
Extracting the Power of Dependent Types
Artjoms Šinkarovs
Heriot-Watt University
Edinburgh, Scotland, UK
a.sinkarovs@hw.ac.uk

Jesper Cockx
TU Delft

Delft, Netherlands
j.g.h.cockx@tudelft.nl

Abstract
Most existing programming languages provide little sup-
port to formally state and prove properties about programs.
Adding such capabilities is far from trivial, as it requires sig-
nificant re-engineering of the existing compilers and tools.
This paper proposes a novel technique to write correct-by-
construction programs in languages without built-in ver-
ification capabilities, while maintaining the ability to use
existing tools.This is achieved in three steps. Firstly, we give
a shallow embedding of the language (or a subset) into a
dependently typed language. Secondly, we write a program
in that embedding, and we use dependent types to guaran-
tee correctness properties of interest within the embedding.
Thirdly, we extract a program written in the original lan-
guage, so it can be used with existing compilers and tools.

Our main insight is that it is possible to express all three
steps in a single language that supports both dependent typ-
es and reflection. Essentially, this allows us to express a
program, its formal properties, and a compiler for it hand-in-
hand, offering a lot of flexibility to programmers.We demon-
strate this three-step approach by embedding a subset of the
PostScript language in Agda, and illustrating it with several
short examples.Thus we use the power of reflection to bring
the benefits of dependent types to languages that had to go
without them so far.

CCS Concepts: • Software and its engineering→ Source
code generation; Translator writing systems and compiler gen-
erators; Software verification; Domain specific languages.

Keywords: embedded languages, program extraction, pro-
gram verification, dependent types, reflection, Agda
ACM Reference Format:
Artjoms Šinkarovs and Jesper Cockx. 2021. Extracting the Power of
Dependent Types. In Proceedings of the 20th ACM SIGPLAN Interna-
tional Conference on Generative Programming: Concepts and Experi-
ences (GPCE ’21), October 17–18, 2021, Chicago, IL, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3486609.3487201

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
GPCE ’21, October 17–18, 2021, Chicago, IL, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9112-2/21/10.
https://doi.org/10.1145/3486609.3487201

1 Introduction
It is often desirable to guarantee that a certain class of errors
does not occur in a given program. These error classes may
include: dereferencing a null pointer, division by zero, or
out of bound indexing. In most programming languages, the
properties that can be checked statically are limited. Nev-
ertheless, moving to a different language is not always an
option. For example, these languages may come with great
tooling, compilers and/or libraries. In this paper, we investi-
gate how to provide strong static guarantees for programs
in a given language, while maintaining the ability to to use
existing compilers and tools.

One powerfulmethod for enforcing almost any functional
property of a program statically is by using dependent types,
as used for example in Coq [Coq Development Team 2021]
or Agda [Agda Development Team 2021]. In a dependently
typed language, properties can be encoded as types, and if
the program typechecks, the property is guaranteed to hold.
If we extend our existing language with dependent types
(for the verification part) and then eliminate them (for using
the original compiler), then our goal is achieved.

While it is possible to add dependent types to an exist-
ing language from scratch, doing so is time-consuming and
error-prone. Instead, we can embed the language we want
to use into an existing dependently typed host language,
which allows us to re-use the typechecker of the host lan-
guage to typecheck the embedded language.

There are two common approaches to language embed-
ding: deep and shallow. Shallow embeddings define langua-
ges in terms of functions and operators of the host language.
Programs in shallowly embedded languages are programs in
the host language, so they are immediately runnable; types
of the embedded language are types of the host language,
so the host typechecker is used for checking embedded pro-
grams. However we cannot easily get the syntactic repre-
sentation of a shallowly embedded program.

Meanwhile, a deep embedding defines a data type to rep-
resent the AST of the embedded language. This requires us
to define a type system and evaluator for the language sep-
arately. With a dependently typed host language the AST
and the type system can be defined as a single data structure,
which is typically referred to as a tagless interpreter [Carette
et al. 2007; Pasalic et al. 2002]. The benefit of deep embed-
ding is that we get full access to the syntactic structure of
the embedded program.This approach works beautifully for
embedded languages with simple type systems. However,

83

https://orcid.org/0000-0003-3292-2985
https://orcid.org/0000-0003-3862-4073
https://doi.org/10.1145/3486609.3487201
https://doi.org/10.1145/3486609.3487201


GPCE ’21, October 17–18, 2021, Chicago, IL, USA A. Šinkarovs and J. Cockx

for embedded languages with dependent types, tagless in-
terpreters are technically possible [Chapman 2009; Daniels-
son 2007], but are extremely challenging to define and use
in practice. In particular, the mutual dependencies between
the syntax for contexts, types, and terms and the definitional
equality of the object language require large and complex
inductive-inductive or inductive-recursive types to encode
[Chapman 2009; Danielsson 2007;McBride 2010]. Even if we
manage to give a faithful deep embedding of the language,
actually writing programs in it is still an arduous task com-
pared to writing programs in the meta-language directly.

The key insight of this paper lies in proposing a novel
approach that combines the best parts of shallow and deep
embeddings through the use of reflection in a dependently-
typed host language such as Coq, Agda, Idris, or Lean.

Ourmain objective of the paper is to demonstrate that the
proposed approach works in practice. Therefore, we guide
the reader through the entire process of: i) shallow embed-
ding of the target language; ii) writing programs in this em-
bedding; iii) using dependent types to statically enforce the
properties of interest; iv) extracting a program in the syn-
tax of the target language from it. We run the extracted
program using existing tools and libraries. Essentially, we
demonstrate that a shallow embedding in a host language
with reflection suddenly becomes deep.

To keep presentation as easy as possible to follow, we
have chosen a simple target language to embed — we use
a subset of PostScript [Adobe Systems Incorporated 1999],
a stack-based language used in the corresponding document
format. This paper is not concerned with practical applica-
tion of the presented embedding, so we consciously keep
the setup as minimal as possible. It is powerful enough to
motivate the use of dependent types within the embedding,
and to demonstrate the essence of the proposed approach.
While we include many patterns found in bigger languages,
we leave the scaling of the approach out of the scope of
the paper referring the interested reader to [Sinkarovs and
Cockx 2021] where we work out such generalisations.

Our main contributions are as follows:

• We propose a novel approach that can be used to stat-
ically enforce almost any property of programs in an
existing language, by embedding it in a host language
that supports dependent types and reflection.
• We demonstrate this approach by a concrete exam-

ple: an embedding of a subset of the PostScript lan-
guage into Agda (Sect. 3). We give several examples
of PostScript programs written in our embedding, and
demonstrate how to statically enforce properties such
as the absence of stack underflows, termination, and
functional correctness.
• We show how to use reflection in Agda to implement

an extractor that translates code written in our em-
bedding to plain PostScript (Sect. 4).

• We show how to our approach provides easy support
for partial evaluation by making use of normalisation
in the host language.This allows us to use functions of
the host language as macros, and optimise prorgams
via rewrite rules (Sect. 5).

When dealing with embedded languages that are extrac-
ted and run by external compilers, we are fundamentally
bound to have potential semantic mismatches. Semantics of
the embedding may differ from the semantics implemented
by external compilers, and the translation from the embed-
ding back to external compilers can also be faulty. Real
world compilers face exactly the same problem: how do you
know that generated assembly code is doing what you think
it is doing? Addressing such problems requires fully verified
toolchains that run on a verified hardware. Enormous re-
search efforts are spent towards addressing this problem [Ku-
mar et al. 2014; Leroy 2009], but this is beyond the scope of
this paper.

This entire paper is a literate Agda script1: all code is type-
checked while generating the paper.

2 Background
Agda is an implementation of Martin-Löf’s dependent type
theory [Martin-Löf 1998] extendedwithmany constructions
such as records, modules, do-notation, etc. We start with a
brief overview of key Agda constructions that are used in
this paper. We also present relevant parts of the reflection
API. For a more in-depth introduction to Agda refer to the
Agda user manual [Agda Development Team 2021].

Datatypes. Datatypes are defined as follows:

data N : Set where
zero : N
suc : N→ N

data Vec (A : Set) : N→ Set where
[] : Vec A zero
_::_ : {n : N}→ A→ Vec A n
→ Vec A (suc n)

The typeN of unary natural numbers is a datatype with two
constructors: zero and suc. The usual notation 0, 1, 2, …is
implicitly mapped into N. The type N itself belongs to the
type Set, Agda’s builtin type of all (small) types.

Agda allows the declaration of indexed datatypes2, such
as the type Vec which is indexed over values of type N. The
type Vec A n represents vectors holding n values of type A.
It has two constructors: [] for the empty vector of length
zero and _::_ for adding an element to a vector, increasing
the length by 1. Curly braces indicate hidden arguments that
can be left out at function applications.3 The underscores in
the name of _::_ indicate mixfix syntax:4 we can write x ::
xs instead of _::_ x xs.

1The sources of the paper can be found at https://github.com/ashinkarov/
agda-stacklang.
2agda.readthedocs.io/en/v2.6.2/language/data-types.html
3agda.readthedocs.io/en/v2.6.2/language/implicit-arguments.html
4agda.readthedocs.io/en/v2.6.2/language/mixfix-operators.html

84

https://github.com/ashinkarov/agda-stacklang
https://github.com/ashinkarov/agda-stacklang
https://agda.readthedocs.io/en/v2.6.2/language/data-types.html
https://agda.readthedocs.io/en/v2.6.2/language/implicit-arguments.html
https://agda.readthedocs.io/en/v2.6.2/language/mixfix-operators.html


Extracting the Power of Dependent Types GPCE ’21, October 17–18, 2021, Chicago, IL, USA

Pattern matching. Functions are defined in a pattern-
matching style:
_+_ : N→ N→ N
zero + y = y
(suc x) + y = suc (x + y)

tail : {n : N}→
Vec N (suc n)→ Vec N n

tail (x :: xs) = xs
Agda requires that all definitions by pattern matching cover
all cases. In the definition of tail, we omit the case for the
empty vector [] because it takes an input of type Vec A (suc
n), so it can never be called with input [].

Termination checking. To ensure totality, Agda checks
that all recursive functions are terminating on all inputs.5
While it is impossible to infer termination for an arbitrary
function due to the halting problem, the termination check
of Agda is powerful enough to handle many common cases.
The main idea behind the check is that at least one of the ar-
guments to the function has to become structurally smaller
than the input argument in each recursive call. For example,
in the recursive call to _+_, the first argument is x, which is
structurally smaller than suc x.

Proving equalities. Agda is both a programming langua-
ge and a proof assistant. One common example of this is
the equality type _≡_ that expresses equality of its two ar-
guments. It has a single constructor refl : x ≡ x stating that
any value x is equal to itself. Using the equality type, we can
state and prove equations between Agda expressions, which
are then checked by the typechecker. For example, we can
prove that 1+1 = 2 by refl : 1 + 1 ≡ 2. Although in this paper
we only prove a few basic properties, the possibility to prove
arbitrary (functional) properties of programs embedded in
Agda is an important benefit of our approach.

Run-time irrelevance. Function types can be marked
as run-time irrelevant [McBride 2016] with the @0 annota-
tion.6 Agda guarantees that run-time irrelevant arguments
are not needed for evaluation of the program, they can thus
safely be erased by the compiler. For example, we can mark
the n argument to the tail function as run-time irrelevant:
tail’ : {@0 n : N}→
Vec N (suc n)→ Vec N n

tail’ (x :: xs) = xs

In our embedding of
PostScript into Agda,
we make use of this an-
notation to ensure that

the functions we define do not computationally depend on
arguments that are not on the stack and those arguments
can hence safely be erased during extraction of PostScript
code (see Sect. 3 and Sect. 4).

Generalizable variables. To avoid having to bind im-
plicit arguments in type signatures, we use generalizable

5agda.readthedocs.io/en/v2.6.2/language/termination-checking.html
6agda.readthedocs.io/en/v2.6.2/language/runtime-irrelevance.html

variables.7 For example, declaring n as a variable allows us
to avoid having to bind n explicitly in the type of tail:

variable @0 n : N
tail” : Vec N (suc n)→ Vec N n
tail” (x :: xs) = xs

Reflected syntax.
The reflection API of
Agda8 provides various
datatypes that repre-

sent the internal syntax of Agda programs. Expressions (of
type Term) are represented by a constructor such as con
(for constructors), def (for other defined symbols), lam (for
lambda expressions), or var (for variables). The constructors
con and def are applied to a quoted name (of typeName) and
a list of arguments (of type List (Arg Term)). vArg denotes a
visible argument, while hArg is used for hidden arguments.
For example, the full reflected form of the expression suc
zero is con (quote suc) (vArg (con (quote zero) []) :: []).

To make reflected syntax more readable, we use pattern
synonyms9 for commonly used pieces of syntax. As a con-
vention, the names of these pattern synonyms start with
a backtick followed by the name of the represented Agda
construct, for example:
pattern ‘N = def (quote N) []
pattern ‘zero = con (quote zero) []
pattern ‘suc x = con (quote suc) (vArg x :: [])
pattern _‘+_ x y = def (quote _+_) (vArg x :: vArg y :: [])

As a complete example, below is the definition of a func-
tion foo (left) and its reflected syntax ‘foo (right):

foo : N→ N
foo 0 = zero
foo (suc x) = x + x

‘foo = function
( clause [] (vArg ‘zero :: []) ‘zero
:: clause (("x" , vArg ‘N) :: [])

(vArg (‘suc (var 0)) :: [])
(var 0 [] ‘+ var 0 []) :: [] )

The reflected syntax of foo (of type Definition) is repre-
sented by the constructor function applied to a list of clauses.
Each clause (of type Clause) itself is represented by the con-
structor clause applied to three arguments: i) the telescope,
i.e. a list of the names of variables and their types; ii) the list
of patterns (of type List (Arg Pattern)); and iii) the body of
the clause (of type Term). Variables (both in patterns and in
terms) are given as de Bruijn indices relative to the telescope
of the clause.That is, in the second clause the de Bruijn index
0 refers to the variable x. Note that numbers 0, 1, 2,… are ex-
panded into their corresponding zero/suc representations.

The TCmonad. Following the approach of elaborator re-
flection introduced by Idris [Christiansen and Brady 2016],
Agda exposes many parts of the elaborator to the reflection
API, including reduction and normalisation of expressions,

7agda.readthedocs.io/en/v2.6.2/language/generalization-of-declared-
variables.html
8agda.readthedocs.io/en/v2.6.2/language/reflection.html
9agda.readthedocs.io/en/v2.6.2/language/pattern-synonyms.html

85

https://agda.readthedocs.io/en/v2.6.2/language/termination-checking.html
https://agda.readthedocs.io/en/v2.6.2/language/runtime-irrelevance.html
https://agda.readthedocs.io/en/v2.6.2/language/generalization-of-declared-variables.html
https://agda.readthedocs.io/en/v2.6.2/language/generalization-of-declared-variables.html
https://agda.readthedocs.io/en/v2.6.2/language/reflection.html
https://agda.readthedocs.io/en/v2.6.2/language/pattern-synonyms.html


GPCE ’21, October 17–18, 2021, Chicago, IL, USA A. Šinkarovs and J. Cockx

through the TC monad. Agda terms can be converted to
reflected syntax by using the quoteTC primitive.

Functions of return type Term→ TC⊤ can bemarked as a
macro. When the elaborator encounters a macro call, it runs
the macro and replaces it with the result. A macro can per-
form arbitrary manipulations on the syntactic structure of
Agda expressions as well as information obtained through
operations in the TC monad.

3 PostScript and Its Embedding in Agda
PostScript is a document description language, and besides
the usual markup, it is possible to define arbitrary compu-
tations in it. The language is dynamically typed and stack-
based. That is, there is a notion of a global stack that is used
for passing values and storing results. All the commands are
argumentless operators, and a program is a chain of such
commands. For example, consider a function that computes
𝑎2 + 𝑏2, where 𝑎 and 𝑏 are the top two stack values.
dup % a b b d u p l i c a t e t o p e l emen t
mul % a b ∗ b mu l t i p l y t o p two numbers
exch % b ∗ b a ex cange t o p two e l em e n t s
dup % b ∗ b a a d u p l i c a t e t o p e l emen t
mul % b ∗ b a ∗ a mu l t i p l y t o p two numbers
add % b ∗ b+a ∗ a add t o p two numbers

Commands use mnemonic names and typically imple-
ment a simple computation or element manipulation on the
stack. Recursive function definitions are written as follows:
/ f i b {

dup 0 eq % n n==0
{ pop 1 } % 1
{ dup 1 eq % n n==1

{ pop 1 } % 1
{ dup 1 sub f i b % n f i b ( n−1)

exch 2 sub f i b % f i b ( n−1) f i b ( n−2)
add % f i b ( n−1)+ f i b ( n−2)

} i f e l s e
} i f e l s e

} def

A function is defined with the slash name (‘fib’ in the
above example), followed by a block of commands that are
written within braces (the body of the function) followed by
the def command. Definitions may be used as regular com-
mands, including recursive calls. In the body of the function,
we check whether the argument (the top stack element) is
zero, in which case we remove it from the stack and put the
value one. The same for the case when the argument is one.

Otherwise, we duplicate the argument, subtract one, and
make a recursive call. Then we exchange the original argu-
ment with the result of the recursive call by running exch.
We subtract two,make a recursive call and add results of two
recursive calls. Conditionals are expressed with two code
blocks followed by the ifelse command.

Figure 1. Draw fib.

In Fig. 1 we draw the results of
the fib function (code not shown
here) using a PostScript inter-
preter.

Assumptions. We consider a
small subset of PostScript that is
sufficient to express functions on
natural numbers. While PostScript has many more com-
mands, types, and drawing primitives, this subset is suffi-
cient to demonstrate the main challenges with verification
and extraction. This keeps the complexity of our extractor
low, and makes the examples transferable to other stack
languages such as Forth.

The main focus of our Agda embedding is to track the
number of elements on the stack. On the one hand this helps
to entirely avoid stack underflows — an extremely frequent
practical problem in stack-based programs. On the other
hand, by doing so, we almost immediately run into neces-
sity to use dependent types in the embedded programs. The
other points that we want to demonstrate in the embedding
are: i) attaching arbitrary properties to function arguments
(see for example the index function); ii) guaranteeing func-
tion termination; and iii) using runtime-irrelevance anno-
tations to guarantee that extra properties do not have any
computational meaning.

3.1 Embedding in Agda
Our PostScript embedding in Agda consists of a type for
stacks and a number of basic functions operating on it.

Stack type. We define the type of our stack inductively,
and we force the type to carry its length. Per our assump-
tions, the stack can only store elements of type N.
data Stack : @0 N→ Set where
[] : Stack 0
_#_ : Stack n→ N→ Stack (suc n)

Similarly to vec-
tors, the Stack
type has two con-

structors: [] for stacks of length zero and _#_ for stacks of
length 1+𝑛. For example, [] # 1 # 2 # 3 is a stack of type Stack
3. We define _#_ to be left-associative, therefore we do not
need any parenthesis. We annotate the index of Stack as
computationally irrelevant.

Basic Operations. Thebasic stack operations are defined
as functions from Stack to Stack. The type index makes it
possible to capture precisely the effect of each operation.
push x s = s # x –: N→ Stack n→ Stack (1 + n)
pop (s # x) = s –: Stack (1 + n)→ Stack n
dup (s # x) = s # x # x –: Stack (1 + n)→ Stack (2 + n)
exch (s # x # y) = s # y # x –: Stack (2 + n)→ Stack (2 + n)
add (s # x # y) = s # x + y –: Stack (2 + n)→ Stack (1 + n)
mul (s # x # y) = s # x * y –: Stack (2 + n)→ Stack (1 + n)

86



Extracting the Power of Dependent Types GPCE ’21, October 17–18, 2021, Chicago, IL, USA

In the types of these operations, the length index of Stack
ensures that the body of the function respects the specifica-
tion. If the body of the function returns the stack that does
not have the length prescribed by the type, such a function
would not typecheck.

Since the size of the stack is an expression that can con-
tain free variables as well as concrete numbers, it is not
always possible for Agda to see automatically that two stack
sizes are equal. For example, if we require a stack of length
𝑚+𝑛, but we have a stack of length 𝑛+𝑚, we cannot blindly
use it, as this would not typecheck. To deal with situations
like this, we provide an operation subst-stack that cast a
stack of length𝑚 into the stack of length𝑛, given a (run-time
irrelevant) proof that m ≡ n.
subst-stack : @0(m ≡ n)→ Stack m→ Stack n
subst-stack refl s = s
This operation does not have any run-time behaviour and
will be erased by the extractor.

We also define the PostScript command index that makes
it possible to access any element of the stack by providing
its offset. This can be seen as a more general version of the
dup command. The function index requires a proof that the
index is within bounds. Also, we are not strictly following
the semantics of PostScript, as the index is passed explicitly,
rather than taking it from the stack.
_!_ : Stack m→ (k : N)→@0{T (k < m)}→ N
_!_ (s # x) zero = x
_!_ (s # x) (suc k) {sk<m} = (s ! k) {sk<m}

index : (k : N)→@0{T (k < m)}→ Stack m→ Stack (1 + m)
index k {k<m} s = s # (s ! k) {k<m}

The proof10 that k is less thanm is marked as implicit, which
means that Agda will automatically fill in the proof (at least
in the simple cases that we have in this paper).

We explicitly forego the definition of conditionals and
comparison operators in favour of using pattern-matching
functions. Recursion is essential part of Agda, so there is
no need to introduce any new operators. In Sect. 3.3 we
demonstrate how to add a for-loop to the embedding.

Nothing in this shallow embedding prevents us yet from
doing operations that are impossible to express in PostScript,
such as duplicating the whole stack or discarding it alto-
gether. Such properties could be enforced by using an (in-
dexed) monad for stack operations, or by working in a quan-
titative type theory such as Idris 2 [Brady 2021]. In this
paper we take amore straightforward approach by rejecting
these illegal programs in our extractor.

10We use the function T (found in standard library) to convert a boolean
predicate _<_ into a type representing its truth value.

3.2 Examples
Let us consider a typical program in the proposed embed-
ding. We express all the operations in terms of base func-
tions defined above. We start with a trivial function that
adds one to the top element of the stack.
add-1 : Stack (1 + n)→ Stack (1 + n)
add-1 s = add (push 1 s)

We are requir-
ed to define the
type, which in

turn forces us to specify how does the operation change the
length of the stack. Stack operators are regular functions, so
the chain of applications would be written in reverse, when
comparing to the corresponding PostScript program. While
this does not affect functionality, it may be aesthetically
pleasing to maintain the original order of operators. For this
purpose we define an operation _⊲_ as x ⊲ f = f x, so we can
for example define add-1 instead as add-1 s = s ⊲ push 1 ⊲
add.

Consider now the example that computes 𝑎2 + 𝑏2 where
𝑎 and 𝑏 are top two elements of the stack. It can be easier to
understand the code if we introduce names for the interme-
diate states of the stack using let:
sqsum : Stack (2 + n)→ Stack (1 + n)
sqsum s#a#b = let s#a#b*b = s#a#b ⊲ dup ⊲ mul

s#b*b#a*a = s#a#b*b ⊲ exch ⊲ dup ⊲ mul
s#a*a#b*b = s#b*b#a*a ⊲ exch

in s#a*a#b*b ⊲ add
Agda identifiers are chains of almost arbitrary symbols with
no spaces, so s#a*a#b*b is a valid variable name.

Pattern Matching. The only way to express conditional
in the proposed embedding is by means of pattern matching.
Consider the implementation of the Fibonacci function:
{-# TERMINATING #-}
fib : Stack (1 + n)→ Stack (1 + n)
fib s@(_ # 0) = s ⊲ pop ⊲ push 1
fib s@(_ # 1) = s ⊲ pop ⊲ push 1
fib s@(_ # suc (suc x)) = s ⊲ dup ⊲ push 1 ⊲ sub ⊲ fib

⊲ exch ⊲ push 2 ⊲ sub ⊲ fib
⊲ add

The only unusual thing here is that we match the structure
of the stack and the structure of the element simultaneously.
For now, it is an exercise to the reader to verify that fib
actually implements Fibonacci numbers. Below, we give a
formal proof of this fact named ✓.

Note that Agda does not see that the fib function ter-
minates. For now, we add an explicit annotation, but we
demonstrate how to deal with this in Sect. 3.3.

Dependent Stack Length. So far, all the specifications
in the embedded language did not require dependent types,
and could be encoded in languages with a weaker type sys-
tem such as Haskell or OCaml. However, it quickly becomes

87



GPCE ’21, October 17–18, 2021, Chicago, IL, USA A. Šinkarovs and J. Cockx

clear that even simple programs in stack languages may ex-
pose dependency between the input stack and the size of
the output stack. Capturing these cases statically requires
dependent types. An example of such a program is a func-
tion rep that replicates the 𝑥 value𝑛 times, where 𝑥 and𝑛 are
top two stack elements. Here is a possible implementation:
{-# TERMINATING #-}
rep : (s : Stack (2 + n))→ Stack ((s ! 0) + n)
rep s@(_ # _ # zero) = s ⊲ pop ⊲ pop
rep s#x#m+1@(_ # _ # suc m) =

let s#x#m = s#x#m+1 ⊲ push 1 ⊲ sub
s#x#m#x = s#x#m ⊲ index 1
s#x#x#m = s#x#m#x ⊲ exch

in subst-stack (+-suc _ _) (rep s#x#x#m)
The length of the stack returned by rep is given by the top-
most element of the input stack s plus n. Hence the size of
the output stack depends on the value of the input stack. In
case this argument is zero, we remove two elements from
the stack: the argument we were replicating, and the count
argument. Otherwise, we decrease the count, copy the ar-
gument we are replicating, and put them in the expected
position to make the next recursive call. This results in the
stack rep s#x#x#m of size (𝑚 + (1 + 𝑛)) while the expected
size is (1 + (𝑚 +𝑛)), which are not obviously equal to Agda,
hence we apply subst-stack with the proof +-suc from the
standard library to convert between these two sizes.

Proving Termination. At this point, we have seen how
to write programs in the embedding, express non-trivial
properties related to the length of the stack, and verify that
a function evaluates to the same results as some other func-
tion. One remaining problem is that for some functions,
Agda cannot automatically prove termination. For these func-
tions we can either add an annotation as above, or rewrite
the definition to make proving termination easier.

The problem with rep is that the recursive call happens
on the stack that became one element bigger, yet the top
element decreased by one. Therefore, this argument is not
strictly structurally smaller, and there are no other decreas-
ing arguments, so the termination checker fails to accept
this definition. To fix this is, we can add an extra argument
on which the function is structurally decreasing, together
with a proof that it is related in some way to the values on
the stack. For example, for rep we add an implicit argument
k, as well as a proof that the top of the stack is equal to k:
rep′ : (s : Stack (2 + n))→@0 (s ! 0 ≡ k)→ Stack ((s ! 0) + n)
rep′ s@(_ # zero) refl = s ⊲ pop ⊲ pop
rep′ s@(_ # suc m) refl =

let s′ = s ⊲ push 1 ⊲ sub ⊲ index 1 ⊲ exch
in subst-stack (+-suc _ _) (rep′ {k = m} s′ refl)

rep : (s : Stack (2 + n))→ Stack ((s ! 0) + n)
rep s = rep′ s refl

As the function is pattern-matching on the top of the stack,
and the only value of the _≡_ type is refl, the argument k
has to be zero in the first case, and sucm in the second case.
This ensures that rep′ is structurally decreasing in k, and the
function is accepted by the termination checker.

Showing termination of the fib function fails for the same
reason as in case of rep — it is unclear whether any argu-
ment decreases when calling fib recursively. Unfortunately,
we cannot use the above trick as is. The problem is that after
the first recursive call fib s#x#x-1we obtain (conceptually) a
new stack. To call fib on 𝑥−2we first apply exch to the result
of the first recursive call (to bring x at the top). However, the
termination checker does not see that fib only modified the
top element of the stack and did not touch other elements.
Whilewe can prove termination of the current version of fib,
due to space limitations, we provide an alternative (provably
terminating) implementation of fib in Sect. 3.3.

Extrinsic Verification. Thenature of dependently-typed
systems makes it possible not only to specify functions with
intrinsic constraints, such as length of the stack, but also to
prove some properties about existing functions as theorems.
For example, we prove that sqsum actually implements the
sum of squares:
sqsum-thm : sqsum (s # k # l) ≡ s # k * k + l * l
sqsum-thm = refl
The theorem says that for any 𝑠 , 𝑘 and 𝑙 , application of sq-
sum to 𝑠 appended with 𝑘 and 𝑙 equals to 𝑠 appended with
𝑘2 + 𝑙2. Luckily, from the way we constructed the basic op-
erations, this fact is obvious to Agda. So the proof is simply
the reflexivity constructor.

On the other hand, proving that fib matches a simpler
specification that we call fspec requires a bit more work.
fspec :
N→ N

fspec 0 = 1
fspec 1 = 1
fspec (suc (suc x)) =

fspec (suc x)
+ fspec x

✓ : (s : Stack n) (x : N)
→ fib (s # x) ≡ s # fspec x

✓ s 0 = refl
✓ s 1 = refl
✓ s (suc (suc x)) rewrite
✓ (s # suc (suc x)) (suc x) |
✓ (s # fspec (suc x)) x = refl

This is an inductive proof where we consider two base cases,
and the step case. In the latter we refer to the theorem with
a structurally smaller arguments, and after rewriting such
cases, the statement becomes obvious.

3.3 For Loop
The final part of our embedding is the for-loop construct.
Not only this is often found in real PostScript documents, it
also helps to avoid the problem with proving termination.
The difficulty with encoding the for-loop behaviour lies in

88



Extracting the Power of Dependent Types GPCE ’21, October 17–18, 2021, Chicago, IL, USA

its potential ability to arbitrarily modify stack at every itera-
tion. While there is no technical problem to encode11 such a
behaviour in Agda, it would be quite inconvenient to work
with. Every time one needs to ensure that a stack returned
by a for-loop contains enough elements, a potentially com-
plex proof has to be given. We make our life easier by work-
ing with a simpler version of the for loop that assumes the
same stack size at each iteration, which is sufficient for our
examples. Concretely, the boundaries of the loop are given
by two numbers 𝑠 and 𝑒 , where the loop iterates through
indices 𝑠, 1 + 𝑠, . . . , 𝑒 .

We define for-loop as a function of two arguments: the
body of the for-loop given by a function and the initial stack.
for : (Stack (1 + n)→ Stack n)→ Stack (2 + n)→ Stack n
for {n} f (st # s # e) = if s ≤ e then loop (e - s) st else st
where loop : N→ Stack n→ Stack n

loop zero st = st ⊲ push s ⊲ f
loop (suc i) st = st ⊲ loop i ⊲ push (suc i + s) ⊲ f

The initial stack contains 2 loop boundary elements and 𝑛
other elements. The implementation of for computes the
number of iterations i and unrolls the loop that many times,
each time pushing the current value of the loop variable
to the top of the stack. In the end, it finishes with a stack
with n elements. If the lower boundary is already above
the upper boundary initially, it removes both of them and
returns immediately.

Now we are ready to define our fib example using for:
fib-for : Stack (1 + n)→ Stack (1 + n)
fib-for s@(_ # x) =
s ⊲ push 1 ⊲ exch ⊲ push 1 ⊲ exch ⊲ push 1 ⊲ exch
⊲ for (𝜆 s→ s ⊲ pop ⊲ exch ⊲ index 1 ⊲ add) ⊲ pop

Our initial stack contains the function argument 𝑥 at the top.
We modify the stack by inserting 1 and 1 (inital fibonacci
seeds) and 1 (the lower bound for the for loop) before 𝑥 .
In the function body, we remove the iteration value, and
modify ⟨𝑎,𝑏⟩ into ⟨𝑏, 𝑎 +𝑏⟩. Note that termination of fib-for
is derived automatically.

11If one wants to mimic the actual for-loop found in PostScript, the type of
the operation would be:
for : {f : ∀{m}→ Stack (1 + m)→ N}
→ (loop : ∀ {m} (s : Stack (1 + m))→ Stack (f s))
→ ∀ {m} (s : Stack (3 + m))→ Stack (#it loop s)

As it can be seen, we have to explain how the size of the stack changes
at each iteration, which is given by a function f that determines the size
of the stack after each iteration, as this can depend on the values found
on the stack. Unfortunately, the size of the stack after the final iteration
cannot be computed upfront. We would have to run the loop to get the size
— this is done by #it. However, working with such encoding is very incon-
venient. Even simplest analysis of determining whether for-loop returns a
non-empty stack turns into painful proving exercise. Therefore, it is more
practical to introduce well-behaved variants of the for-loop where we have
strong guarantees about the final size of the stack. All such variants can be
seen as special cases of the generic for loop.

We now consider a more realistic PostScript example that
generates an image of Sierpinski fractal.The structure of the
code consists of a doubly-nested for loop that draws a dot
at each coordinate (𝑖, 𝑗) where the bit-wise ‘and’ of 𝑖 and 𝑗
is zero. For this example we assume that a drawing function
and bit-wise ‘and’ are already defined in PostScript, so we
postulate them in Agda. This means that we only provide a
type signature of the functions, but not the implementation.
We implement conditional drawing via the helper function
draw-if.
postulate draw-circ-xy : Stack (2 + n)→ Stack n

bit-and : Stack (2 + n)→ Stack (1 + n)

draw-if : Stack (3 + n)→ Stack (2 + n)
draw-if s@(_ # 0) = s ⊲ pop ⊲ index 1 ⊲ index 1

⊲ draw-circ-xy
draw-if s = s ⊲ pop
The main function sets the boundaries for both for-loops,
applies bit-and to 𝑖 and 𝑗 , and calls the drawing function,
ensuring that no extra arguments are left on the stack.
sierpinski : Stack (1 + n)→ Stack n
sierpinski s =
s ⊲ push 0 ⊲ index 1
⊲ for (𝜆 s→ s ⊲ push 0 ⊲ index 2

⊲ for (𝜆 s→ s ⊲ index 1 ⊲ index 1
⊲ bit-and ⊲ draw-if ⊲ pop)

⊲ pop)
⊲ pop

When implementing algorithms like this one manually, it is
easy to forget to remove or copy an element in the body of
the for-loop. The strict stack size discipline that we have in
Agda helps to avoid these errors.

4 Extraction
In this section, we show a concrete example of an extractor
implemented using reflection in Agda.

Assumptions. Our extractor serves a dual purpose. On
the one hand, we traverse Agda terms and map basic stack
operations such as dup and add to their PostScript counter-
parts. On the other hand, the extractor determines which
terms are valid in the presented shallow embedding: these
are the terms that are accepted by our extractor. Our criteria
of acceptable embeddings are as follows:
• The function acts on a single stack argument and re-

turns stack.The function can accept arbitrary number
of additional arguments (for verification purposes) as
long as these arguments are computationally irrele-
vant. This is checked by the function extract-type.
• Within the function, the stack is never duplicated, dis-

carded or modified by any means but embedded stack
operations. This is ensured by the functions extract-
term and stack-ok.

89



GPCE ’21, October 17–18, 2021, Chicago, IL, USA A. Šinkarovs and J. Cockx

• Conditionals for stack elements are implemented us-
ing pattern-matching.The extractor needs to translate
these patterns to conditional statements. This is done
by extract-pattern and extract-clauses.

4.1 Target Syntax
In the end, the extractor outputs the PostScript syntax as
a plain string. However, it is useful to work with a basic
abstract syntax representation as an intermediate stage:
data PsCmd : Set where
Pop Dup Exch Add Mul Eq Ge And : PsCmd
Push Index : N→ PsCmd
FunCall : String→ PsCmd
For : List PsCmd→ PsCmd
IfElse : List PsCmd→ List PsCmd→ PsCmd
FunDef : String→ List PsCmd→ PsCmd
We implement a basic pretty-printer print-ps : List PsCmd
→ String whose definition we omit here.

4.2 The Extraction Monad
We make use of a monad for extraction to keep track of the
current state of functions that still need to be extracted, and
for propagating errors.Themonad combines the built-in TC
monad, extraction state and a possibility to chose between
values and errors. ExtractM gives rise to do-notation12. The
fail function aborts the extraction process. Two operations
for managing the queue of functions to be extracted: mark-
todo adds a function name to the queue, while get-next-todo
returns the next function that has been marked for extrac-
tion. Finally, the monad provides two operations for getting
normalized types and definitions of a given symbol.This can
be used for example for inlining Agda functions that cannot
be translated to PostScript, or for applying domain-specific
optimizations through the use of rewrite rules (Sect. 5).
record ExtractM (X : Set) : Set
fail : String→ ExtractM X
mark-todo : Name→ ExtractM ⊤
get-next-todo : ExtractM (Maybe Name)
get-normalised-type : Name→ ExtractM Type
get-normalised-def : Name→ ExtractM Definition

4.3 The Extractor
The extractor itself consists of four functions that traverse
the different parts of the reflected Agda syntax and translate
it to PostScript commands. In the remainder of this section,
we explain the implementation of these functions in detail.

Extracting terms. extract-term traverses an Agda term
and translates it to a list of PostScript commands. For ex-
ample, add (push 1 s) is translated to Push 1 :: Add :: []. It

12agda.readthedocs.io/en/v2.6.2/language/syntactic-sugar.html#do-
notation

takes an additional argument of type Pattern to check that
the stack used in the expression (in this case s) is identical
to the input stack. In this way it ensures that we do not
manipulate the stack in arbitraryways, but only through the
primitive stack operations of PostScript. The implementa-
tion of extract-term uses a helper function go to traverse the
reflected Agda syntax, collecting the generated PostScript
commands in an accumulator. Note that we defined a num-
ber of pattern synonyms such as ‘pop, ‘dup, etc.
–: Term→ Pattern→ ExtractM (List PsCmd)
extract-term v stackp = go v []
where
go : Term→ List PsCmd→ ExtractM (List PsCmd)
The cases for basic instructions are as follows:
go (‘pop x) acc = go x (Pop :: acc)
go (‘dup x) acc = go x (Dup :: acc)
go (‘exch x) acc = go x (Exch :: acc)
go (‘add x) acc = go x (Add :: acc)
go (‘mul x) acc = go x (Mul :: acc)
For the commands push and index, the extractor currently

only allows natural number literals 0, 1, 2, … as the argu-
ment. For any other argument the extraction is aborted by
calling the fail function.
go (‘push (‘num n) x) acc = go x (Push n :: acc)
go (‘push k _) acc = fail ("push non-literal: " <>ₜ k)
go (‘index (‘num n) x) acc = go x (Index n :: acc)
go (‘index k _) acc = fail ("index non-literal: " <>ₜ k)
The function subst-stack is only needed to satisfy the

Agda typechecker, but does not have any run-time behaviour.
Hence it is erased during extraction.
go (‘subst-stack x) acc = go x acc
To extract a for loop, we first check that the body of the

loop is a lambda term. If that is the case, we extract the body
b, using the stack pattern (var 0) that refers to the stack
variable bound by the lambda. After the body of the loop
has been extracted, we construct the For node and continue
extraction with the expression for the initial stack 𝑥 .
go (‘for (vLam _ b) x) acc = do
proc← extract-term b (var 0)
go x (For proc :: acc)

go (‘for b _) acc = fail ("invalid for body: " <>ₜ b)
When it reaches a defined function that is not in the set of

base functions, the extraction proceeds in three steps. First,
it adds the function to the queue for later extraction using
mark-todo. Next, it gets the type of the function and calls
extract-type to determine the index of its principal argu-
ment. Finally, it looks up the corresponding argument in the
argument list and continues extraction with that argument.
go (def f args@(_ :: _)) acc = do
mark-todo f

90

https://agda.readthedocs.io/en/v2.6.2/language/syntactic-sugar.html#do-notation
https://agda.readthedocs.io/en/v2.6.2/language/syntactic-sugar.html#do-notation


Extracting the Power of Dependent Types GPCE ’21, October 17–18, 2021, Chicago, IL, USA

ty← get-normalised-type f
n ← extract-type ty
a ← lookup-arg args n
go a (FunCall (prettyName f) :: acc)

After traversing through the stack operations, we reach
the stack itself. Here we check that the stack that is used
is the same as the input stack, which is done by stack-ok
(explained below). If the check succeeds, we return the list
of commands collected in acc.
go v acc = do
b← stack-ok stackp v
if b then (return acc)
else (fail ("stack mismatch: "

<> showPattern stackp <> " and " <>ₜ v))
The function stack-ok ensures that when we use the stack

(of type Term), it is identical to the stack that we got as the
input tothe function (of type Pattern). In addition to the
cases below, there are a few other cases for dealing with
natural number literals 0, 1, 2, … (not shown here).
–: Pattern→ Term→ ExtractM Bool
stack-ok p@(p1 ‘# p2) t@(t1 ‘# t2) = do
ok1← stack-ok p1 t1
ok2← stack-ok p2 t2
return (ok1 ∧ ok2)

stack-ok (var x) (var y []) = return (x N.≡𝑏 y)
stack-ok ‘zero ‘zero = return true
stack-ok (‘suc x) (‘suc y) = stack-ok x y
stack-ok p t = return false

Extracting types. The function extract-type defineswhat
Agda types are valid for functions in the embedding. It tra-
verses an Agda type and checks that it takes one principal
argument of type Stack and returns a value of type Stack.
In addition, it checks that all non-principal arguments to
the function are marked as runtime-irrelevant and can thus
safely be erased during extraction. If these checks succeed,
it returns the position of the principal argument.
–: Type→ ExtractM N
extract-type x = go x false 0
where
go : Type→ (st-arg : Bool)→ (idx : N)→ ExtractM N
go (Π[ s ∶ vArg (‘Stack n) ] ty) false i = go ty true i
go (Π[ s ∶ erasedArg _ ] ty) b i =
go ty b (if b then i else 1 + i)

go (‘Stack n) true i = return i
go t _ _ = fail ("invalid type: " <>ₜ t)

Extracting clauses. extract-clauses takes as input the
clauses of a function definition and the position of the prin-
cipal argument (as computed by extract-type) and translates

the clauses to a list of PostScript commands. For example,
consider the function non-zero:
non-zero : Stack (1 + n)→ Stack (1 + n)
non-zero s@(_ # 0) = s
non-zero s@(_ # _) = s ⊲ pop ⊲ push 1
The clauses of non-zero are translated to a conditional ex-
pression in PostScript that checks whether the top element
is zero:

0 index 0 eq { } { pop 1 } i f e l s e

The two helper functions extract-natp and extract-stackp
extract a boolean condition from a given Agda pattern. First,
extract-natp compiles a pattern of typeN to just a condition
on the given position on the stack, or nothing if the pattern
matches unconditionally. There are three cases:
• A variable pattern n matches any input, so nothing is

returned.
• A closed pattern suc (suc (… zero)) only matches the

single value equal to the number of successors, so we
return an equality check.
• A successor pattern suc (suc (… n)) matches any value

greater or equal to the number of successors, so we
return an inequality check.

In the implementation below, the argument c keeps track
of the number of successors encountered so far.
–: N→ Pattern→ ExtractM (Maybe (List PsCmd))
extract-natp hd-idx p = go p 0
where
mk-cmp : PsCmd→ N→ List PsCmd
mk-cmp cmp n = Index hd-idx :: Push n :: cmp :: []

go : Pattern→ N→ ExtractM (Maybe (List PsCmd))
go (var _) 0 = return nothing
go (var _) c = return (just (mk-cmp Ge c))
go ‘zero c = return (just (mk-cmp Eq c))
go (‘suc p) c = go p (1 + c)
go (‘num n) c = return (just (mk-cmp Eq (c + n)))
go p c = fail ("not a nat: " <> showPattern p)
Second, the function extract-stackp compiles a pattern

of type Stack to just the condition as a list of PostScript
commands, or nothing in case the pattern is guaranteed to
match. There are two cases:
• A variable pattern s matches any input, so nothing is

returned.
• A stack pattern ps # p matches if the top of the stack

matches p and the remainder matches ps. In case both
patterns require non-trivial conditions, we combine
both using the And instruction.

–: N→ Pattern→ ExtractM (Maybe (List PsCmd))
extract-stackp hd-idx (var x) = return nothing
extract-stackp hd-idx (ps ‘# p) = do
ml1← extract-natp hd-idx p

91



GPCE ’21, October 17–18, 2021, Chicago, IL, USA A. Šinkarovs and J. Cockx

ml2← extract-stackp (offset ml1 + hd-idx) ps
return (combine ml1 ml2)
where
offset nothing = 1
offset (just _) = 2
combine nothing ml2 = ml2
combine ml1 nothing = ml1
combine (just l1) (just l2) = just (l1 ++ l2 ++ [ And ])

extract-stackp _ p =
fail ("invalid stack pattern" <> showPattern p)
We are now ready to implement extraction of function

clauses. The extraction of a clause clause _ ps t with pat-
terns p and right-hand side t proceeds by first looking up
the pattern stackp corresponding to the principal argument,
compiling this pattern to a condition using extract-stackp,
and (if the condition is non-trivial) recursively extracting
the remaining clauses. The final result uses IfElse to select
the right clause.

When compiling the final clause, we skip compilation of
the pattern. This is a correct optimization because Agda en-
forces completeness of definitions by pattern matching, so
if the final case is reached it is guaranteed to match.
–: Clauses→ N→ ExtractM (List PsCmd)
extract-clauses (clause _ ps t :: []) i = do
stackp← lookup-arg ps i
extract-term t stackp

extract-clauses (clause _ ps t :: ts) i = do
stackp← lookup-arg ps i
just l ← extract-stackp 0 stackp
where nothing→ extract-term t stackp

t← extract-term t stackp
ts← extract-clauses ts i
return (l ++ [ IfElse t ts ])

extract-clauses [] i = return []

Extracting definitions. Finally, extract-def takes as in-
put a (reflected) name of an Agda function, gets its type
and definition, and calls extract-type and extract-clauses to
translate it to a list of PostScript commands.
–: Name→ ExtractM (List PsCmd)
extract-def f = do
ty ← get-normalised-type f
function cs← get-normalised-def f
where _→ return []

i← extract-type ty
b← extract-clauses cs i
return [ FunDef (prettyName f) b ]

Whole program extraction. To run the extractor on a
complete Agda program, we need to run it on the main

function and all its (recursive) dependencies. This is imple-
mented by the function extract-defs, which makes use of
get-next-todo of the extraction monad to extract all func-
tion definitions one by one. Since any Agda program has
a finite number of definitions and each definition is only
processed once, this function is terminating. However, the
Agda termination checker does not detect this, so we mark
it as terminating manually using a pragma.
{-# TERMINATING #-}
extract-defs : ExtractM (List PsCmd)
extract-defs = do
just f← get-next-todo
where nothing→ return []

xs← extract-def f
ys← extract-defs
return (xs ++ ys)

We define a macro
extract as the main
entry point of the ex-
tractor. This macro
takes as inputs the
name of the main
function and a list
of functions that
should not be inlined
(see the next section

for more details on inlining). The implementation of the
macro (not shown here) runs extract-defs on the initial state.
If extraction succeeds, it replaces the call to themacro by the
pretty-printed result, and otherwise throws an error.
macro extract : Name→ Names→ Term→ TC ⊤

We provide a default list base of functions for which to
avoid inlining, which can be further tailored to the extrac-
tion of a specific program.

Figure 2. Draw
sierpinski.

Testing the extractor. Thanks to
the theorem-proving capabilities of
Agda, we can embed test cases
for the extractor as equality proofs.
These test cases are run automati-
cally during type checking, so if a
change to the extractor causes one
of them to fail it will not go unno-
ticed.

As an example, we test that add-1 is extracted correctly:
test-add1 : extract add-1 base

≡ "/add-1 {\n 1 add\n} def\n"

test-add1 = refl
We can test the output of the extractor on the other exam-

ples from the previous section in a similar fashion. Finally,
we can feed generated programs into PostScript interpreters
and obtain outputs such as one at Fig. 2.

5 Partial Evaluation
Working with a shallow embedding brings us an important
benefit: we can use the existing evaluator of Agda to par-
tially evaluate programs prior to extraction. In this section,
we give a couple of examples of how this is useful. We also
demonstrate how to extend Agda’s evaluator with domain-
specific optimizations through the use of rewrite rules.

92



Extracting the Power of Dependent Types GPCE ’21, October 17–18, 2021, Chicago, IL, USA

Using Agda functions as macros. By reducing Agda
expressions prior to extraction, we may use any host lan-
guage constructs that are not present in the embedding, as
long as they are eliminated prior to extraction. For example,
we can use of the Agda function applyN to apply a certain
postscript operator n times:
applyN : N→ (X→ X)→ X→ X
applyN zero f x = x
applyN (suc n) f x = f (applyN n f x)

pow32 : Stack (1 + n)→ Stack (1 + n)
pow32 s = applyN 5 (𝜆 s→ s ⊲ dup ⊲ mul) s

The function applyN is a polymorphic and higher-order
function, so it falls well outside the fragment of Agda that
our extractor can deal with. Nevertheless, the extractor can
inline the definition of applyN: running extract pow32 base
produces the following code:
/ pow32 {

dup mul dup mul dup mul dup mul dup mul
} def

In essence, this allows us to write macros using arbitrary
Agda functions, as long as the end result falls within the
fragment that the extractor knows how to deal with.

Partial evaluation of primitive operators. In addition
to inlining external functions, the extractor can also simplify
expressions that involve basic operations such as push and
pop. To achieve this, we pass an empty list as the second
argument to the extractmacro (which is the list of functions
that should not be inlined). For example, it can eliminate
values that are first pushed and then popped again without
being used:
push-pop : Stack n→ Stack n
push-pop s = s ⊲ push 42 ⊲ pop

/ push−pop {
} def

Using the same technique with the for for, we can auto-
matically unroll loops with constant boundaries for free.

Domain-specific optimizations as rewrite rules. One
common way to define domain-specific compiler optimiza-
tions is through the specification of rewrite rules that rewrite
terms matching a given pattern to an equivalent form that
is either more efficient or reveals further optimization op-
portunities. By giving a shallow embedding of our target
language in Agda, we have the opportunity to define veri-
fied rewrite rules, providing a proof that the left- and right-
hand side of the rewrite rule are equivalent. To achieve this,
we could define our own representation of verified rewrite
rules and integrate them into the extractor. However, we
can avoid the effort of doing so since Agda already has a
built-in concept of rewrite rules [Cockx 2019].

As an example, we prove that pushing and then adding
two numbers in sequence is equivalent to pushing and ad-
ding the sum of these numbers.

add-add-join : (s : Stack (1 + n)) (k l : N)
→ s ⊲ push k ⊲ add ⊲ push l ⊲ add ≡ s ⊲ push (k + l) ⊲ add

add-add-join (s # x) k l = cong (s #_) (+-assoc x k l)
Next, we register this equality as a rule to be applied au-

tomatically during evaluation by using a REWRITE pragma:
{-# REWRITE add-add-join #-}

From now on the rule is applied automatically by the ex-
tractor whenever possible:
add-numbers : Stack (1 + n)→ Stack (1 + n)
add-numbers s = s ⊲ push 1 ⊲ add ⊲ push 2 ⊲ add

⊲ push 4 ⊲ add ⊲ push 2 ⊲ add
Running extract add-numbers [] produces this code:

/ add−numbers
{ 9 add
} def

Implementation details. Par-
tial evaluation in Agda is achieved
by normalising, i.e. by applying re-
duction rules to (sub)terms until

they turn into values or neutral terms. Agda’s reflection API
offers a function normalise for this purpose. However, using
this function we ran into two problems:

• The normalise function only works on terms and not
on entire function definitions. Hence wemanually tra-
verse the function definition and call normalise on the
body of each individual clause. During the implemen-
tation of this traversal, we were faced with the chal-
lenge of reconstructing the right typing context for
each clause. Agda constructs this context internally
during elaboration of the clauses, but the reflection
API did not provide access to it. To solve this problem
we extended the reflection API to provide it for us.13
• The functionality to selectively normalise certain func-

tions while leaving others intact was not previously
available in Agda. We added dontReduceDefs and on-
lyReduceDefs to the reflection API.14

These two changes to Agda were motivated by our goal
to implement custom extractors through reflection, but they
are generally useful for users of the reflection API. Both
changes have been released as part of Agda 2.6.2.

6 Related Work
There is a large body of work onmetaprogramming facilities
in various programming languages. Herzeel et al. [2008]
track the origins of metaprogramming to Smith’s work on
reflection in Lisp [Smith 1984]. Some prominent metapro-
gramming systems includeMetaOCaml [Kiselyov 2014],Me-
taML [Taha and Sheard 1997], reFlect [Grundy et al. 2006],
Template Haskell [Sheard and Peyton Jones 2002], Racket

13See github.com/agda/agda/pull/4722.
14See github.com/agda/agda/pull/4978.

93

https://github.com/agda/agda/pull/4722
https://github.com/agda/agda/pull/4978


GPCE ’21, October 17–18, 2021, Chicago, IL, USA A. Šinkarovs and J. Cockx

[Flatt and PLT 2010], and various other Lisp/Scheme di-
alects. However, these systems typically do not support de-
pendent types, so they are not well suited for our goal of
statically enforcing correctness of embedded programs.

Defining deep embeddings with static guarantees are a
common application of dependent types [Allais et al. 2018;
Altenkirch and Reus 1999; Chapman 2009; Danielsson 2007;
McBride 2010]. These embeddings usually also define se-
mantics of the embedded language and therefore allow us
to reason about the correctness of program transformations
and optimisations. While the this is impressive in theory,
the resulting encodings are difficult to use in practice. In
this paper we instead aim for a more lightweight approach.
Svenningsson and Axelsson [2013] propose to solve this
problem with a combination of deep and shallow embed-
dings, by using a small deep embedding and leveraging type
classes in Haskell to define the rest of the language on top
of that. However, so far this idea has not yet been applied
to dependently typed embedded languages.

The Coq proof assistant is equipped with extraction ca-
pabilities [Letouzey 2003, 2008], which extracts functional
code from Coq proofs (or programs). The default target lan-
guage is OCaml, but a few other options were added re-
cently. Likewise, Agda itself has a mechanism for defining
custom backends, of which the GHC backend is the most
prominent. Other proof assistants provide similar extraction
tools as well. The main difference from our approach in this
paper is that these extractors are written as plugins to the
proof assistant, while we implement our extractors directly
in the proof assistant itself. As a consequence, our extrac-
tors and programs can (in principle) communicate with each
other. In addition, as they are just Agda programs, they can
be reflected themselves and their structure can be leveraged.

Several dependently-typed languages are equipped with
metaprogramming capabilities: Idris [Christiansen and Brady
2016], Lean [Ebner et al. 2017], Coq [Anand et al. 2018], and
Agda [van der Walt and Swierstra 2013]. All of these imple-
ment a similar API as described in this paper, and hence
could be used to implement our approach — one simply
needs to adjust extraction to the particular API. Chang et al.
[2019] introduce the Turnstile+ framework for building de-
pendently typed embedded DSLs and shares the ideas advo-
cated in this paper, suggesting that our approach couldwork
there as well. Sozeau et al. [2019] use MetaCoq to formally
verify the core type system of Coq. This combines nicely
with our approach, as we could use the verified core lan-
guage as a basis to verify our custom extractors. Annenkov
et al. [2020] use MetaCoq to implement a DSL combining
deep and shallow approaches, in a way that is quite similar
to our own. While they are able to formally reason about
preservation of semantics (which we cannot do yet), it is
unclearwhether their approach scales to dependently-typed
embedded languages.

7 Conclusions and Future Work
In this paper we investigate the idea of developing embed-
ded programs hand-in-hand with custom code generators
for them. We solve the well-known conundrum of choos-
ing between deep and shallow embedding by leveraging the
power of reflection. This allows us to enjoy simplicity of
writing programs in shallow embedding, while keeping the
ability to translate them into the original language.

We apply this idea in the context of dependently-typed
language Agda. We demonstrate the use of dependent types
to enforce static properties of the embedded programs. Con-
cretely, we have demonstrated the approach by implement-
ing an extractor for a fragment of the PostScript language.

The main advantage of our approach is twofold: first, it
allows you to implement all these things — as well as the
embedded programs themselves — side by side in a single
language, simplifying the development. And secondly, it al-
lows you to reuse the typechecker and evaluator of the host
language, saving you a lot of work. While we showcase a
single example, the approach has been applied to several
other languages: Kaleidoscope, a minimalist imperative lan-
guage; Single assignment C, a high-performance array lan-
guage; and APL (Array Programming Language), another
array language with heavily overloaded syntax [Sinkarovs
and Cockx 2021].

We believe that the reader is now empowered to apply
the proposed technique to verify code in any language.

Future work. While our approach is flexible, it is not
a magic bullet. Right now, we cannot yet guarantee that
the extracted code preservers the semantics of the original
implementation.While we rarely see fully-verified compiler
backends in the real world, our approach is very close to
enabling this. In future work, we would like to give a for-
mal semantics of the reflected language and the proof that
reflected programs respect it. While this is non-trivial, a
system like Agda could do it in principle.

Acknowledgments
Wewould like to thank reviewers for their constructive sug-
gestions. This work is supported by the Engineering and
Physical Sciences Research Council through the grant
EP/N028201/1, and the Dutch Research Council through the
grant VI.Veni.202.216.

References
Adobe Systems Incorporated. 1999. PostScript Language Reference Third

Edition.
Agda Development Team. 2021. Agda 2.6.2 documentation. https://agda.

readthedocs.io/en/v2.6.2/ Accessed [2021/07/10].
Guillaume Allais, Robert Atkey, James Chapman, Conor McBride, and

James McKinna. 2018. A Type and Scope Safe Universe of Syntaxes
with Binding: Their Semantics and Proofs. Proc. ACM Program. Lang. 2,
ICFP, Article 90 (July 2018), 30 pages. https://doi.org/10.1145/3236785

94

https://agda.readthedocs.io/en/v2.6.2/
https://agda.readthedocs.io/en/v2.6.2/
https://doi.org/10.1145/3236785


Extracting the Power of Dependent Types GPCE ’21, October 17–18, 2021, Chicago, IL, USA

Thorsten Altenkirch and Bernhard Reus. 1999. Monadic Presentations of
Lambda Terms Using Generalized Inductive Types. In Proceedings of the
13th International Workshop and 8th Annual Conference of the EACSL on
Computer Science Logic (CSL ’99). Springer-Verlag, Berlin, Heidelberg,
453–468.

Abhishek Anand, Simon Boulier, Cyril Cohen, Matthieu Sozeau, and Nico-
las Tabareau. 2018. Towards Certified Meta-Programming with Typed
Template-Coq. In Interactive Theorem Proving, Jeremy Avigad and Assia
Mahboubi (Eds.). Springer International Publishing, Cham, 20–39.

Danil Annenkov, Jakob Botsch Nielsen, and Bas Spitters. 2020. ConCert:
A Smart Contract Certification Framework in Coq. In Proceedings of the
9th ACM SIGPLAN International Conference on Certified Programs and
Proofs (New Orleans, LA, USA) (CPP 2020). Association for Computing
Machinery, New York, NY, USA, 215–228. https://doi.org/10.1145/
3372885.3373829

Edwin C. Brady. 2021. Idris 2: Quantitative Type Theory in Practice. In
35th European Conference on Object-Oriented Programming, ECOOP 2021,
July 11-17, 2021, Aarhus, Denmark (Virtual Conference) (LIPIcs, Vol. 194),
Anders Møller and Manu Sridharan (Eds.). Schloss Dagstuhl - Leibniz-
Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.ECOOP.2021.9

Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. 2007. Finally Tag-
less, Partially Evaluated. In Programming Languages and Systems, Zhong
Shao (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 222–238.

Stephen Chang, Michael Ballantyne, Milo Turner, and William J. Bowman.
2019. Dependent Type Systems as Macros. Proc. ACM Program. Lang. 4,
POPL, Article 3 (Dec. 2019), 29 pages. https://doi.org/10.1145/3371071

James Chapman. 2009. Type Theory Should Eat Itself. Electronic Notes
in Theoretical Computer Science 228 (2009), 21–36. https://doi.org/10.
1016/j.entcs.2008.12.114 Proceedings of the International Workshop on
Logical Frameworks and Metalanguages: Theory and Practice (LFMTP
2008).

David Christiansen and Edwin Brady. 2016. Elaborator Reflection: Ex-
tending Idris in Idris. In Proceedings of the 21st ACM SIGPLAN Interna-
tional Conference on Functional Programming (Nara, Japan) (ICFP 2016).
Association for Computing Machinery, New York, NY, USA, 284–297.
https://doi.org/10.1145/2951913.2951932

Jesper Cockx. 2019. Type Theory Unchained: Extending Agda with User-
Defined Rewrite Rules. In 25th International Conference on Types for
Proofs and Programs, TYPES 2019, June 11-14, 2019, Oslo, Norway (LIPIcs,
Vol. 175), Marc Bezem and Assia Mahboubi (Eds.). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.TYPES.
2019.2

TheCoqDevelopment Team. 2021. TheCoq proof assistant reference manual.
https://coq.github.io/doc/v8.13/refman/ Version 8.13.2.

Nils Anders Danielsson. 2007. A Formalisation of a Dependently Typed
Language as an Inductive-Recursive Family. In Types for Proofs and Pro-
grams, Thorsten Altenkirch and Conor McBride (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 93–109.

Gabriel Ebner, Sebastian Ullrich, Jared Roesch, Jeremy Avigad, and
Leonardo de Moura. 2017. A Metaprogramming Framework for Formal
Verification. Proc. ACM Program. Lang. 1, ICFP, Article 34 (Aug. 2017),
29 pages. https://doi.org/10.1145/3110278

Matthew Flatt and PLT. 2010. Reference: Racket. Technical Report PLT-TR-
2010-1. PLT Design Inc. https://racket-lang.org/tr1/.

Jim Grundy, Thomas F. Melham, and John W. O’Leary. 2006. A re-
flective functional language for hardware design and theorem prov-
ing. J. Funct. Program. 16, 2 (2006), 157–196. https://doi.org/10.1017/
S0956796805005757

Charlotte Herzeel, Pascal Costanza, andTheo D’Hondt. 2008. Reflection for
the Masses. In Self-Sustaining Systems, Robert Hirschfeld and Kim Rose
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 87–122.

Oleg Kiselyov. 2014. The Design and Implementation of MetaOCaml. In
Functional and Logic Programming, Michael Codish and Eijiro Sumii
(Eds.). Springer International Publishing, Cham, 86–102.

Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens.
2014. CakeML: a verified implementation of ML. In The 41st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, Suresh
Jagannathan and Peter Sewell (Eds.). ACM, 179–192. https://doi.org/
10.1145/2535838.2535841

Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun.
ACM 52, 7 (2009), 107–115. https://doi.org/10.1145/1538788.1538814

Pierre Letouzey. 2003. A New Extraction for Coq. In Types for Proofs and
Programs, Herman Geuvers and Freek Wiedijk (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 200–219.

Pierre Letouzey. 2008. Extraction in Coq: An Overview. In Logic and
Theory of Algorithms, Arnold Beckmann, Costas Dimitracopoulos, and
Benedikt Löwe (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
359–369.

PerMartin-Löf. 1998. An intuitionistic theory of types. In Twenty-five years
of constructive type theory (Venice, 1995), Giovanni Sambin and Jan M.
Smith (Eds.). Oxford Logic Guides, Vol. 36. Oxford University Press, 127–
172.

Conor McBride. 2010. Outrageous but Meaningful Coincidences: De-
pendent Type-Safe Syntax and Evaluation. In Proceedings of the 6th
ACM SIGPLAN Workshop on Generic Programming (Baltimore, Mary-
land, USA) (WGP ’10). Association for ComputingMachinery, New York,
NY, USA, 1–12. https://doi.org/10.1145/1863495.1863497

Conor McBride. 2016. I Got Plenty o’ Nuttin’. InA List of SuccessesThat Can
Change the World - Essays Dedicated to Philip Wadler on the Occasion of
His 60th Birthday (Lecture Notes in Computer Science, Vol. 9600), Sam
Lindley, Conor McBride, Philip W. Trinder, and Donald Sannella (Eds.).
Springer, 207–233. https://doi.org/10.1007/978-3-319-30936-1_12

Emir Pasalic,Walid Taha, and Tim Sheard. 2002. Tagless staged interpreters
for typed languages. In Proceedings of the seventh ACM SIGPLAN in-
ternational conference on Functional Programming (ICFP 2002). 218–229.
https://doi.org/10.1145/581478.581499

Tim Sheard and Simon Peyton Jones. 2002. Template meta-programming
for Haskell. In Proceedings of the 2002 Haskell Workshop, Pittsburgh
(proceedings of the 2002 haskell workshop, pittsburgh ed.). 1–16.

Artjoms Sinkarovs and Jesper Cockx. 2021. Choosing is Losing: How to
combine the benefits of shallow and deep embeddings through reflec-
tion. CoRR abs/2105.10819 (2021). arXiv:2105.10819 https://arxiv.org/
abs/2105.10819

Brian Cantwell Smith. 1984. Reflection and Semantics in LISP. In Pro-
ceedings of the 11th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages (Salt Lake City, Utah, USA) (POPL ’84). Asso-
ciation for Computing Machinery, New York, NY, USA, 23–35. https:
//doi.org/10.1145/800017.800513

Matthieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau, and
Théo Winterhalter. 2019. Coq Coq Correct! Verification of Type Check-
ing and Erasure for Coq, in Coq. Proc. ACM Program. Lang. 4, POPL,
Article 8 (Dec. 2019), 28 pages. https://doi.org/10.1145/3371076

Josef Svenningsson and Emil Axelsson. 2013. Combining Deep and Shal-
low Embedding for EDSL. In Trends in Functional Programming, Hans-
Wolfgang Loidl and Ricardo Peña (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 21–36.

Walid Taha and Tim Sheard. 1997. Multi-Stage Programming with Explicit
Annotations. SIGPLAN Not. 32, 12 (Dec. 1997), 203–217. https://doi.
org/10.1145/258994.259019

Paul van der Walt and Wouter Swierstra. 2013. Engineering Proof by
Reflection in Agda. In Implementation and Application of Functional Lan-
guages, Ralf Hinze (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
157–173.

95

https://doi.org/10.1145/3372885.3373829
https://doi.org/10.1145/3372885.3373829
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.1145/3371071
https://doi.org/10.1016/j.entcs.2008.12.114
https://doi.org/10.1016/j.entcs.2008.12.114
https://doi.org/10.1145/2951913.2951932
https://doi.org/10.4230/LIPIcs.TYPES.2019.2
https://doi.org/10.4230/LIPIcs.TYPES.2019.2
https://coq.github.io/doc/v8.13/refman/
https://doi.org/10.1145/3110278
https://racket-lang.org/tr1/
https://doi.org/10.1017/S0956796805005757
https://doi.org/10.1017/S0956796805005757
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1863495.1863497
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1145/581478.581499
https://arxiv.org/abs/2105.10819
https://arxiv.org/abs/2105.10819
https://arxiv.org/abs/2105.10819
https://doi.org/10.1145/800017.800513
https://doi.org/10.1145/800017.800513
https://doi.org/10.1145/3371076
https://doi.org/10.1145/258994.259019
https://doi.org/10.1145/258994.259019

	Abstract
	1 Introduction
	2 Background
	3 PostScript and Its Embedding in Agda
	3.1 Embedding in Agda
	3.2 Examples
	3.3 For Loop

	4 Extraction
	4.1 Target Syntax
	4.2 The Extraction Monad
	4.3 The Extractor

	5 Partial Evaluation
	6 Related Work
	7 Conclusions and Future Work
	Acknowledgments
	References

