ē2 : ū2 ≡∆′

2
v̄2)
(15)

Since ∆2 is dependent on ē1 and e, it has to be updated
on the right-hand side of the equivalence by applying the
substitution (14). Specifically, ∆′

2 is obtained by substituting
(f−1 ē′1)|ē1 for ē1 and c (f−1 ē′1)|ē′ for e in ∆2. 3 Again we
need the computational content of the unifier f , this time of
the function f−1. This is also described in Side note 2.

This finishes the application of higher-dimensional unifi-
cation to the equation e. We have solved the injectivity prob-
lem e, and there are no more higher-dimensional unification

3 We write ·|ē1 for the projection from the telescope onto the values of ē1,
and similarly for ·|ē′ .

(Ctx-empty)
ϵ context

Γ ⊢ A : Seti x /∈ FV (Γ)
(Ctx-extend)

Γ(x : A) context

Γ context x : A ∈ Γ
(Var)

Γ ⊢ x : A

Γ ⊢ t : A1 Γ ⊢ A1 = A2 : Seti (=Ty)
Γ ⊢ t : A2

Γ context (Set)
Γ ⊢ Seti : Seti+1

Γ ⊢ A : Seti Γ(x : A) ⊢ B : Setj
(Π)

Γ ⊢ (x : A) → B : Setmax(i,j)

Γ(x : A) ⊢ t : B
(λ)

Γ ⊢ λx. t : (x : A) → B

Γ ⊢ f : (x : A) → B Γ ⊢ t : A
(App)

Γ ⊢ f t : B[x 7→ t]

Γ(x : A) ⊢ t : B Γ ⊢ s : A
(β)

Γ ⊢ (λx. t) s = t[x 7→ s] : B[x 7→ s]

+ reflexivity, symmetry, transitivity and congruence rules for =

Figure 2: The core formal rules of UTT, including depen-
dent function types (x : A) → B, an infinite hierarchy of
universes Set0 (= Set), Set1, Set2,. . . , and β-equality.

problems in the resulting equations ē′1, so we can continue
unification on the new problem as normal.

3. Theoretical details
In the last section, we have seen how higher-dimensional
unification can be applied to make the injectivity rule more
generally applicable. In this section, we dive into the heart
of the problem: how can we lift unifiers (i.e. equivalences)
to a higher dimension? Our main result is Theorem 2, telling
us exactly how to update the left- and right-hand sides of the
equations when lifting a unifier.

Our setting. We work in a fairly minimal version of inten-
tional type theory based on UTT (Luo 1994), see Figure 2
for the basic rules of this theory. Additionally, we make use
of Martin-Löf (1984)’s identity type x ≡A y and Dybjer
(1991)’s indexed datatypes D : Φ → Seti defined by a num-
ber of constructors ci : ∆i → D ūi.

All other constructions we use can be defined in terms of
this basic theory:

Lifting Proof-Relevant Unification to higher dimensions 5 2016/11/24

• A telescope (x : A)(y : B)(z : C) is interpreted as an
iterated sigma type Σ(x:A) (Σ(y:B) C). This allows us
to use the regular function type also for maps between
telescopes.

• An equivalence of type A ≃ B is a tuple of a function
f : A → B together with left and right inverses g1, g2 :
B → A plus proofs that they are actually inverses.

In particular, we do not make use of any additional type-
theoretic axioms such as uniqueness of identity proofs or
univalence.

Squares. To structure our reasoning about higher-dimen-
sional equalities, we make use of the concept of a square,
also called a 2-path by The Univalent Foundations Program
(2013):

Definition 1 (Square). Let A : Seti, w, x, y, z : A, t :
w ≡A x, b : y ≡A z, l : w ≡A y, and r : x ≡A z. The
square type Square t b l r is defined to be the dependent
equality type l ≡t≡Ab r.

If we imagine a square with top side t, bottom side b, left
side l, and right side r, then Square t b l r can be thought of
as the type of identity proofs that fill this square horizontally
as visualized in Figure 3a.

w x

y z

t

b

l r
p

(a) Horizontal filling
p : Square t b l r

w x

y z

t

b

l rq

(b) Vertical filling
q : Square l r t b

Figure 3: The Square type represents the possible ways to
fill a square defined by four equality proofs.

There is a second way to construct a square type from four
given points w, x, y, z : A and equality proofs t : w ≡A x,
b : y ≡A z, l : w ≡A y: we can ‘flip’ the square around its
w− z axis, as illustrated by Figure 3. We need to rely on the
fact that both square types are in fact equivalent:

Lemma 1 (Flipping squares). Let A : Set, w, x, y, z : A,
t : w ≡A x, b : y ≡A z, l : w ≡A y, and r : x ≡A z.
Then we can construct an equivalence flip t b l r :
Square t b l r ≃ Square l r t b.

Proof. The proof of this lemma consists completely of re-
peated applications of path induction. We start by construct-
ing the function flip t b l r : Square t b l r →
Square l r t b. First, by path induction on t and b we can
assume that w = x, y = z and both t and b are refl, so we
are left with the goal l ≡w≡Ay r → refl ≡l≡Ar refl. The

identity type in the function argument has become homoge-
neous, so we can again apply path induction, giving us that
l = r and leaving us with the goal refl ≡l≡al refl. Fi-
nally, one more application of path induction on l : w ≡A y
leaves us with the goal refl ≡w≡Aw refl, which we can
simply solve with refl.

For the construction of the left and right inverse of flip,
we can just change the order of t, b, l and r in the construc-
tion of flip. For the proofs that they are in fact inverses, the
same sequence of path inductions as used in the construction
of flip suffices.

Lifting unifiers. To lift an equivalence to a higher dimen-
sion, we make use of Theorem 2.11.1 from The Univalent
Foundations Program (2013), which we repeat here:

Theorem 1 (Lifting of equivalences). If a function f : A →
B is an equivalence and x, y : A, then cong f : x ≡A y →
f x ≡A f y is also an equivalence.

This theorem can already take us almost all the way to
lifting a unifier, with the missing piece turning out to be
exactly Lemma 1. This realization allows us to prove our
main theorem:

Theorem 2 (Lifting of unifiers). Suppose we have a unifier
f : ∆(p̄ : ā ≡Φ b̄) ≃ ∆′ and terms ū, v̄ : ∆ together
with proofs r̄ : ā[∆ 7→ ū] ≡Φ[∆ 7→ū] b̄[∆ 7→ ū] and
s̄ : ā[∆ 7→ v̄] ≡Φ[∆ 7→v̄] b̄[∆ 7→ v̄]. Then we can construct a
lifted unifier f↑:

(ē : ū ≡∆ v̄)(p̄ : ā[∆ 7→ ē] ≡r̄≡Φs̄ b̄[∆ 7→ ē])
≃

(e′ : f ū r̄ ≡∆′ f v̄ s̄)
(16)

Proof. Applying Theorem 1 with x = ū; r̄ and y = v̄; s̄
gives us an equivalence cong f :

(ē : ū ≡∆ v̄)(q̄ : r̄ ≡ā[∆7→ē]≡Φb̄[∆7→ē] s̄)

≃
(ē′ : f ū r̄ ≡∆′ f v̄ s̄)

(17)

This is already very close to the result we want: the only
problem is that q̄ doesn’t have the same type as p̄ in the
theorem statement. But if we think of both types as a square,
then we see that the only difference between the two types is
the direction in which the square is filled. This is illustrated
in Figure 4. Hence we can apply Lemma 1, taking w =
x = r̄, y = z = s̄, t = r̄, b = s̄, l = ā[∆ 7→ ē], and
r = b̄[∆ 7→ ē]. This gives us an equivalence:

(p̄ : ā[∆ 7→ ē] ≡r̄≡Φs̄ b̄[∆ 7→ ē])
≃

(q̄ : r̄ ≡ā[∆7→ē]≡Φb̄[∆7→ē] s̄)
(18)

Composing this equivalence with cong f gives us the de-
sired equivalence f↑.

When we applied this theorem in the last section, we only
used it for r̄ = refl and s̄ = refl, but the fully general
version is not harder to prove so that’s what we present here.

Lifting Proof-Relevant Unification to higher dimensions 6 2016/11/24

ā[∆ 7→ ū] b̄[∆ 7→ ū]

ā[∆ 7→ v̄] b̄[∆ 7→ v̄]

r̄

s̄

ā[∆ 7→ ē] b̄[∆ 7→ ē]
p̄

(a) Horizontal filling p̄

ā[∆ 7→ ū] b̄[∆ 7→ ū]

ā[∆ 7→ v̄] b̄[∆ 7→ v̄]

r̄

s̄

ā[∆ 7→ ē] b̄[∆ 7→ ē]q̄

(b) Vertical filling q̄

Figure 4: To construct the equivalence in Theorem 2, we
need to apply Lemma 1 to transform the horizontal filling
p̄ into a vertical one q̄.

4. Discussion
In this section, we highlight three features of higher-dimen-
sional unification: its relation with forcing rules, the obser-
vation that it cannot end in a conflict, and its applicability in
languages that don’t support general indexed datatypes.

Forcing rules. Forcing (Brady et al. 2003) is a compiler
optimization for dependently typed programming languages
that erases constructor arguments that are fully determined
by the type of the constructor. For example, the argument
(n : N) of the cons constructor of Vec can be erased because
it is fully determined by the type of the constructor.

During unification, it is intuitively clear that forced argu-
ments can safely be skipped. This intuition can be formally
justified by using higher-dimensional unification. For exam-
ple, for any proof u : m ≡N n, higher-dimensional unifica-
tion gives us:

(e : cons m x xs ≡Vec A (suc u) cons n y ys)
≃

(e1 : m ≡N n)(e2 : x ≡A y)(e3 : xs ≡Vec A e1 ys)
(p : suc e1 ≡suc m≡Nsuc n suc u)

≃
(e1 : m ≡N n)(e2 : x ≡A y)(e3 : xs ≡Vec A e1 ys)
(p : e1 ≡m≡Nn u)

≃
(e2 : x ≡A y)(e3 : xs ≡Vec A u ys)

(19)

telling us exactly that we can skip unification of the forced
argument of cons!

In this example, higher-dimensional unification formally
justifies the heuristic that ‘forced arguments need not be uni-
fied’. We believe that this observation also holds more gener-
ally, i.e. that higher-dimensional unification can replace the

heuristic generally. Unfortunately, while there exists a for-
malisation of forcing for other reasons (memory usage dur-
ing evaluation, simpler term equivalence checking), we have
not found a formalisation of how precisely forcing can be
applied during unification, so that we cannot be sure in gen-
eral.

No conflict at higher dimensions. It is impossible for
higher-dimensional unification to end in a negative success,
as this would mean we are trying to solve an ill-typed equa-
tion. For example, we can never encounter a higher-dimen-
sional conflict:

cong c1 ē1 ≡ cong c2 ē2 (20)

because the left-hand side has a type of the form c1 ū ≡ c1 v̄
while the right-hand side has type c2 ū′ ≡ c2 v̄′. Likewise,
a higher-dimensional cycle would be:

e ≡ cong c e (21)

where the left-hand side has some type u ≡ v but the right-
hand side has type c ū′ ≡ c v̄′. As a consequence, we do
not have to deal with the possibility of a negative success in
our implementation of higher-dimensional unification.

Higher-dimensional unification in the absence of indexed
datatypes. An interesting question is to what extent higher-
dimensional unification is coupled to the use of indexed data
types. In particular, would we also encounter higher-dimen-
sional unification problems if we used constructors with em-
bedded equality proofs instead of indices? This question is
especially relevant since languages like Coq discourage the
use of indexed datatypes. Datatypes with embedded equality
proofs are also more suitable for languages that have canon-
ical identity proofs other than refl, like HoTT and cubi-
cal type theory. In these languages, indexed datatypes can
still be used but they are mere syntactic sugar for the actual
datatypes with embedded equality proofs.

It turns out that the answer to this question is yes. We
illustrate this by working out the example from Section 2
again for a version of the Vec datatype with embedded
equality proofs instead of indices. Suppose Vec A n is
defined with constructors [] : n ≡N zero → Vec A n and
cons : (m : N)(x : A)(xs : Vec A m) → n ≡N suc m →
Vec A n and consider the unification problem:

(e : cons k x xs refl ≡Vec A (suc k) cons k y ys refl)
(22)

Since this version of the Vec datatype doesn’t have an index,
we can apply the injectivitycons rule to simplify this
equation to:

(e1 : k ≡N k)(e2 : x ≡A y)(e3 : xs ≡Vec A e1 ys)
(e4 : refl ≡suc n≡Nsuc e1 refl)

(23)

Now e4 is an equation between equality proofs, much
like the one we obtained in (6), except that the equality

Lifting Proof-Relevant Unification to higher dimensions 7 2016/11/24

(p : suc e1 ≡suc n≡Nsuc n suc n) is replaced with an equal-
ity (e4 : refl ≡suc n≡Nsuc e1 refl). Lemma 1 shows that
these two types are in fact equivalent. So we can conclude
that higher-dimensional unification problems also occur in
languages without indexed datatypes, and hence that a gen-
eral way to solve this kind of equations is equally useful in
these languages.

5. Implementation
We implemented the ideas presented in this paper as an
extension to the unification algorithm used by Agda for
checking definitions by dependent pattern matching (Cockx
et al. 2016). This addition allows Agda to typecheck more
definitions by pattern matching, such as the example given
by Sicard-Ramírez (2016) on the Agda bug tracker.

Our implementation closely follows the steps from Sec-
tion 2.3. In particular, when applying the injectivity rule to
a unification problem of the form Γ(ē1 : ū1 ≡∆1 v̄1)(e :
c ū ≡D ı̄ v̄)(ē2 : ū2 ≡∆2

v̄2) the unification algorithm con-
structs the new unification problem ∆1∆c(p̄ : ı̄ ≡Φ k̄) and
recursively calls itself on this new problem.

One noteworthy fact about the implementation is how the
left- and right-hand sides f ū1 ū refl and f v̄1 v̄ refl

of the new unification problem in (15) are computed. The
implementation doesn’t have an explicit representation of
the function f , so it’s not possible to calculate them directly.
Instead, the recursive call produces a substitution ρ of type
∆′

1 → ∆1∆c. This allows us to calculate f−1 : ∆′
1 → (ē1 :

∆1)(ē
′ : ∆c)(p̄ : ı̄ ≡Φ k̄e) as λx̄′

1. x̄
′
1ρ; refl, but doesn’t

give us a direct way to compute f .
To go in the opposite direction, we view ρ as a pattern

with free variables from ∆′
1. This allows us to match the

values from ∆1∆c against this pattern. The proofs of ı̄ ≡Φ

k̄e (assumed to be refl in our implementation) ensure that
this matching cannot fail, so this allows us to recover the
values of the variables in ∆′

1, thus computing the function
f : (ē1 : ∆1)(ē

′ : ∆c)(p̄ : ı̄ ≡Φ k̄e) → ∆′
1.

6. Related work
The contents of this paper build on previous work on proof-
relevant unification by McBride (1998, 2000, 2002) and
Goguen et al. (2006), as well as our own previous work
(Cockx et al. 2014, 2016). Compared to the reverse unifi-
cation rules in Cockx et al. (2016), higher-dimensional uni-
fication takes information into account from the types of the
constructors as well as the types of the equation. This dif-
ference is very similar to the inversion of an inductive hy-
pothesis by using a diagonalizer (Cornes and Terrasse 1995)
versus using unification for the problem (McBride 1998).

The idea to view equality proofs themselves as the sub-
jects of unification is inspired by cubical type theory (Cohen
et al. 2015), where equality proofs are terms viewed ‘one
level up’. In fact, if we were working in a cubical type the-
ory, there would be no difference between regular unification

and higher-dimensional unification, so the work in this paper
could be seen as ‘backporting’ some of the power of cubical
type theory back to the (currently) better-understood world
of standard intuitionistic type theory.

7. Conclusion
The literature on dependent types is often focused on how
they can be used to rule out bad programs, but what’s equally
important is how types can guide your development in the
right direction. In the case of unification, the syntactic in-
jectivity had to be ruled out when taking a proof-relevant
perspective on unification. But actually, a previously invisi-
ble structure was waiting to be discovered in the types of the
equations. In this paper, we show how to exploit this higher-
dimensional structure to increase the power of unification.

The addition of higher-dimensional structure to the unifi-
cation process only provides a real benefit when one takes
dependently typed programming seriously: it overcomes the
gap between unification of simply-typed terms and depen-
dently typed ones. By offloading the mechanical part of rea-
soning about equality proofs to the unifier, you can use more
sophisticated dependently typed data structures without pay-
ing for it with increased complexity. We hope this brings the
day that programming and proving with dependent types be-
come as commonplace as regular static typing now one step
closer.

References
Edwin Brady, Conor McBride, and James McKinna. Inductive

families need not store their indices. In Types for proofs and
programs, 2003.

Jesper Cockx, Dominique Devriese, and Frank Piessens. Pattern
matching without K. In Proceedings of the 19th ACM SIGPLAN
international conference on Functional programming. ACM,
2014.

Jesper Cockx, Dominique Devriese, and Frank Piessens. Unifiers
as Equivalences: proof-relevant unification of dependently typed
data. In Proceedings of the 21th ACM SIGPLAN international
conference on Functional programming. ACM, 2016.

Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mört-
berg. Cubical type theory: a constructive interpretation of the
univalence axiom, 2015. Preprint.

Cristina Cornes and Delphine Terrasse. Automating inversion of
inductive predicates in Coq. In Types for Proofs and Programs.
1995.

Peter Dybjer. Inductive sets and families in Martin-Löf’s type
theory and their set-theoretic semantics. In Proceedings of the
first workshop on Logical frameworks, 1991.

Healfdene Goguen, Conor McBride, and James McKinna. Elimi-
nating dependent pattern matching. In Algebra, Meaning, and
Computation. 2006.

Zhaohui Luo. Computation and reasoning: a type theory for com-
puter science, volume 11 of International Series of Monographs
on Computer Science. 1994.

Lifting Proof-Relevant Unification to higher dimensions 8 2016/11/24

Per Martin-Löf. Intuitionistic type theory. Number 1 in Studies in
Proof Theory. 1984.

Conor McBride. Inverting inductively defined relations in LEGO.
In Types for Proofs and Programs, 1998.

Conor McBride. Dependently typed functional programs and their
proofs. PhD thesis, University of Edinburgh, 2000.

Conor McBride. Elimination with a motive. In Types for proofs
and programs, 2002.

Andrés Sicard-Ramírez. The –without-K option generates un-
solved metas, 2016. URL https://github.com/agda/agda/

issues/1775. On the Agda bug tracker.

The Univalent Foundations Program. Homotopy Type The-
ory: Univalent Foundations of Mathematics. http://

homotopytypetheory.org/book, Institute for Advanced
Study, 2013.

Lifting Proof-Relevant Unification to higher dimensions 9 2016/11/24

https://github.com/agda/agda/issues/1775
https://github.com/agda/agda/issues/1775
http://homotopytypetheory.org/book
http://homotopytypetheory.org/book

	Introduction
	Higher/dimensional unification
	Unifiers as Equivalences
	Higher/dimensional unification by example
	The general case

	Theoretical details
	Discussion
	Implementation
	Related work
	Conclusion

