
Expressive and Strongly Type-Safe Code Generation

Thomas Winant, Jesper Cockx, and Dominique Devriese

imec-DistriNet, KU Leuven
firstname.lastname@cs.kuleuven.be

Meta-programs are useful to avoid writing boilerplate code, for polytypic programming, etc.
However, when a meta-program passes the type checker, it does not necessarily mean that the
programs it generates will be free of type errors, only that generating object programs will
proceed without type errors. For instance, this well-typed Template Haskell [5] meta-program
generates the ill-typed object program not ’X’.

notX :: Q Exp
notX = [| not ’X’ |]

Fortunately, Template Haskell will type-check the generated program after generation, and
detect the type error. We call such meta-programming systems weakly type-safe. Even though
weakly type-safe meta-programming suffices for guaranteeing that the resulting program is
type-safe, it has important downsides. Type errors in the generated code are presented to the
application developer, who may simply be a user of the meta-program. If the meta-program
is part of a library, the developer has little recourse other than contacting the meta-program
authors about the bug in their code. Moreover, composing weakly type-safe meta-programs can
be brittle because the type of generated programs is not specified in a machine-checked way.

We are interested in what we call strongly type-safe meta-programming, which offers a
stronger guarantee: when a meta-program is strongly type-safe, all generated programs are
guaranteed to be type-safe too. As such, bugs in meta-programs are detected as early as
possible. In fact, all arguments in favour of static typing can be made.

Existing strongly type-safe meta-programming systems like MetaML [6], Typed Template
Haskell [3], and Scala’s reflection API [1] offer this guarantee by providing typed quotations,
i.e. quotations that are type-checked at meta-program compile-time. For example, when the
faulty meta-program is rewritten using a typed quotation, the bug is detected at meta-program
compile time.

notX :: Q (TExp Bool)
notX = [‖ not ’X’ ‖]

Unfortunately, to offer this guarantee, these and other systems compromise on expressiveness [6,
2, 4]. In particular, while typed object expressions can be constructed using typed quotations,
their types and typing contexts cannot. These are severe restrictions that make it impossible to
develop strongly type-safe variants of many common weakly type-safe meta-programs.

A real world example that suffers from this restriction is the generation of lenses [7] for a
record data-type. Such a meta-program is not expressible using state-of-the-art strongly type-
safe meta-programming systems. To illustrate this restriction, consider a simplified sketch of
what the Typed Template Haskell variant of deriveLenses would look like:

deriveLenses adt = map (λfield → deriveLens adt field) (fields adt)

deriveLens :: ADT → Field → Q (TExp (Lens ? ?))
deriveLens adt field = ...

The question marks should be replaced with the type of the record data type and the type of
the field. Clearly, the type of the generated lens depends on the types of the record data type’s

Expressive and Strongly Type-Safe Code Generation Winant, Cockx and Devriese

fields, which are only available at the value level in the meta-program. If Haskell had dependent
types, one could write this signature:

deriveLens :: (adt :: ADT) → (f :: Field adt) → Q (TExp (LensType adt f))

Where LensType is a type-level function that calculates the type of the lens. Such a syntactic
construction of the type of an object program is fundamentally impossible in Typed Template
Haskell and other MetaML-like systems. Deeper inside the implementation of deriveLens, it
gets worse as the types of generated expressions depend in more complex ways on the values adt
and f , and they are also constructed in contexts that depend on them. The underlying reason
for this limited expressiveness is that the meta-level type system of these systems is not powerful
enough to express the naturally dependent types of many strongly type-safe meta-programs.

We propose a new design that delivers strong type-safety without compromising on expres-
siveness. Our first key design choice is to represent object programs by an inductive type family
in an off-the-shelf dependently-typed language (Agda). This type family is indexed by the type
of the program, and its type and variable contexts. Each of its constructors encodes one lan-
guage construct, including its corresponding typing rule. Using this encoding, meta-programs
construct object programs that are correct by construction. This approach is standard in de-
pendently typed languages, yet it isn’t commonly used by existing meta-programming systems.

Our second key design choice is to use a small explicitly-typed core language as the object
language (in our case GHC Core), instead of the full surface language (which would be Haskell).
This choice is based on the observation that surface languages are designed for programmers,
not meta-programs. Their complex syntax, typing rules, type inference, and tendency to change
make them ill-suited as object languages. In contrast, a core language such as GHC Core is
designed to be used by the compiler. As a consequence, it is typically well-studied, small,
explicitly typed, relatively stable, and has a full formal description, while remaining relatively
close to the surface language. Using a core language instead of the full surface language is not
an academic simplification, but a feature of our approach: it is a central design choice that we
believe is essential to make our approach realistic to implement and use.

Our approach to strongly type-safe metaprogramming is based on existing technology (an
off-the-shelf dependently-typed language and a standard encoding of the object language) but
applies it in a new way. We have implemented is as a proof of concept for Haskell. Using our
implementation, we developed strongly type-safe variants of existing real-world meta-programs:
deriving lenses and deriving the Eq type class. In a fair comparison with the original meta-
programs, our meta-programs count roughly the same number of SLOC. This shows that our
approach is practical as well as simple, expressive, and strongly type-safe.

References

[1] Eugene Burmako. Unification of Compile-
Time and Runtime Metaprogramming in Scala.
PhD thesis, EPFL, 2017.

[2] Chiyan Chen and Hongwei Xi. Meta-
programming through typeful code represen-
tation. In ICFP. ACM, 2003.

[3] Geoffrey Mainland. Type-safe runtime code
generation with (Typed) Template Haskell.
https://www.cs.drexel.edu/~mainland/

2013/05/31/type-safe-runtime-code-

generation-with-typed-template-haskell/.

[4] Geoffrey Mainland. Explicitly heterogeneous
metaprogramming with MetaHaskell. In
ICFP. ACM, 2012.

[5] Tim Sheard and Simon Peyton Jones. Tem-
plate meta-programming for Haskell. SIG-
PLAN Not., 37(12), December 2002.

[6] Walid Taha and Tim Sheard. Multi-stage
programming with explicit annotations. SIG-
PLAN Not., 32(12), December 1997.

[7] Twan van Laarhoven. CPS based functional
references. http://twanvl.nl/blog/haskell/
cps-functional-references, 2009.

2

https://www.cs.drexel.edu/~mainland/2013/05/31/type-safe-runtime-code-generation-with-typed-template-haskell/
https://www.cs.drexel.edu/~mainland/2013/05/31/type-safe-runtime-code-generation-with-typed-template-haskell/
https://www.cs.drexel.edu/~mainland/2013/05/31/type-safe-runtime-code-generation-with-typed-template-haskell/
http://twanvl.nl/blog/haskell/cps-functional-references
http://twanvl.nl/blog/haskell/cps-functional-references

