
3

Definitional Proof-Irrelevance without K*

GAËTAN GILBERT, Inria, France
JESPER COCKX, Chalmers / Gothenburg University, Sweden

MATTHIEU SOZEAU, Inria and IRIF, France

NICOLAS TABAREAU, Inria, France

Definitional equality—or conversion—for a type theory with a decidable type checking is the simplest tool to
prove that two objects are the same, letting the system decide just using computation. Therefore, the more
things are equal by conversion, the simpler it is to use a language based on type theory. Proof-irrelevance,
stating that any two proofs of the same proposition are equal, is a possible way to extend conversion to make
a type theory more powerful. However, this new power comes at a price if we integrate it naively, either
by making type checking undecidable or by realizing new axioms—such as uniqueness of identity proofs
(UIP)—that are incompatible with other extensions, such as univalence. In this paper, taking inspiration from
homotopy type theory, we propose a general way to extend a type theory with definitional proof irrelevance,
in a way that keeps type checking decidable and is compatible with univalence. We provide a new criterion to
decide whether a proposition can be eliminated over a type (correcting and improving the so-called singleton
elimination of Coq) by using techniques coming from recent development on dependent pattern matching
without UIP. We show the generality of our approach by providing implementations for both Coq and Agda,
both of which are planned to be integrated in future versions of those proof assistants.

CCS Concepts: • Theory of computation → Type theory;

Additional Key Words and Phrases: type theory, proof assistants, proof irrelevance

ACM Reference Format:

Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau. 2019. Definitional Proof-Irrelevance
without K. Proc. ACM Program. Lang. 3, POPL, Article 3 (January 2019), 28 pages. https://doi.org/10.1145/
3290316

1 INTRODUCTION

Proof-irrelevance, the principle that any two proofs of the same proposition are equal, is at the
heart of the Coq extraction mechanism [Letouzey 2004]. In the Calculus of Inductive Construc-
tions (CIC), the underlying theory of the Coq proof assistant, there is an (impredicative) sort Pॸॵॶ
that is used to characterize types that can be seen as propositions—as opposed to types whose in-
habitants have a computational meaning, which live in the predicative sort Tyॶ५. This static piece
of information is used to extract a Coq formalization to a purely functional program, erasing safely
all the parts involving terms that inhabit propositions, because a program can not use those terms
in computationally relevant ways.

*This work is supported by the CoqHoTT ERC Grant 64399.

Authors’ addresses: Gaëtan Gilbert, Inria, Gallinette Project-Team, Nantes, France; Jesper Cockx, Chalmers / Gothenburg

University, Gothenburg, Sweden; Matthieu Sozeau, Inria and IRIF, Pi.R2 Project-Team, Paris, France; Nicolas Tabareau,

Inria, Gallinette Project-Team, Nantes, France.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).

2475-1421/2019/1-ART3

https://doi.org/10.1145/3290316

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 3. Publication date: January 2019.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3290316
https://doi.org/10.1145/3290316
https://doi.org/10.1145/3290316

3:2 Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau

In order to concretely guarantee that no computation can leak from propositions to types, Coq
uses a restriction of the dependent elimination from inductive types in Pॸॵॶ into predicates in Tyॶ५.
This restriction, called the singleton elimination condition, checks that an inductive proposition can
be eliminated into a type only when:

(1) the inductive proposition has at most one constructor,
(2) all the arguments of the constructor are themselves non-computational, i.e. are in Pॸॵॶ.

However, in the current version of Coq, singleton elimination is the price to pay to be compatible
with proof irrelevance, but there is no payback. This means that although two proofs of the same
proposition can not be relevantly distinguished in the system, one can not use the fact that they
are equal in the logic.

Consider for instance a working mathematician or computer scientist who defines bounded
integers in the following way:

Definition boundedN (k : N) : Type := { n : N & n ≤ k }.

Here boundedN k is the dependent sum of an integer n together with a proof (in Pॸॵॶ) that n is
below k, using the inductive definition

Inductive ≤ : N→ N→ Prop :=

≤0 : ∀ n, 0 ≤ n

| ≤S : ∀m n, m ≤ n→ S m ≤ S n.

Then, our user defines an implicit coercion from boundedN to N so that she can work with
bounded integers almost as if they were integers, apart from additional proofs of boundedness.

Coercion boundedN_to_N : boundedN↣ N.

For instance, she can define the addition of bounded integers by simply relying on the addition of
integers, modulo a proof that the result is still bounded:

Definition add {k} (n m : boundedN k) (e : n + m ≤ k) : boundedN k := (n + m ; e).

Unfortunately, when it comes to reasoning on bounded integers, the situation becomes more dif-
ficult. For instance, the fact that addition of bounded natural numbers is associative

Definition bounded_add_associativity k (n m p: boundedN k) e1 e2 e'1 e'2 :

add (add n m e1) p e2 = add n (add m p e'1) e'2.

does not directly follow from associativity of addition on integers, as it additionally requires a
proof that e2 equals e'2 (modulo the proof of associativity of addition of integers). This should
be true because they are two proofs of the same proposition, but it does not follow automatically.
Instead, the user has to prove proof-irrelevance for ≤ manually. This can be proven (using Agda
style pattern matching of the Equations plugin1) by induction on the proof of m ≤ n:

Equations ≤_hprop {m n} (e e' : m ≤ n) : e = e' :=

≤_hprop (≤0 _) (≤0 _) := eq_refl;

≤_hprop (≤S _ _ e) (≤S n m e') := ap (≤S n m) (≤_hprop e e').

Note the use of functoriality of equality ap : ∀ f, x = y→ f x = f ywhich requires some explicit rea-
soning on equality. Even if proving associativity of addition was more complicated than expected,
our user is still quite lucky to deal with an inductive type that is actually a mere proposition, in the
sense of Homotopy Type Theory (HoTT) [Univalent Foundations Program 2013]. Indeed, ≤ satis-
fies the propositional (as opposed to definitional, which holds by computation) version of proof

1http://mattam82.github.io/Coq-Equations/

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 3. Publication date: January 2019.

http://mattam82.github.io/Coq-Equations/

Definitional Proof-Irrelevance without K 3:3

irrelevance, as expressed by the ≤_hprop lemma. For an arbitrary inductive type in Pॸॵॶ, there
is no reason anymore why it would be a mere proposition, and thus proof irrelevance, even in its
propositional form, can not be proven and must be stated as an axiom.

In a setting where proof-irrelevance for Pॸॵॶ is built in, it becomes possible to define an op-
eration on types which turns any type into a definitionally proof irrelevant one and thus makes
explicit in the system the fact that a value in Squash T will never be used for computation.

Definition Squash (T : Type) : Prop := ∀ P : Prop, (T→ P)→ P.

This operator satisfies the following elimination principle (reduced to proposition) given by

∀ (T : Type) (P : Prop), (T→ P)→ Squash T→ P.

which means that it corresponds to the propositional truncation [Univalent Foundations Program
2013] of HoTT, originally introduced as the bracket type by Awodey and Bauer [Awodey and Bauer
2004].

The importance of (definitional) proof irrelevance to simplify reasoning has been noticed for a
long time, and various works have tried to promote its implementation in a proof assistant based
on type theory [Pfenning 2001; Werner 2008]. However, this has never been achieved, mainly
because of the fundamental misunderstanding that singleton elimination was the right constraint

on which propositions can be eliminated into a type. Indeed, one can think of singleton elimination
as a syntactic approximation of which types are naturally mere propositions, and thus can be
eliminated into an arbitrary type without leaking a piece of computation or without implying new
axioms. But, singleton elimination does not work for indexed datatypes, as for instance it applies
to the equality type of Coq

Inductive eq (A : Type) (x : A) : A→ Prop := eq_refl : eq A x x

If proof irrelevance holds for the equality type, every equality has at most one proof, which is
known as Uniqueness of Identity Proofs (UIP).Therefore, assuming proof irrelevance together with
the singleton elimination enforces a new axiom in the theory, which is for instance incompatible
with the univalence axiom from HoTT. This may not seem too problematic to some, but another
consequence of singleton elimination in presence of definitional proof irrelevance is that it breaks
decidability of conversion. For instance, the accessibility predicate:

Inductive Acc (A : Type) (R : A→ A→ Prop) (x : A) : Prop :=

Acc_intro : (∀ y : A, R y x→ Acc R y)→ Acc R x

satisfies the singleton elimination criterion but implementing definitional proof irrelevance for it
leads to an undecidable conversion and thus an undecidable type checker (we come back to this
point in more detail in Section 2).

An alternative approach is to do as in Lean, where they do have proof irrelevance with sin-
gleton elimination, but they only implement a partial version of proof irrelevance for recursive
inductive types satisfying the singleton elimination, which is restricted to closed terms.2 But this
partial implementation of the conversion algorithm breaks in particular subject reduction, which
seems a desirable property for a proof assistant (see a concrete example in Appendix A). Finally,
singleton elimination fails to capture inductive types with multiple constructors such as ≤ which
are perfectly valid mere propositions and could be eliminated into types.

Looking back, Coq and its impredicative sort Pॸॵॶ may not be the only way to implement proof
irrelevance in a proof assistant. Agda, which only has a predicative hierarchy of universes and no
Pॸॵॶ, instead uses a notion of irrelevant arguments [Abel and Scherer 2012]. The idea there is to

2See a description of this issue in https://github.com/leanprover/lean/issues/654.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 3. Publication date: January 2019.

https://github.com/leanprover/lean/issues/654

3:4 Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau

mark in the function type which arguments can be considered as irrelevant. For instance, our user
can encode bounded natural numbers in this setting, by specifying that the second argument of
the dependent pair is irrelevant (as marked by the . in the definition of .(n ≤ k)):

data boundedNat (k : N) : Set where
pair : (n : N)→ .(n ≤ k)→ boundedNat k

The fact that equality of the underlying natural numbers implies equality of the bounded natural
numbers comes for free from irrelevance of the second component:

piBoundedNat : {k : N}(n m : N)(e : n ≤ k)(e ′ :m ≤ k)→ n ≡ m → pair n e ≡ pairm e ′

piBoundedNat n m _ _ refl = refl

However, in this approach proof irrelevance is not a property of the type being considered but
rather a way to use the argument of a given function. To get closer to a real management of proof
irrelevance, irrelevant fields were added to Agda.3 It becomes thus possible to define a variant of
propositional truncation by defining a record with only one field which is proof irrelevant

record Squash (A : Set) : Set where
constructor sq
field .unsq : A

Squash A is proof-irrelevant, as shown by the following lemma:

piSquash : {A : Set}(x y : Squash A)→ x ≡ y

piSquash x y = refl

However, together with irrelevant fields, there is a notion of irrelevant projections4, which, as
observed recently by the Agda community5, gives rise to an inconsistency in the theory. Indeed,
in Agda 2.5.3 it is possible to define a function from Squash Bool to Bool that can be shown to be
definitionally the inverse of sq in an irrelevant context.

bizarre : Squash (฀ (Bool→ Squash Bool)
(λi → ฀ (Squash Bool→ Bool) (λu → (a : Bool)→ u (i a) ≡ a)))

bizarre = sq (sq, unsq, (λa → refl {x = a}))

This can be used to prove that Squash (true ≡ false) which directly leads to an inconsistency. We
have worked with Agda developers since then and they have been able to correct this issue based
on our explanation using a definitionally proof irrelevant universe. Thus, using a universe ॹPॸॵॶ,
of definitionally proof irrelevant propositions, is necessary to give a good theoretical justification
of irrelevant fields, something that hasn’t been done so far. Moreover, being an inhabitant of ॹPॸॵॶ
is a property of a type rather than the property of a particular argument of a function, which makes
it much more flexible and easier to justify.

Contributions. In this paper, we propose the first general treatment of a dependent type theory
with a proof irrelevant sort, with intuitions coming from the notion of homotopy levels of HoTT
and propositional truncation. This extension of type theory does not add any additional axioms
(apart from the existence of a proof irrelevant universe) and is in particular compatible with uni-
valence. We prove both consistency and decidability of type checking of the resulting type theory.
Then we show how to define an almost complete criterion to detect which proof-irrelevant in-
ductive definitions can be eliminated into types, correcting and extending singleton elimination.

3Agda 2.2.8, see https://github.com/agda/agda/blob/master/CHANGELOG.md#release-notes-for-agda-2-version-228.
4Added in Agda 2.2.10.
5Issue #2170 at https://github.com/agda/agda/issues/2170.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 3. Publication date: January 2019.

https://github.com/agda/agda/blob/master/CHANGELOG.md#release-notes-for-agda-2-version-228
https://github.com/agda/agda/issues/2170

Definitional Proof-Irrelevance without K 3:5

This criterion uses the general methodology of proof-relevant unification and dependent pattern
matching [Cockx and Devriese 2018; Cockx et al. 2014]. Our presentation is not specific to any
particular type theory, which is shown by an implementation both in Coq, using an impredicative
proof-irrelevant sort, and in Agda, using a hierarchy of predicative proof-irrelevant sorts.

Links to the source code of the Coq and Agda implementations together with examples can be
foudn in https://github.com/CoqHoTT/sProp.

Plan of the paper. In Section 2, we give an overview of the main techniques and results devel-
oped in this paper. Section 3 presents the general dependent type theory with proof-irrelevant
sorts, called sMLTT. We prove the main metatheoretical properties of sMLTT in Section 4. We
then describe our criterion correcting and extending singleton elimination in Section 5. Finally, in
Section 6 we discuss our implementation of definitional proof irrelevance in Coq and in Agda, and
show its usefulness on various examples (available as anonymous supplemental material), includ-
ing a formalization of the setoid model in Coq.

2 LESSONS FROM HOMOTOPY TYPE THEORY

Before diving into the precise definition of a type theory with definitional proof irrelevance, let us
explore what makes it difficult to introduce while keeping decidable type checking and avoiding
to induce additional axioms such as UIP or functional extensionality.

2.1 sProp as a Syntactical Approximation of Mere Propositions

The first lesson from HoTT is that each type in ॹPॸॵॶ must be a mere proposition, i.e. have homo-
topy level −1. Formally, the universe of mere propositions hPॸॵॶ is defined as

Definition hProp := { A : Type & ∀ x y : A , x = y }.

and thus it corresponds exactly to the universe of types satisfying propositional proof irrelevance.
As we have mentioned in the introduction, the operator Squash which transforms any type into
an inhabitant of ॹPॸॵॶ, corresponds to the propositional truncation.

The existence of ॹPॸॵॶ becomes interesting only when we can eliminate some inductive defini-
tions in ॹPॸॵॶ to arbitrary types. If not, ॹPॸॵॶ constitutes an isolated logical layer corresponding
to propositional logic, without any interaction with the rest of the type theory. The question is
thus:

“ Which inductive types of a universe of definitionally proof irrelevant types

can be eliminated over arbitrary types? ”

Of course, to preserve consistency, this should be restricted to inductive types that can be proven
to be mere propositions, but this is not enough to preserve decidability of type checking and inde-
pendence from UIP.

2.2 Flirting with Extensionality

Let us first look at an apparently simple class of mere propositions, contractible types. They con-
stitute the lowest level in the hierarchy of types, for which not only there is at most one inhabitant
up to equality, but there is exactly one. Of course, the unit type in ॹPॸॵॶ which corresponds to the
true proposition

Inductive sUnit : sProp := tt : sUnit.

is contractible. We will say that the unit type can be eliminated to any type, and thus we get a unit
type with a definitional η-law such that u ≡ tt for any u : sUnit. But in general, it should not be

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 3. Publication date: January 2019.

https://github.com/CoqHoTT/sProp

3:6 Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau

expected that any contractible type in ॹPॸॵॶ can be eliminated to an arbitrary type, as we can see
below.

Singleton types. A prototypical example of a non-trivial contractible type is the so-called single-
ton type. For any type A and a:A, it is defined as the subset of points in A equal to a:

Definition Sing (A : Type) (a : A) := { b : A & a = b }.

If we include singleton types in ॹPॸॵॶ, and hence permit its elimination over arbitrary types, we
are led to an extensional type theory, in which propositional equality implies definitional equality.
This would thus add UIP and undecidability of type checking to the theory.6 Indeed, assume that
singleton types can be eliminated to arbitrary types, then there exists a projection π1 : Sing A
a→ A which recovers the point from the singleton. But then, for any proof of equality e: a = b
between a and b in A, using congruence of definitional equality, there is the following chain of
implications

(a ; refl) ≡ (b ; e) : Sing A a ⇒ π1 (a ; refl) ≡ π1 (b ; e) : A ⇒ a ≡ b : A

and hence e : a = b implies a ≡ b. From this analysis, it is clear that ॹPॸॵॶ cannot include all con-
tractible types.

2.3 Flirting with Undecidability

Let us now look at other inductive types that are mere propositions without being contractible.
The first canonical example is the empty type

Inductive sEmpty : sProp := .

that has no inhabitant, together with an elimination principle which states that anything can be
deduced from the empty type

sEmpty_rect : ∀ T : Type, sEmpty→ T.

We will see that this type can be eliminated to any type, and this is actually the main way to make
ॹPॸॵॶ communicate with Tyॶ५. In particular, it allows the construction of computational values
by pattern matching and use a contraction in ॹPॸॵॶ to deal with absurd branches.

The other kind of inductive definition in ॹPॸॵॶ that can be eliminated into any type is a depen-
dent sum of a typeA in ॹPॸॵॶ and a dependent family overA in ॹPॸॵॶ, the nullary case being the
unit type sUnit.

Let us now have a look at more complex inductive definitions.

Accessibility predicate. As mentioned in the introduction, the accessibility predicate is a mere
proposition but it cannot be eliminated into any type while keeping conversion—and thus type-
checking—decidable. Intuitively, this is because the accessibility predicate allows to define fix-
points with a semantic guard (the fact that every recursive call is on terms y such that R y x)
rather than a syntactic guard (the fact that every recursive call is on a syntactic subterm). This
is problematic in a definitionally proof irrelevant setting because a function that is defined by in-
duction on an accessibility predicate could be unfolded infinitely many times. To understand why,
consider the inversion lemma that we can define as soon as Acc can be eliminated into any type

Definition Acc_inv A R (x : A) (X : Acc x) : ∀ y:A, R y x→ Acc y :=

Acc_rect (fun x⇒∀ y, R y x→ Acc y) (fun x X _⇒ X) x X.

This inversion lemma makes use of the general eliminator on Acc:

6This remark is originally due to Peter LeFanu Lumsdaine.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 3. Publication date: January 2019.

Definitional Proof-Irrelevance without K 3:7

Acc_rect : ∀ P : A→ Type, (∀ x : A, (∀ y : A, R y x→ Acc y)→ (∀ y : A, R y x→ P y)→ P

x)

→ ∀ x : A, Acc x→ P x

But then, from this inversion and using definitional proof irrelevance, the following definitional
equality is derivable, for any predicate P : A→ Type and function F : ∀ x, (∀ y, r y x→ P y)→
P x and X : Acc x

Acc_rect P F x X ≡ F x (fun y r⇒ Acc_rect P F y (Acc_inv A R x X y r))

In an open context, it is undecidable to know how many time this unfolding must be done. Even
the strategy that there is at most one unfolding may not terminate. Indeed, suppose that we are in
a (possibly inconsistent) context where there is a proof R_refl showing that R is reflexive. Then,
applying the unfolding above once to F := fun x f⇒ f x (R_refl x) computes to

Acc_rect P F x X ≡ Acc_rect P F x (Acc_intro x (Acc_inv A R x X))

and the unfolding can start again for ever.
As mentioned above, if we analyze the source of this infinite unfolding, it is due to the recursive

call toAcc in the argument ofAcc_intro on an arbitrary variable y that is not syntactically smaller
than the initial x variable, but semantically guarded by the R y x condition. This example shows
that singleton elimination is not a sufficient criterion for when an inductive type in ॹPॸॵॶ can
be eliminated into any type, as one needs to introduce something similar to the syntactic guard
condition on fixpoints.

Let us now see why this is not a necessary condition either.

The Good and the Bad Less Than or Equal. The definition of less than or equal given in introduc-
tion does not satisfy the singleton elimination criterion because it has two constructors. However,
m ≤ n can easily be shown to be a mere proposition for any natural numbers m and n. Thus, it
is a good candidate for an ॹPॸॵॶ being eliminable into any type. The reason why it is a mere
proposition is however more subtle than what singleton elimination usually requires, as not every
argument of the constructors of ≤ is in ॹPॸॵॶ. To see why it is a mere proposition, one needs to
distinguish between forced and non-forced constructor arguments7. A forced argument is an argu-
ment that can be deduced from the indices of the return type of the constructor, and that are not
computationally relevant. Consider for instance the constructor ≤S : ∀m n, m ≤ n→ m ≤ S n,
its two first arguments m and n can be computed from the return type S m ≤ S n and are thus
forced. In contrast, the argument of type m ≤ n cannot be deduced from the type and thus must
be in ॹPॸॵॶ.

However, being a mere proposition is not sufficient as we have seen with singleton types and
the accessibility predicate. Here the situation is even more subtle. Consider the (propositionally)
equivalent definition of n ≤ m that is actually the one used in the Coq standard library:

Inductive ≤bad : N→ N→ sProp :=

| ≤bad_refl : ∀ n, n ≤bad n

| ≤badS : ∀m n, m ≤bad n→ m ≤bad S n.

It can also be shown that m ≤bad n is a a mere proposition, but ≤ and ≤bad do not share the
same inversion principle. Indeed, in the (absurd) context that e : S n ≤bad n, there are two ways
to form a term of type S n ≤bad S n, either by using ≤bad_refl (S n) or by using ≤badS (S n) n e.
This means that allowingm ≤bad n to be eliminated into any type would require to decide whether
the context is absurd or not, which is obviously not a decidable property of type theory. Form ≤ n

7This terminology has been introduced by [Brady et al. 2004].

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 3. Publication date: January 2019.

3:8 Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau

the situation is different, because the return type of the two constructors ≤0 and ≤S are orthogonal,
in the sense they cannot be unified.

2.4 Dependent Pattern Matching to the Rescue

We propose a new criterion for when a type in ॹPॸॵॶ can be eliminated to an arbitrary type, fixing
and generalizing the singleton elimination criterion.This criterion is general enough to distinguish
between the definitions of ≤ and ≤bad . In general, an inductive type in ॹPॸॵॶ may be eliminated
if it satisfies three properties:

(1) Every non-forced argument must be in ॹPॸॵॶ.
(2) The return types of constructors must be pairwise orthogonal.
(3) Every recursive call must satisfy a syntactic guard condition.

To justify this criterion, we provide a general translation from any inductive type satisfying this
criterion to an equivalent type defined as a fixpoint, using ideas coming from dependent pattern
matching [Cockx and Devriese 2018; Cockx et al. 2014]. Indeed, looking at the inductive definition
from right (its conclusion) to left (its arguments) allows us to construct a case tree similarly to what
is done with a definition by pattern matching. Providing this translation also means we avoid
the need to extend our core language, as all inductive types can be encoded using the existing
primitives.

Rejecting constructor arguments not in sProp. The first property is the most straightforward to
understand: if a constructor of an inductive type can store some information that is computation-
ally relevant, then it should not be in ॹPॸॵॶ (or at least, we should never eliminate it into Tyॶ५).

Rejecting non-orthogonal definitions. The idea of the second property is that the indices of the
return type of each constructor should fix in which constructor we are, by using disjoint indices
for the different constructors. This is a syntactical approximation of the orthogonality criterion.
This is the property that fails to hold for ≤bad .

Rejecting non terminating fixpoints. In addition to the first two properties, we also require a
syntactic guard condition on the recursive constructor arguments. This guard condition enforces
that the resulting fixpoint definition is well-founded. We may thus use the exact same syntactic
condition already used for fixpoints already implemented in the type theory (no matter which one
it is, as long as it guarantees termination).

For instance, in the case of Acc, the case tree induces the following definition, which is auto-
matically rejected by the termination checker because of the unguarded recursive call Acc' y

Fail Equations Acc' (x: A) : sProp :=

Acc' x := (∀ y:A, R y x→ Acc' y).

Deriving fixpoints and eliminators automatically. If all three properties are satisfied, we can auto-
matically derive a fixpoint in ॹPॸॵॶ that is equivalent to the inductive definition. Each constructor
corresponds to a unique branch of a case tree, and the return type in each branch is the dependent
sum of the non-forced arguments of the corresponding constructor (the zero case being sUnit).
For instance, for ≤, this is given by

Equations ≤fix (n m : N) : sProp :=

0 ≤fix n := sUnit;

S m ≤fix S n := m ≤fix n;

S _ ≤fix 0 := sEmpty.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 3. Publication date: January 2019.

Definitional Proof-Irrelevance without K 3:9

A, B, M, N ::= Tyॶ५i | x | M N | λ x : A. M | Πx : A. B | Σx : A. B | π1 M | π2 M | (M,N)

Γ, ∆ ::= . | Γ, x : A

⊢ .

Γ ⊢ A : Tyॶ५

⊢ Γ, x : A

Γ ⊢ A : Tyॶ५

Γ, x : A ⊢ x : A

Γ ⊢ M : B Γ ⊢ A : Tyॶ५

Γ, x : A ⊢ M : B

⊢ Γ

Γ ⊢ Tyॶ५i : Tyॶ५i+1

Γ ⊢ A : Tyॶ५i Γ, x : A ⊢ B : Tyॶ५j

Γ ⊢ Πx : A. B : Tyॶ५max(i, j)

Γ, x : A ⊢ M : B Γ ⊢ Πx : A. B : Tyॶ५

Γ ⊢ λ x : A. B : Πx : A. B

Γ ⊢ M : Πx : A. B Γ ⊢ N : A

Γ ⊢ M N : B {x := N }

Γ ⊢ A : Tyॶ५i Γ,x : A ⊢ B : Tyॶ५j

Γ ⊢ Σ(x : A),B : Tyॶ५max(i, j)

Γ ⊢ M : A Γ,x : A ⊢ M : B

Γ ⊢ (M,N) : Σ(x : A).B

Γ ⊢ p : Σ(x : A).B

Γ ⊢ π1p : A

Γ ⊢ p : Σ(x : A).B

Γ ⊢ π2p : B[x ≔ π1p]

Γ ⊢ M : B Γ ⊢ A : Tyॶ५ Γ ⊢ A ≡ B

Γ ⊢ M : A

Γ ⊢ (λ x : A. M) N ≡ M {x := N } (π1 M,π2 M) ≡ M Γ ⊢ π1 (M,N) ≡ M

Γ ⊢ π2 (M,N) ≡ N (congruence rules omitted)

Fig. 1. Syntax and typing rules of MLTT

Note that branches corresponding to no constructor are given the value sEmpty. One can then
also define functions corresponding to the constructors and the elimination principle (to Tyॶ५) of
the inductive type. Details of the algorithm and its correctness are given in Section 5.

3 ADDING DEFINITIONAL PROOF IRRELEVANCE TO MLTT

Most type theories describable by Pure Type Systems (PTS) can be extended with a notion of
predicative or impredicative hierarchy of sorts ॹPॸॵॶi which satisfies definitional proof irrelevance.
This is illustrated in this paper by the fact that this extension can be applied to both Coq and
Agda, which correspond to slightly different PTSs. However, to keep the theoretical presentation
simple, we present this extension for a prototypical PTS-style type theory, namely Martin-Löf
Type Theory [Martin-Löf 1975] (MLTT), and only go into the difference between the Coq and
Agda implementations in Section 6. In this section, we first introduce MLTT and then explain how
to add a proof irrelevant hierarchy of sorts, and various specific types and type constructors in it.

3.1 MLTT

MLTT is the PTS-style type theory described in Figure 1, using, as usual, three statements mutually
recursively defined. The statement ⊢ Γ means that the environment Γ is well formed, while Γ ⊢
M : A means that the term M has type A in environment Γ and the statement Γ ⊢ A ≡ B means A
is convertible to B in context Γ.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 3. Publication date: January 2019.

3:10 Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau

MLTT features dependent products, a negative presentation of dependent sums (using projec-
tion instead of pattern-matching) and a predicative hierarchy of universes Tyॶ५i . The conversion
judgment features β-reduction, traditional rules of computation for dependent sums (surjective
pairing and projections), together with congruence rules for every constructor. As usual, we note
A→ B for Πx : A. B when B does not depend on x .

MLTT satisfiesmany good properties amongwhich consistency and decidability of type-checking
(see [Abel et al. 2018] for the first mechanized proof of those properties). In the sequel, we present
an extension of MLTT with definitional proof irrelevance that preserves those two properties.

3.2 Adding sProp to MLTT

MLTT can be extended with a predicative hierarchy of sorts ॹPॸॵॶi by adding the rule

⊢ Γ

Γ ⊢ ॹPॸॵॶi : Tyॶ५i+1

and extending the rule of creation of a dependent product to deal with ॹPॸॵॶ

Γ ⊢ A : ॹPॸॵॶi Γ, x : A ⊢ B : Tyॶ५j

Γ ⊢ Πx : A. B : Tyॶ५max(i, j)

Γ ⊢ A : Uॴiॼi Γ, x : A ⊢ B : ॹPॸॵॶj

Γ ⊢ Πx : A. B : ॹPॸॵॶmax(i, j)

where Uॴiॼ is either ॹPॸॵॶ or Tyॶ५.

An impredicative variant. Wewill see in section 4 that we can also allow an impredicative version
of ॹPॸॵॶ, which amounts to just ignoring the indices on ॹPॸॵॶ throughout.

The main feature of ॹPॸॵॶ is that the types inhabiting it are definitionally proof-irrelevant,
which is enforced by the following rule of conversion:

Γ ⊢ A : ॹPॸॵॶi Γ ⊢ x : A Γ ⊢ y : A

Γ ⊢ x ≡ y : A

So far the universe hierarchy of ॹPॸॵॶ is mostly unconnected from the universe hierarchy of
Tyॶ५’s. Therefore, we add several extensions to improve on this. Namely, we add the empty type,
a squash operator, a box operator and dependent sums in ॹPॸॵॶ. We call the resulting system
sMLTT.

3.3 Empty Type

We add an empty type in ॹPॸॵॶ, eliminable to any type (including those in Tyॶ५ which are proof
relevant):

Γ ⊢ sEmpty : ॹPॸॵॶi

Γ ⊢ A : Uॴiॼi Γ ⊢ e : sEmpty

Γ ⊢ sEmpty_rect A e : A

This is enough to definemany other types in ॹPॸॵॶ. For instance sUnit is just sEmpty→ sEmpty
(whose inhabitant λ x : sEmpty. x is unique up to conversion due to proof irrelevance).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 3. Publication date: January 2019.

Definitional Proof-Irrelevance without K 3:11

3.4 Squash

We can add a squash operator (a.k.a. bracket type) by the following rules:

Γ ⊢ A : Tyॶ५i

Γ ⊢ ∥A∥ : ॹPॸॵॶi

Γ ⊢ x : A

Γ ⊢ sq x : ∥A∥

Γ ⊢ A : Tyॶ५i Γ ⊢ P : ॹPॸॵॶj Γ ⊢ f : A→ P Γ ⊢ x : ∥A∥

Γ ⊢ unsq P f x : P

Note that thanks to definitional proof irrelevance, the non-dependent eliminator unsq P f x is
enough to define the dependent one.

In an impredicative setting, ∥A∥, sq x and unsq P f x can be defined using a standard impred-
icative encoding:

∥A∥ ≔ Π(P : ॹPॸॵॶ), (A→ P)→ P

sq x ≔ λ P : ॹPॸॵॶ. λ f : A→ P . f x

unsq P f x ≔ x P f

In a predicative setting, the situation is similar but the encoding only allows one to define the
eliminator to lower universes as captured by the following rules

Γ ⊢ A : Tyॶ५i

Γ ⊢ ∥A∥i, j : ॹPॸॵॶmax(i, j+1)

Γ ⊢ A : Tyॶ५i Γ ⊢ P : ॹPॸॵॶj Γ ⊢ f : A→ P Γ ⊢ x : ∥A∥i, j j < i

Γ ⊢ unsq P f x : P

If we want to eliminate the squash type to arbitrary types in a predicative setting, then we have
to add it as a primitive.

3.5 Box

If we see ॹPॸॵॶ as a sub-universe of Tyॶ५ there should be an inclusion from ॹPॸॵॶ to Tyॶ५, con-
verse to the squash operator.

Γ ⊢ A : Pॸॵॶi

Γ ⊢ 2A : Tyॶ५i

Γ ⊢ x : A

Γ ⊢ box x : 2A

Γ ⊢ A : ॹPॸॵॶi
Γ ⊢ P : 2A→ Tyॶ५j or Γ ⊢ P : 2A→ ॹPॸॵॶj Γ,x : A ⊢ f : P (box x) Γ ⊢ x : 2A

Γ ⊢ unbox P f x : P x

together with the conversion rule

Γ ⊢ unbox P f (box a) ≡ f a

This time, the dependent elimination can not be deduced from the non-dependent one, and the
conversion rule is not automatic, because 2A lives in Tyॶ५i , not in ॹPॸॵॶi .

Having the box operator is equivalent to allowing one of the sides of a pair to be in ॹPॸॵॶ. Indeed,
2A is the same as Σ(x : A).Unit or Σ(x : Unit).A, and instead of Σ(x : A).B with A : ॹPॸॵॶ we
could use Σ(y : 2A).B[x ≔ unbox A (λ z : A. z) y].

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 3. Publication date: January 2019.

3:12 Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau

This is what we need to be able to talk about properties with both relevant and irrelevant parts.
For instance the type of symmetric strict relations on some type A is

Σ(R : A→ A→ ॹPॸॵॶ).Πx y : A. R x y → R y x

A→ A→ ॹPॸॵॶ is a large type, and the proof of symmetry is an ॹPॸॵॶ.
Making the box a primitive construct and deriving from it the concept of relevant pairs with

an irrelevant component allows for a better separation of concerns. For instance, if we allowed
irrelevant components in pairs with eta we would have to take care that if all components were
irrelevant, then the resulting type would be definitionally irrelevant and so should be in ॹPॸॵॶ.

In the implementations for Coq and Agda the box is subsumed by inductive types, see Section 6.

3.6 Dependent Sums

If both components of a pair are in ॹPॸॵॶ, we can allow the pair itself to be in ॹPॸॵॶ too:

Γ ⊢ A : ॹPॸॵॶ Γ,x : A ⊢ B : ॹPॸॵॶj

Γ ⊢ Σs (x : A).B : ॹPॸॵॶmax(i, j)

Γ ⊢ p : Σs (x : A).B

Γ ⊢ πs1p : A

Γ ⊢ p : Σs (x : A).B

Γ ⊢ πs2p : B[x ≔ πs1p]

Since we have definitional proof irrelevance, the expected computation rules for the projections
and the surjective pairing conversion rule already hold and do not have to be added explicitly to
the conversion.

In an impredicative setting, dependent sums can be encoded as follows:

Σs (x : A).B := Π P : ॹPॸॵॶ. (Πx : A. B x → P)→ P

(a,b) : Σs (x : A).B := λ P : ॹPॸॵॶ. λ f : _. f a b

πs1(p : Σs (x : A).B) : A := p A (λ x : A. λy : B x . x)
πs2(p : Σs (x : A).B) : B(πs1 p) := p (B(πs1 p)) (λ x : A. λy : B x . y)

Note that πs2 is well typed due to proof irrelevance of A.
Dependent sums can also be encoded in a predicative setting extended with primitive squash

and box:

Σs (x : A).B := ∥(x : 2A).2B(unbox A id x)∥
(a,b) : Σs (x : A).B := sq (box a,box b)
πs1(p : Σs (x : A).B) : A := unsq A (λ x : _. unbox _ id (πs1x)) p
πs2(p : Σs (x : A).B) : B(πs1p) := unsq (B(πs1p)) (λ x : _. unbox _ id (πs2x)) p

where we have omitted some obvious type annotations and where id is the identity function.

3.7 Other Inductive Types

There is no need for other primitive inductive types in ॹPॸॵॶ (assuming the corresponding proof
relevant inductive types are available in Tyॶ५).

Indeed, either an inductive should not be permitted in ॹPॸॵॶ because it would introduce incon-
sistency (booleans) or undecidability (accessibility) and in that case, squashing the corresponding
proof relevant inductive type is enough.

In the other case, if the inductive type satisfies the criteria for being in ॹPॸॵॶ, we will see in
section 5 that it can actually be encoded as a recursive definition using sEmpty, sUnit and proof
irrelevant pairs. This translation comes with preconditions on the shape of the inductive type
being translated, preventing it from working in cases where the inductive cannot be regarded as a
strict proposition such as booleans (which would make the theory inconsistent) or the accessibility
predicate (which would make conversion undecidable).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 3. Publication date: January 2019.

Definitional Proof-Irrelevance without K 3:13

4 METATHEORETICAL PROPERTIES OF sMLTT

In this section, we prove the consistency of the predicative version of sMLTT by reducing it to
the consistency of Extensional TypeTheory (ETT). We then remark that the impredicative version
is justified by the propositional resizing rule proposed by Vladimir Voevodsky [Voevodsky 2011].
We further show that sMLTT is either compatible with the univalence axiom or supports a com-
putational version of UIP, depending on whether we authorize elimination of equality in ॹPॸॵॶ or
not. Finally, we show that type checking of sMLTT is decidable by modifying the proof by logical
relations of Abel et al [Abel et al. 2018; Abel and Scherer 2012].

4.1 ETT

A, B, M, N ::= . . . | M =A N | reflM | J(y.q.M, e ,u)

Γ ⊢ A : Tyॶ५i Γ ⊢ x : A Γ ⊢ y : A

Γ ⊢ x =A y : Tyॶ५i

Γ ⊢ e : x =A y

Γ ⊢ x ≡ y

Γ ⊢ M : A

Γ ⊢ reflM : M =A M

Γ ⊢ e : M =A N Γ,y : A,q : M =A y ⊢ P : Tyॶ५i Γ ⊢ u : P {y := M }{q := reflM }

Γ ⊢ J(y.q.P , e,u) : P {y := N }{q := e}

Γ ⊢ J(y.q.P , reflM ,u) ≡ u (+ other rules of MLTT)

Fig. 2. Syntax and typing rules of ETT

ETT is an extension of MLTT, presented in Figure 2, with a propositional equality x =A y

that satisfies the reflection rule, that is every propositionally equal terms are convertible. We also
assume that there is a type Unit with only one inhabitant tt.

It is well known that ETT has an undecidable type checking as deciding conversion requires to
decide propositional equality, since it is possible to encode the halting problem with an equality
in ETT. But ETT still satisfies some good properties: it has a decidable “derivation” checking and
it is consistent as it is conservative over MLTT with an identity type (plus UIP and functional
extensionality), as shown by Martin Hofmann [Hofmann 1995].

We should notice that using the reflection rule andη-law for functions, one can derive functional
extensionality, that is given two functions f ,д : Πx : A. B there is a term

funextf ,д : (Πa : A. f a =B {x :=a } д a)→ f =Π x :A. B д

Also, the reflection rule allows deriving UIP. So adding the reflection rule to MLTT has additional
consequences. We show in this section that for sMLTT, UIP can be safely added, but is independent
from the theory, as we show in Section 4.3 that sMLTT is compatible with univalence.

4.2 Consistency of sMLTT

Following the notion of syntactical translations advocated in [Boulier et al. 2017], we prove consis-
tency of sMLTT by a type preserving translation from sMLTT into ETT.The idea of the translation
is to see inhabitant of ॹPॸॵॶ as a pair of type in ETT together with a proof that it is a mere propo-
sition. Therefore, ॹPॸॵॶ is translated as the following dependent sum:

[ॹPॸॵॶi] := ΣA : Tyॶ५i . Πx y : A. x = y.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 3. Publication date: January 2019.

3:14 Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau

[Tyॶ५i] := ΣA : Tyॶ५i . Unit

[ॹPॸॵॶi] := ΣA : Tyॶ५i . Πx y : A. x = y

[x] := x

[Πx : A. B : Tyॶ५] := (Πx : JAK. JBK; tt)

[Πx : A. B : ॹPॸॵॶ] := (Πx : JAK. JBK;

λ f д : Πx : JAK. JBK. πΠ JAK JBKpf f д)

[λ x : A. M] := λ x : JAK. [M]

[MN] := [M] [N]

[sEmpty] := (Empty; λ x y : Empty. πEmpty x y)

[sEmpty_rect P t] := Empty_rect [P] [t]

[2A] := (π1[A], tt)

[box x] := [x]

[unbox P f a] := [f] [a]

[Σx : A. B : Tyॶ५] := (Σx : JAK. JBK; tt)

[Σx : A. B : ॹPॸॵॶ] := (Σx : JAK. JBK;

λX Y : Σx : JAK. JBK. πΣ JAKpf JBKpf X Y)

[λ x : A. M] := λ x : JAK. [M]

[MN] := [M] [N]

JAK := π1[A]

JAKpf := π2[A]

πEmpty x y := Empty_rect (x = y) x

πΠ A πB f д := funext (λ x : A. πB(f x)(д x))

πΣ πA πB X Y := eqΣ (πA(π1X)(π1Y)) (πB(π2X)(π2Y))

Fig. 3. Syntactical Translation from sMLTT to ETT

The rest of the translation is rather straightforward, but for the fact that we need to provide an ad-
ditional proof that type constructors which end in ॹPॸॵॶ build mere propositions. For instance, the
fact that a dependent product whose codomain is a mere proposition is itself a mere proposition
can be proven using functional extensionality in ETT. Definitional proof irrelevance is then mod-
eled by the fact that every inhabitant of ॹPॸॵॶ is a mere proposition together with the reflection
rule of ETT.

The translation is described in Figure 3, where eqΣ is defined as the witness that equality be-
tween elements of an dependent sum is given by the equality of the corresponding projections
(which is provable using J)

eqΣ : Πx y : Σa : A. B. π1x =A π1y → π2x =B {a:=π1x } π2y → x =Σa:A. B y.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 3. Publication date: January 2019.

Definitional Proof-Irrelevance without K 3:15

Note that this statement is slightlymore involved in intentional type theory8 as the second equality
does not type-check in MLTT, because π2y does not have type B{a := π1x }. Here, the situation is
simpler as we can use the reflection rule to convert B{a := π1y} into B{a := π1x } using the first
equality.

The following two properties are proved bymutual induction (althoughwe state them separately
for readability).

L५ॳॳ१ 4.1 (ॶॸ५ॹ५ॸॼ१ॺiॵॴ ॵ६ ३ॵॴॼ५ॸॹiॵॴ). For every term t and u of sMLTT, if Γ ⊢ t ≡ u : A
then JΓK ⊢ [t] ≡ [u] in ETT.

Pॸॵॵ६. By induction on the proof of congruence. The structure of the term is preserved by the
translation, so β-reduction and congruence rules are automatically preserved.The only interesting
case is the rule for definitional proof-irrelevance which says that when Γ ⊢ A : ॹPॸॵॶ, then t and
u are convertible. But by correctness of the translation (Theorem 4.2), we know that JΓK ⊢ [A] :
ΣA : Tyॶ५i . Πx y : A. x = y and [t], [u] have type JAK. Thus we can form of proof of [t] = [u] by
JAKpf [t] [u]. From which we deduce [t] ≡ [u] by the reflection rule. □

Th५ॵॸ५ॳ 4.2 (३ॵॸॸ५३ॺॴ५ॹॹ ॵ६ ॺh५ ॹyॴॺ१३ॺi३१ॲ ॺॸ१ॴॹॲ१ॺiॵॴ). For every typing derivation of

sMLTT Γ ⊢ M : A, we have the corresponding derivation JΓK ⊢ [M] : JAK in ETT.

Pॸॵॵ६. By induction on the typing derivation. □

About impredicativity and resizing rules. ETT is not sufficient to interpret impredicativity of
ॹPॸॵॶ in sMLTT, because if we state [ॹPॸॵॶ] := ΣA : Tyॶ५0. Πx y : A. x = y, where Tyॶ५0 is
some fixed universe (let say the first one) in the hierarchy, then the typing rule for impredicativity
of dependent product for ॹPॸॵॶ can not be interpreted by the translation because for Γ ⊢ A : Tyॶ५i
and Γ, x : A ⊢ B : ॹPॸॵॶ, one has that

JΓK ⊢ [Πx : A. B] : ΣA : Tyॶ५i . Πx y : A. x = y

To remedy this situation, we canmake use of the propositional resizing rule introduced by Vladimir
Voevodsky [Voevodsky 2011], which says that every mere proposition can be put in the universe
Tyॶ५0.

Γ ⊢ A : Tyॶ५i Γ ⊢ e : Πx y : A. x =A y

Γ ⊢ rr(A, e) : Tyॶ५0

The propositional resizing is justified by any classical model of ETT, that is a model which satisfies
the law of excluded middle, because in such a model, every mere proposition is either sEmpty or
Unit and thus lives in the lowest universe.9 Using propositional resizing, it is thus possible to define
the coercion10

rrॹPॸॵॶ : (ΣA : Tyॶ५i . Πx y : A. x = y)→ ΣA : Tyॶ५0. Πx y : A. x = y

:= λA : _. (rr(π1A,π2A)), λ x y : rr(π1A,π2A). π2A x y)

which is enough to interpret impredicativity of ॹPॸॵॶ.

4.3 sMLTT is Compatible with Univalence

We now show that sMLTT is compatible with univalence, and thus in particular, definitional proof
irrelevance does not necessary imply UIP. To that end, we consider an extension of ETT with a

8The precise statement and a proof of it can be found for instance in [Univalent Foundations Program 2013].
9Vladimir Voevodsky has also introduced other resizing rules involving type equivalences which are a bit more controver-

sial as their justifications have not been completely written up.
10For simplicity, we assume that inhabitants of A and rrA are the same, but to keep type-checking decidable, we should

use explicit wrapper from one to the other.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 3. Publication date: January 2019.

3:16 Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau

[Tyॶ५i] := ΣA : FTyॶ५i . Unit

[ॹPॸॵॶi] := ΣA : FTyॶ५i . Πx y : A. x = y

Fig. 4. Syntactical Translation from sMLTT to HTS

second notion of equality, but restricted to fibrant types. This extension has first been proposed
by Vladimir Voevodsky under the name Homotopy Type System (HTS) [Voevodsky 2013] and has
later been reworked by Paolo Capriotti et. al. under the name two-level type theory [Altenkirch
et al. 2016; Capriotti 2017] (which may or may not be extensional for the strict equality). Those
two systems differ slightly. In particular, in HTS, there is only one type of integers which is fibrant,
whereas two level type theory distinguishes between fibrant and non-fibrant types. However, those
differences are not important for our purpose, so even though we refer to HTS, we could also have
used an extensional two-level type theory.

The main idea of HTS is to distinguish between types which live in Tyॶ५i for which equality
is strict, and fibrant types which live in FTyॶ५i for which there are two notions of equality: strict
equality a =A b and homotopical equality a ∼A b. The rules for a ∼A b are the same as for
propositional equality, except that the formation of a ∼A b is only possible when A is fibrant, and
the eliminator J∼ is restricted to fibrant predicates:

Γ ⊢ e : M ∼A N Γ,y : A,q : M ∼A y ⊢ P : FTyॶ५i Γ ⊢ u : P {y := M }{q := refl∼M }

Γ ⊢ J∼(y.q.P , e,u) : P {y := N }{q := e}

Then, the type of propositional equality is not fibrant, so it is not possible to derive propositional
equalities from homotopical ones.

We can modify the translation of Figure 3 to target the fibrant fragment of HTS. In this case,
types and propositions are interpreted as fibrant types, as shown in Figure 4. Note that [ॹPॸॵॶi] is
not by definition fibrant in HTS, so before stating the correctness of this modified translation, we
need to introduce a new rule in HTS in order to have

[ॹPॸॵॶi] : FTyॶ५i .

This rule is admissible as has been proven by Thierry Coquand in his note on the universes of
Bishop sets and strict propositions [Coquand 2016]. Indeed, using the cubical model of type the-
ory (which is a model of HTS), Thierry Coquand shows in particular that the universe of strict
propositions is fibrant (Theorem 6.2).

It is now easy to replay the proof of Theorem 4.2 to show the correctness of the syntactical
translation in HTS and conclude the following corollary.

Cॵॸॵॲॲ१ॸy 4.3. sMLTT is compatible with univalence.

Pॸॵॵ६. As the translation of Tyॶ५i is isomorphic to FTyॶ५i and the translation of a dependent
product in Tyॶ५i is directly translated as a dependent product, we can add a univalent fibrant
equality in Tyॶ५i in sMLTT which is simply translated as the univalent equality in FTyॶ५i . □

4.4 Strict Identity and UIP

We now consider an optional extension, adding propositional equality in ॹPॸॵॶ. Since this implies
uniqueness of identity proofs, this extension is not always desired, in particular if we want to stay
compatible with univalence, but we mention it because it provides a very simple and modular way
to add UIP in the system.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 3. Publication date: January 2019.

Definitional Proof-Irrelevance without K 3:17

Γ ⊢ A : Tyॶ५i Γ ⊢ x : A Γ ⊢ y : A

Γ ⊢ x =s
A y : ॹPॸॵॶi

Γ ⊢ M : A

Γ ⊢ reflsM : M =s
A

M

Γ ⊢ e : M =s
A

N Γ,y : A,q : M =s
A

y ⊢ P : Tyॶ५i Γ ⊢ u : P {y := M }{q := reflsM }

Γ ⊢ Js (y.q.P , e,u) : P {y := N }{q := e}

Γ ⊢ Js (y.q.P , reflM ,u) ≡ u

Fig. 5. Definition of a strict equality type.

In this context, the computation rule for equality in ॹPॸॵॶ can equivalently be stated as Γ ⊢
J(x .q.P , e,u) ≡ u when e : x =s x , as already noted by Benjamin Werner in [Werner 2008]. The
consistency of this extension is direct as it is justified by the translation presented in Figure 3 by
simply adding

[x =s
A y] := ([x] =JAK [y], uip JAK [x] [y])

where uipAx y : Π e e ′ : x =A y. e =x=y e ′ is a proof of UIP in ETT.Then refls and Js are directly
translated using refl and J .

4.5 Relevance Marks and Decidability of Type Checking

A naïve implementation of type theory with ॹPॸॵॶ requires to check during conversion if the
terms we are comparing are relevant or not. To compute this information requires 2 rounds of
typing: first to get its type, then to get the sort of the type, but this is not very efficient. There is
another issue, this time on the theoretical side: conversion can not be defined independently from
typing, and the standard technique to prove decidability of type checking developed by Andreas
Abel and others [Abel et al. 2018; Abel and Scherer 2012] based on algorithmic equality and logical
relations does not apply. We now introduce a notion of term annotation that allows to solve both
issues at the same time, thus making it possible to decide irrelevance syntactically, without relying
on type checking.

Specifically, we annotate lambdas and products according to the relevance of the bound type.The
same is done for each variable in a context. When adding a variable to a context and when typing
a function or product type we need to check the mark on the variable. The syntax with ॹPॸॵॶ and
the inference rules for adding a variable to a context are described in Figure 6. Adapting the other
rules and adding extensions is straightforward and left as an exercise to the reader.

∗ ::= Relevant | Irrelevant

A, B, M, N ::= ॹPॸॵॶi | Tyॶ५i | x | M N | λ x∗ : A. M
| Πx∗ : A. B | Σx : A. B | π1 M | π2 M | (M,N)

Γ, ∆ ::= . | Γ, x∗ : A

Γ ⊢ A : Tyॶ५i

⊢ Γ,xRelevant : A

Γ ⊢ A : ॹPॸॵॶi

⊢ Γ,x Irrelevant : A

Fig. 6. sMLTT with relevance marks

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 3. Publication date: January 2019.

3:18 Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau

The procedure to decide the relevance of a term in a context is defined by induction on the
syntax:

• relevanceΓ(x) ≔ ∗ when x∗ ∈ Γ
• relevanceΓ(M N) ≔ relevanceΓ(M)
• relevanceΓ(λ x∗ : A. M) ≔ relevanceΓ,x ∗:A(M)
• Everything else (sorts, product types, relevant sigma types, relevant pairs and relevant pro-

jections) is relevant.

As binders for product types are annotated, we can pass this annotation to the context when we go
under the binder (for instance in a conversion procedure). Binders in Σ types need no annotation
since they are always relevant.

Pॸॵॶॵॹiॺiॵॴ 4.4. ForM well typed in Γ, relevanceΓ(M) = Irrelevant if and only if there existsA

such that Γ ⊢ M : A and Γ ⊢ A : sProp.

Pॸॵॵ६. By induction on the typing derivation of M . Only the case for application is of interest.
The crucial property is that relevance is stable by well-typed substitution: if Γ,x∗ : A ⊢ T : s ,
Γ ⊢ e : A and Γ ⊢ T [x ≔ e] : s ′ then s is ॹPॸॵॶ if and only if s ′ is ॹPॸॵॶ. This is given by
uniqueness of typing and the fact that substitution is type preserving. □

In a settingwith cumulativity, for instance in Coq, uniqueness of typing expresses that two types
of the same term have a common upper bound, so for correctness of marks, implicit cumulativity
from ॹPॸॵॶ to Tyॶ५ must be forbidden, instead relying on explicit cumulativity through 2.

Using relevance marks, we can replay the proof of decidability of type checking of Andreas Abel
and Gabriel Scherer using algorithmic equality and logical relations [Abel and Scherer 2012]—for
sMLTT without a strict equality, as the work of Abel et al. does not deal with identity types.

Their settingwas designed to handle irrelevant arguments, where irrelevancewasmarked on the
typing annotation Γ ⊢ t ÷Awhich says that t is used irrelevantly. Here we replace this irrelevance
annotation by Γ ⊢ t : A ∧ relevanceΓ(t) = Irrelevant. That is, the annotation is not on the typing
judgment but directly on the term. Concretely, we replace the rule for dealing with irrelevance in
the definition of structural equality on neutral terms by

Γ ⊢ n ↔ n : A relevanceΓ(n) = Irrelevant Γ ⊢ n′ ↔ n′ : A

Γ ⊢ n ↔ n′ : A

Once this change has been done, we can replay their proof directly to get:

Th५ॵॸ५ॳ 4.5 (Fॸॵॳ Th५ॵॸ५ॳ 6.7, [A२५ॲ १ॴ४ S३h५ॸ५ॸ 2012]). Γ ⊢ t ≡ t ′ : T is decidable.

5 FROM INDUCTIVE TYPE TO A FIXPOINT

So far, we have described the type theory sMLTT with a universe ॹPॸॵॶ consisting of function
types, the empty type, the unit type, dependent sum types, and a squash type. But in general
we also want to define arbitrary inductive types in ॹPॸॵॶ. On one hand, we can always define
an inductive type in Tyॶ५ and then apply the propositional squash to bring it into ॹPॸॵॶ, but this
restricts its elimination principle to target types in ॹPॸॵॶ. On the other hand, we mentioned before
that certain inductive types can be translated to fixpoints using just the empty type, unit type, and
dependent sum as the basic building blocks in ॹPॸॵॶ. This translation has already been intuitively
sketched in Section 2.4. In this section, we give a formal criterion for when this translation is
possible and show how it can be automated.

The algorithm described here is inspired by the elaboration of definitions by dependent pattern
matching to a case tree described by Cockx and Abel [2018], and makes heavy use of much of the
same machinery for case analysis and proof-relevant unification.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 3. Publication date: January 2019.

Definitional Proof-Irrelevance without K 3:19

Note that there are other ways to define datatypes with a dependent elimination principle, as
for instance by using an impredicative encoding in a type theory enriched with dependent inter-
sections types as done in Cedille [Stump 2018].

5.1 Constructing the Case Tree

From a high-level view, the idea of the translation is to view the definition of the inductive type
as a function that does some case analysis on the indices and returns the argument types of the
appropriate constructor in each case. The types for which this translation succeeds are exactly the
types in ॹPॸॵॶ that can be eliminated into arbitrary types. For example, recall from Section 2.4
that we can view the definition of ≤ as the following definition:

Equations ≤fix (n m : N) : sProp :=

0 ≤fix n := sUnit;

S m ≤fix S n := m ≤fix n;

S _ ≤fix 0 := sEmpty.

One challenge in this translation is to determine which constructor arguments should appear on
the right-hand side: for the constructor ≤S (in the second equation), the argument of type m ≤ n
makes an appearance but the first two arguments m and n do not. These disappearing arguments
correspond exactly to the forced arguments of the constructor: their values can be uniquely deter-
mined from the type.

To tackle this problem in general, we choose not to translate the inductive definition to a list of
clauses, but directly to a case tree. For example, we construct the following case tree for ≤:

m ≤ n := casem



0 7→ ≤0

Sm′ 7→ casen

{

0 7→ ⊥

S n′ 7→ ≤S (p :m′ ≤ n′)

}


In general, a case tree representing an inductive datatype in ॹPॸॵॶ is either a leaf node of the form
c ∆ where c is a constructor name and∆ is a telescope of types in ॹPॸॵॶ, an empty node ⊥, or an
internal node of the form

casex
{
c1 ∆̂1 7→

τ1 Q1; . . . ; cn ∆̂n 7→
τn Qn

}

where x is a variable, ci are constructors with fresh variables ∆̂i for arguments, τi are substitutions
(these will be explained later), and Qi are again case trees.

For constructing a case tree from the declaration of the inductive type, we work on an elabora-
tion problem P of the form

Γ ⊢
{

c1 ∆1 [Φ1]; . . . ; ck ∆k [Φk]
}

where:

• Γ is the ‘outer’ telescope of datatype indices,
• c1, . . . , ck are the names of the constructors,
• ∆i is the ‘inner’ telescope of arguments of ci, and
• Φi is a set of constraints {wi j /

? vi j : Ai j | j = 1 . . . l }.

To transform the definition of an inductive datatype D to a case tree, the initial elaboration
problem has for Γ the index telescope of D, c1, . . . , ck all constructors of D, ∆i the argument
telescope of ci, and Φi = {x j /? vi j : Aj | j = 1 . . . l } where Γ = (x1 : A1) . . . (xl : Al) and
vi1, . . . ,vil are the indices targeted by ci, i.e. ci : ∆i → D vi1 . . . vil . For example, for ≤ we start

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 3. Publication date: January 2019.

3:20 Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau

with the following elaboration problem:

(m n : N) ⊢

{

≤0 (n′ : N) [m /? 0 : N,n /? n′ : N]
≤S (m′ n′ : N)(p :m′ ≤ n′) [m /? Sm′ : N,n /? S n′ : N]

}

From this initial problem, the elaboration proceeds by successive case splitting on variables in
Γ and simplification of constraints in Φi until there are only zero or one constructors left and
all constraints have been solved. More specifically, the elaboration algorithm may perform the
following steps:

Eࢠ࢙࢜y If there are no constructors left, elaboration is done and returns the case tree ⊥:

Γ ⊢ {} ; ⊥

D࢚࢛e If there is a single constructor left and all constraints are solved, elaboration checks if
all remaining arguments of the constructor are in ॹPॸॵॶ. If this is the case, it returns a leaf
node containing this constructor:

∀(x : A) ∈ ∆. A : ॹPॸॵॶ

Γ ⊢
{

c ∆ []
}

; c ∆

Sࢢ࢛࢘e C࢞ࢠ࢚࢛࢟aiࢠ࢚ If there is a constraint of the form y /? x where x is bound in ∆ and y
bound in Γ, we can instantiate the variable x to y, removing it from ∆ in the process:

Γ ⊢
{

c ∆1(∆2[y/x]) [Φ]
}

; Q (x : A) ∈ Γ

Γ ⊢
{
c ∆1(x : A)∆2 [y /? x : A,Φ]

}
; Q

Si࢙࢘࢜ify c࢞ࢠ࢚࢛࢟aiࢠ࢚ If the left- and right-hand side of a constraint are applications of the
same constructor, we can simplify the constraint:

d : ∆′ → D w̄ ′ Γ ⊢
{
c ∆ [v̄ /? ū : ∆′,Φ]; P

}
; Q

Γ ⊢
{
c ∆ [d v̄ /? d ū : D w̄,Φ]; P

}
; Q

Reࢢ࢛࢙e c࢞ࢠ࢚࢛࢟aiࢠ࢚ If a constraint is trivially satisfied, it can be removed:

Γ ⊢ u = v : A Γ ⊢
{

c ∆ [Φ]; P
}

; Q

Γ ⊢
{
c ∆ [v /? u : A,Φ]; P

}
; Q

Reࢢ࢛࢙e cࢡ࢞ࢠ࢚࢛࢟c࢛࢞ࢠ If a constraint is unsolvable because the left- and right-hand side are
applications of distinct constructors, the constructor does not contribute to this branch of
the case tree and can be safely removed:

Γ ⊢ {P } ; Q

Γ ⊢
{
c ∆ [d2 v̄ /? d1 ū : D w̄,Φ]; P

}
; Q

S࢘࢜iࢠ Finally, if (x : D w̄) ∈ Γ and each constraint set Φi contains a constraint of the form
x /? dj ūj : D w̄ where dj is a constructor of the datatype D, elaboration continues by
performing a case split on x . For each constructor dj : ∆

′
j → D w̄ ′j , we use proof-relevant

unification [Cockx and Devriese 2018] to determine whether this constructor can be used at
indices w̄ . For each of the constructors for which unification succeeds positively, elaboration

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 3. Publication date: January 2019.

Definitional Proof-Irrelevance without K 3:21

continues to construct a subtree for that constructor.

(x : D w̄) ∈ Γ D : Ψ→ Tyॶ५
dj : ∆

′
j → D w̄ ′j for j = 1 . . . l

ॻॴi६y(Γ∆′j ⊢ w̄ = w̄ ′j : Ψ)⇒ y५ॹ(Γj ,σj ,τj) for j = 1 . . .k (k ≤ l)

ॻॴi६y(Γ∆′j ⊢ w̄ = w̄ ′j : Ψ)⇒ ॴॵ for j = k + 1 . . . l

Γj ⊢
{
ci ∆iσj [Φiσj]|i = 1 . . .m

}
; Q j for j = 1 . . .k

Γ ⊢
{

ci ∆i [Φi]|i = 1 . . .m
}

; casex
{
dj ∆̂

′
i 7→

τj Q j |j = 1 . . .k
}

The elaboration algorithm repeats the steps above whenever they are applicable until it either
produces a complete case tree, or gets stuck because no rules apply.

We can make the above elaboration algorithm more powerful in various places by introducing
additional squash operators:

• If not all constructor arguments are in ॹPॸॵॶ, we can squash the types of those that are not.
• If there are multiple constructors left but no unsolved constraints, we may take the disjoint

sum of the constructor telescopes and squash the resulting type.
• If there are unsolved constraints but it is not possible to split on any variable, we may turn

each remaining constraintw /? v : A into a new constructor argument of type ∥v =A w ∥.

However, each of these options may reduce the ways in which we can eliminate the resulting type,
so they may not always be desirable.

5.2 Generating the Constructors and the Eliminator

To make practical use of the type constructed by the elaboration algorithm from the previous
section, we also need terms representing the constructors and the eliminator for the translated
type. For example, for m ≤ n we can define terms lz : (n : N) → 0 ≤ n and ls : (m n : N) →
m ≤ n → S m ≤ S n by lz = λn. tt and ls = λm n p. p respectively. Note that these terms are
type-correct since 0 ≤ n = sUnit and S m ≤ S n = m ≤ n. We can also define the eliminator
≤_rect by performing the same case splits as in the translation of the type ≤:

≤_rect : (P : (m n : N)→m ≤ n → Tyॶ५)(m≤0 : (n : N)→ P 0 n (lz n))
(m≤S : (m n : N)(H :m ≤ n)→ P m n x → P (Sm) (S n) (lsm n x))
(m n : N)(x :m ≤ n)→ P m n x

≤_rect P m≤0 m≤S m n x

= casem



0 7→ m≤0 n

Sm′ 7→ casen

{

0 7→ sEmpty_rect x
S n′ 7→ m≤S m′ n′ x (≤_rect P m≤0 m≤S m′ n′ x)

}


Since the eliminator is the defining property of a datatype, being able to construct the eliminator

shows the correctness of the translation. In particular, the eliminator can be used to show that the
generated type is equivalent to its inductive version.

Constructing the constructors. Let c : ∆→ D w̄ be one of the constructors ofD. By construction,
the case tree of D will have a leaf of the form c ∆′ where the variables bound by∆′ form a subset
of those bound in ∆. We thus define the term c as λx1 . . . xn . (xi1 , . . . ,xim) where ∆ = (x1 :
A1) . . . (xn : An) and ∆′ = (xi1 : A′i1) . . . (xim : A′im).

Beware, as it is not immediately obvious that this term is type-correct:A′i is not necessarily equal
to Ai , since the variables in ∆\∆′ have been substituted in the process. However, since the Sॵॲॼ५
Cॵॴॹॺॸ१iॴॺ step only applies when both sides of the constraint are variables, this substitution is
just a renaming. We can apply the same renaming to ∆′, thus ensuring that the term c is indeed
of type ∆→ D w̄ .

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 3. Publication date: January 2019.

3:22 Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau

Constructing the eliminator. The eliminator D_rect for the elaborated datatype D : Γ → Tyॶ५
with constructors ci : ∆i → D v̄i for i = 1 . . .k takes the following arguments:

• The motive P : Γ→ D Γ̂→ Tyॶ५
• The methods

mi : ∆i → (H1 : Ψi1 → P w̄i1 (xi j1 Ψ̂i1))→ . . . →

(Hqi : Ψiqi → P w̄iqi (xi jqi Ψ̂iqi))→ P v̄i (ci ∆̂i)

where (xi jp : Ψip → D w̄ip) ∈ ∆i for p = 1 . . .qi are the recursive arguments of the
constructor ci.

and produces a function of type Γ→ (x : D Γ̂)→ P Γ̂ x .
To construct this eliminator, we proceed by induction on the case tree definingD: for each case

split in the elaboration of D, we perform the same case split on the corresponding index in Γ. At
each leaf, we are either in an empty node or a constructor node.

• In an empty node, we have x : sEmpty, hence we can conclude by sEmpty_rect.
• In a constructor node for constructor ci, x is a nested tuple consisting of the non-forced

arguments of ci. Moreover, the remaining telescope of indices Γ′ contains the forced argu-
ments of ci. We thus apply the motivemi to arguments for ∆i taken from x and Γ′. For the

induction hypotheses Hp we call the eliminator recursively with arguments w̄ip (xi jp Ψ̂ip)
where xi jp is again taken from either x or Γ′. Note that this recursion is well-founded if and
only if the recursive definition of the datatype itself is so.

This finishes the construction of the eliminator. It can easily be checked that the eliminator we just
constructed also has the appropriate computational behaviour:

D_rect P m1 . . . mk v̄i (ci ∆̂i)

evaluates to

mi ∆̂i (λΨ̂i1. D_rect w̄i1 (xi j1 Ψ̂i1)) . . . (λΨ̂iqi . D_rect w̄iqi (xi jqi Ψ̂iqi)).

6 IMPLEMENTATION IN Coq AND Agda

6.1 Implementation in Coq

The universe hierarchy. Coq comes with an infinite hierarchy of predicative universes Tyॶ५i
and an impredicative universe Pॸॵॶ : Tyॶ५1. Cumulativity makes each universe a subtype of the
next, with Pॸॵॶ a subtype of Tyॶ५0. We add to this ॹPॸॵॶ : Tyॶ५1 but do not include ॹPॸॵॶ in
the cumulativity relation. This lack of cumulativity is necessary to use relevance marks in the
conversion (as already mentioned in Section 4.5).

The lack of cumulativity can cause issues during the elaboration phase, as the system assumes
cumulativity throughout. For instance, consider the type of the dependent eliminator for sEmpty:

Definition sEmpty_rect_type := ∀ (P:sEmpty→ Type) x, P x.

During elaboration an existential variable ?T : Tyॶ५ is generated for the type of x , then it must be
unified with sEmpty : ॹPॸॵॶ. For this to be well-typed we must have cumulativity.

The system works around this issue by allowing cumulativity of ॹPॸॵॶ during elaboration but
not when checking definitions. In the above case the use of cumulativity disappears when the
existential variable is instantiated so there is no error. When cumulativity is truly necessary the
error is delayed until the kernel check.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 3. Publication date: January 2019.

Definitional Proof-Irrelevance without K 3:23

6.1.1 Conversion. Conversion in Coq is untyped so we use relevance marks as described in Sec-
tion 4.5 to implement definitional proof irrelevance. Since Coq is a richer system than sMLTT there
are a few additional cases. For instance, constants are annotated with their relevance as part of the
context, and fixpoints are annotated as binders since they bind themselves in their bodies.

The change to the conversion algorithm is simple: without ॹPॸॵॶ, we reduce terms to weak head
normal form then if they have the same shape we recurse for each pair of subterms. With ॹPॸॵॶ,
we just insert a check for irrelevance before the reduction step.

Because we allow cumulativity during elaboration the generated relevance marks can be incor-
rect, leading to incompleteness of conversion during conversion. However the marks are fixed by
the kernel.

6.1.2 Inductive types. The extensions with sEmpty, squash, box and irrelevant pairs are subsumed
by restrictions on the inductive types which may be defined.

In the system without ॹPॸॵॶ, an inductive type may be defined at any universe level greater
than the universes of the arguments of its constructors. As a special case, any inductive type may
be defined in Pॸॵॶ but its elimination is restricted to Pॸॵॶ unless it satisfies singleton elimination:
0 or 1 constructor with all arguments in Pॸॵॶ. Inductive types in Pॸॵॶ with restricted elimination
are called “squashed”.

Coq also provides “primitive records” with surjective pairing. They are inductive types with
exactly one constructor which has at least one argument (such arguments are called fields of the
record), andmust not be squashed.We extend this to handle ॹPॸॵॶ by considering ॹPॸॵॶ as smaller
than other universes when checking the level of an inductive type. This allows defining box types:

Inductive Box (A:SProp) : Prop := box : A→ Box A.

Definition unbox A (x:Box A) : A := match x with box y⇒ y end.

The level ॹPॸॵॶ of the argument A is smaller than the level Pॸॵॶ of the inductive.
Like with Pॸॵॶ, any inductive type may be defined in ॹPॸॵॶ but its elimination is restricted

to ॹPॸॵॶ when it is not the empty type. This amounts to implicitly using the squash (which can
be already defined using the impredicative encoding). For primitive records in ॹPॸॵॶ we allow
fields in ॹPॸॵॶ. This provides a generalization to the unit type and dependent sums. To get other
inductive types in ॹPॸॵॶ that can be eliminated into any type, the user has to use the automatic
encoding described in Section 5, implemented on top of the Equations plugin (see Section 6.4).

6.2 Example 1: Prime Numbers

To illustrate a simple use of ॹPॸॵॶ in Coq, together with the automatic translation of inductive
types into fixpoints described in Section 5, let us consider the definition of primality.

First, we can define the n | m predicate, which states that the natural number n is a divisor of
m.

Inductive Divide : N→ N→ SProp:=

| divide0 : ∀ n, Divide n 0

| divideS : ∀ n m (e: S n ≤ S m), Divide (S n) (m − n)→ Divide (S n) (S m).

Infix ”|” := Divide.

This definition satisfies the conditions described in Section 5, so the corresponding fixpoint defi-
nition can be automatically generated, together with its eliminator into Tyॶ५.

Although we have definitional proof irrelevance for n | m, we can still extract the natural num-
ber that witnesses the fact that n is a divisor of m out of the proof that n | m, which is precisely
the goal of the criterion developed in Section 5.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 3. Publication date: January 2019.

3:24 Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau

Definition divide_to_N : ∀ n m, n | m→ N.

together with the correctness of this definition.

Lemma divide_to_N_correct n m (e:n | m): divide_to_N n m e * n = m.

Note however that being an element of ॹPॸॵॶ implies both proof irrelevance and computational
irrelevance, so an element of m | n is completely erased during compilation. It does not store the
quotient, but the (mere) property that the euclidean division of n by m has no remainder. Thus,
divide_to_N computes the quotient fromm and n. Essentially finding the quotient by deconstruct-
ing the proof of n | m is no easier than by deconstructing n and m. It can be seen as a side condition
to guarantee we have no missing case.

Then, it is easy to define primality in ॹPॸॵॶ in a way that satisfies the conditions described in
Section 5.

Inductive is_gcd (a b g:N) : SProp :=

is_gcd_intro : g | a→ g | b→ (∀ x, x | a→ x | b→ x | g)→ is_gcd a b g.

Inductive prime (p:N) : SProp :=

prime_intro : 1 < p→ (∀ n, 1 ≤ n→ n < p→ is_gcd n p 1)→ prime p.

This definition gives us definitional proof irrelevance for prime, without paying the price of the
definition of a decision procedure into booleans (for instance using the sieve of Eratosthenes) and
a proof that it corresponds to primality. Here, we have a direct definition instead, and the decision
procedure is only a useful addition to prove primality of a particular natural number and may be
implemented as a tactic.

6.3 Example 2: The Setoid Model

The previous example shows the use of ॹPॸॵॶ to define definitionally proof irrelevant predicates
while still being able to extract relevant values out of them. We now turn to a more critical use of
ॹPॸॵॶ to avoid higher coherence issues in syntactical models of type theory. As an example, using
ॹPॸॵॶ, we can formally define in Coq the setoid translation presented on paper twenty years ago
by Thorsten Altenkirch [Altenkirch 1999]. We define a setoid as a type carrier together with a
notion of equality which is reflexive, symmetric, transitive, and definitionally proof irrelevant.

Record Setoid :=

{ carrier : Type;

eq : carrier→ carrier→ SProp;

refl : ∀ x, eq x x;

sym : ∀ {x y}, eq x y→ eq y x;

trans : ∀ {x y z}, eq x y→ eq y z→ eq x z

}.

This way, we can define a category with families (CwF), as introduced by Peter Dybjer [Dybjer
1996], where contexts are Setoid, types are setoid families (over a context) and terms are sections
of setoid families. This CwF features dependent products Π, a universe, and identity types Eq. We
can then prove that this CwF satisfies functional extensionality, thus providing a formal proof that
functional extensionality is admissible in sMLTT.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 3. Publication date: January 2019.

Definitional Proof-Irrelevance without K 3:25

6.4 Extension of the Equations Plugin

The Equations plugin of Coq [Mangin and Sozeau 2018] provides an implementation of dependent-
pattern matching compilation. We reuse the tools of Equations to automatically derive the transla-
tion of inductive definitions that fit in ॹPॸॵॶ to fixpoint definitions. Concretely, we have extended
Equations with a new Derive Inversion command that tries to produce a case tree from an in-
ductive definition and succeeds if and only if the resulting recursive definition can be typed in
ॹPॸॵॶ.

Using this tool, it is possible to automatically derive the definition of the recursive variants of
≤ and Divide, along with their constructors. Coming back to the example of ≤fix, our framework
provides automatically the two definitions corresponding to the two constructor of ≤:

Definition ≤fix0 : ∀ n, 0 ≤fix n := fun n⇒ I.

Definition ≤fixS : ∀m n, m ≤fix n→ S m ≤fix S n := fun n m e⇒ e.

We are currently also working on implementing the automatic generation of the eliminator as
described in Section 5.2.

6.5 Implementation in Agda

Aside from adding ॹPॸॵॶ to Coq, we also implemented a variant of the same concept for Agda.
Since previously there was no Pॸॵॶ universe, the ॹPॸॵॶ universe is simply called Prop in Agda.
This new universe has been integrated in the current development version of Agda on https://
github.com/agda/agda and is planned to be released as part of Agda 2.6.0 in November 2018.

User perspective. On the syntactic level, the main change to Agda is the addition of the new
sort Prop next to the old sort Set. Unlike ॹPॸॵॶ in Coq, Prop in Agda is predicative. For example,
(A : Prop) → A is not itself an element of Prop. Instead, there is a hierarchy of universes Prop0
(= Prop), Prop1, Prop2, …analogous to the hierarchy of Seti . Like Set, Prop also supports universe
polymorphism, so for each ℓ : Level we have the sort Prop ℓ. As an example, we can define the
universe polymorphic squash type and its eliminator:

data Squash {ℓ}(A : Set ℓ) : Prop ℓ where
sq : A→ Squash A

unsquash : ∀{ℓ ℓ′}{A : Set ℓ}(P : Prop ℓ′)(A→ P)→ Squash A→ P

unsquash P f (sq x) = f x

Note that this is more powerful than the predicative encoding of the squash type described in
Section 3.4 since we can eliminate it into any Propi .

Like in the Coq implementation, there is no implicit conversion from Prop to Set. Instead, Prop
can be embedded through the definition of a record type Box (A : Prop) : Set with one field
unbox : A. More generally, when defining a record type in Seti , the fields can be in both Propj or
Setj for any j ≤ i . On the other hand, for record types in Prop all fields must be in Prop themselves.

Implementation details. Since Agda uses a type-directed conversion check internally and types
are annotated with their sorts, adding the rule that any two elements of a type in Pॸॵॶ are equal
was straightforward. In particular, the relevance marks used in the Coq implementation are not
required here. In contrast, making Prop impredicative is currently problematic since Agda’s ter-
mination checker assumes predicativity. This was our main reason to implement the predicative
hierarchy Propi instead.

Interaction with irrelevant arguments. As mentioned in the introduction, Agda has another an-
other facility for definitional proof irrelevance in the form of irrelevant function types [Abel and

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 3. Publication date: January 2019.

https://github.com/agda/agda
https://github.com/agda/agda

3:26 Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau

Scherer 2012] and irrelevant fields. Prop can be used in situations where Agda’s pre-existing irrel-
evance cannot, for example:

• We can use Prop to give a function an irrelevant return type.
• We can define new datatypes and record types in Prop, such as Squash.
• We can construct new types in Prop by pattern matching, such as ≤.
• We can quantify over all types in Prop.

In our implementation, it is allowed to use irrelevant arguments when constructing an element
of a type in Prop. This allows us to convert irrelevant arguments into elements of the squash type:

irrToSquash : {A : Set} → .A→ Squash A

irrToSquash x = sq x

In fact, irrelevant functions and irrelevant fields can be encoded in terms of Pॸॵॶ by using the
squash type: each irrelevant argument or field of type .A is turned into a squashed argument
Squash A. This encoding uses the fact that Squash is an applicative functor with identity sq : A→
Squash A and sequential application

<*> : {A B : Set} → Squash (A→ B)→ Squash A→ Squash B

sq f <*> sq x = sq (f x)

For example, if д : .B → C then the expression λ f x . д (f x) of type .(A → B) → A → C is
encoded by λ f x . д (f <*> sq x) of type Squash (A→ B)→ A→ C .

In addition to irrelevant functions and fields, Agda also provides experimental support for irrel-
evant definitions and irrelevant projections, which were already mentioned in the introduction. In
contrast to irrelevant functions, not everything that’s possible with these features can be encoded
in terms of Squash, even after fixing the bug mentioned in the introduction. In particular, they can
be used to construct a function .choice : .A→ A for any type A, but the corresponding statement
Squash (Squash A → A) is not provable. If this were postulated as an axiom, we conjecture that
these experimental ways of using irrelevance could be encoded in terms of Squash as well.

7 CONCLUSION AND FUTUREWORK

We have given a general way to extend a type theory with a predicative hierarchy of universes
(or an impredicative universe) satisfying definitional proof irrelevance, while keeping decidabil-
ity of type checking. We have shown various metatheoretical properties of our extension using
syntactic translations into extensional type theories ETT and HTS. We have then described a new
way to decide whether a proposition can be eliminated over a type using techniques coming from
recent development on dependent pattern matching without UIP. We have implemented our ap-
proach both in Coq and in Agda, and illustrated its usefulness on several examples, in particular
to formalize the setoid model of type theory, which can not be done without definitional proof
irrelevance.

Regarding future work, the main extension of our framework that we would like to address in
a near future is the definition of a strict equality that remains compatible with univalence. The
idea is to detect syntactically which types are mere sets—using again ideas coming from depen-
dent pattern matching—in order to allow elimination of strict equality on those types. This should
require the addition of a hierarchy of universes of mere (strict) sets, and maybe other hierarchies
for higher homotopy levels as well, but it is not clear how to do it in a good way at the moment.

A LEAN SUBJECT REDUCTION FAILURE

axiom A : Type

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 3. Publication date: January 2019.

Definitional Proof-Irrelevance without K 3:27

axiom r : A→ A→ Prop

axiom C : A→ Type

axiom F : forall x, (forall y, r y x → C y)→ C x

lemma fix_F_eq1 (x : A) (acx : acc r x) :

well_founded.fix_F F x acx =

well_founded.fix_F F x (acc.intro x (λ y, acc.inv acx)) := eq.refl _

lemma fix_F_eq2 (x : A) (acx : acc r x) :

well_founded.fix_F F x (acc.intro x (λ y, acc.inv acx)) =

F x (λ (y : A) (p : r y x), well_founded.fix_F F y (acc.inv acx p))

:= eq.refl _

lemma fix_F_eq3 (x:A) (acx : acc r x) :

well_founded.fix_F F x acx =

F x (λ (y : A) (p : r y x), well_founded.fix_F F y (acc.inv acx p))

:= eq.trans (fix_F_eq1 x acx) (fix_F_eq2 x acx)

lemma fix_F_eq4 (x:A) (acx : acc r x) :

well_founded.fix_F F x acx =

F x (λ (y : A) (p : r y x), well_founded.fix_F F y (acc.inv acx p))

:= eq.refl _ −− fails

ACKNOWLEDGMENTS

The authors want to thank Simon Boulier for his implementation of the Setoid model.

REFERENCES

Andreas Abel, Joakim Öhman, and Andrea Vezzosi. 2018. Decidability of Conversion for TypeTheory in TypeTheory. Proc.

ACM Program. Lang. 2, POPL, Article 23 (Jan. 2018), 29 pages. DOI:http://dx.doi.org/10.1145/3158111

Andreas Abel and Gabriel Scherer. 2012. On Irrelevance and Algorithmic Equality in Predicative Type Theory. Logical

Methods in Computer Science 8, 1 (03 2012). DOI:http://dx.doi.org/10.2168/lmcs-8(1:29)2012

T. Altenkirch. 1999. Extensional equality in intensional type theory. In Proceedings. 14th Symposium on Logic in Computer

Science (Cat. No. PR00158). 412–420. DOI:http://dx.doi.org/10.1109/LICS.1999.782636

Thorsten Altenkirch, Paolo Capriotti, and Nicolai Kraus. 2016. Extending Homotopy Type Theory with Strict Equality. In

CSL.

Steven Awodey and Andrej Bauer. 2004. Propositions As [Types]. J. Log. and Comput. 14, 4 (Aug. 2004), 447–471. DOI:

http://dx.doi.org/10.1093/logcom/14.4.447

Simon Boulier, Pierre-Marie Pédrot, and Nicolas Tabareau. 2017. The Next 700 Syntactical Models of Type Theory. In

Proceedings of Certified Programs and Proofs. ACM, 182–194.

Edwin Brady, Conor McBride, and James McKinna. 2004. Inductive Families Need Not Store Their Indices. In Types for

Proofs and Programs, Stefano Berardi, Mario Coppo, and Ferruccio Damiani (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 115–129.

Paolo Capriotti. 2017. Models of type theory with strict equality. Ph.D. Dissertation. University of Nottingham.

Jesper Cockx and Andreas Abel. 2018. Elaborating Dependent (Co)pattern matching. In Proceedings of the 23th ACM SIG-

PLAN Conference on Functional Programming (ICFP 2018). ACM Press, St. Louis, Missouri, United States.

Jesper Cockx and Dominique Devriese. 2018. Proof-relevant unification: Dependent pattern matching with only the

axioms of your type theory. Journal of Functional Programming 28 (2018), e12. DOI:http://dx.doi.org/10.1017/

S095679681800014X

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 3. Publication date: January 2019.

http://dx.doi.org/10.1145/3158111
http://dx.doi.org/10.2168/lmcs-8(1:29)2012
http://dx.doi.org/10.1109/LICS.1999.782636
http://dx.doi.org/10.1093/logcom/14.4.447
http://dx.doi.org/10.1017/S095679681800014X
http://dx.doi.org/10.1017/S095679681800014X

3:28 Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau

Jesper Cockx, Dominique Devriese, and Frank Piessens. 2014. Patternmatchingwithout K. InACM SIGPLANNotices, Vol. 49.

ACM, 257–268.

Thierry Coquand. 2016. Universe of Bishop sets. (2016). www.cse.chalmers.se/~coquand/bishop.pdf.

Peter Dybjer. 1996. Internal type theory. In Types for Proofs and Programs, Stefano Berardi andMario Coppo (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 120–134.

Martin Hofmann. 1995. Conservativity of equality reflection over intensional type theory. In International Workshop on

Types for Proofs and Programs. Springer, 153–164.

P. Letouzey. 2004. Programmation fonctionnelle certifiée – L’extraction de programmes dans l’assistant Coq. Ph.D. Dissertation.

Université Paris-Sud.

Cyprien Mangin and Matthieu Sozeau. 2018. Equations Reloaded. (2018). http://mattam82.github.io/Coq-Equations/

Per Martin-Löf. 1975. An Intuitionistic Theory of Types: Predicative Part. In Logic Colloquium ’73, H.E. Rose and J.C.

Shepherdson (Eds.). Studies in Logic and the Foundations of Mathematics, Vol. 80. Elsevier, 73 – 118. DOI:http://dx.doi.

org/https://doi.org/10.1016/S0049-237X(08)71945-1

Frank Pfenning. 2001. Intensionality, Extensionality, and Proof Irrelevance in Modal Type Theory. In Proceedings of the

16th Annual IEEE Symposium on Logic in Computer Science (LICS ’01). IEEE Computer Society, Washington, DC, USA,

221–. http://dl.acm.org/citation.cfm?id=871816.871845

Aaron Stump. 2018. From realizability to induction via dependent intersection. Ann. Pure Appl. Logic 169, 7 (2018), 637–655.

DOI:http://dx.doi.org/10.1016/j.apal.2018.03.002

The Univalent Foundations Program. 2013. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for

Advanced Study.

Vladimir Voevodsky. 2011. Resising Rules - their use and semantic justification. www.math.ias.edu/~vladimir/Site3/

Univalent_Foundations_files/2011_Bergen.pdf. (2011).

Vladimir Voevodsky. 2013. A simple type system with two identity types. (2013). https://ncatlab.org/homotopytypetheory/

files/HTS.pdf

Benjamin Werner. 2008. On the Strength of Proof-Irrelevant Type Theories. 4 (09 2008), 1–20.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 3. Publication date: January 2019.

www.cse.chalmers.se/~coquand/bishop.pdf
http://mattam82.github.io/Coq-Equations/
http://dx.doi.org/https://doi.org/10.1016/S0049-237X(08)71945-1
http://dx.doi.org/https://doi.org/10.1016/S0049-237X(08)71945-1
http://dl.acm.org/citation.cfm?id=871816.871845
http://dx.doi.org/10.1016/j.apal.2018.03.002
www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/2011_Bergen.pdf
www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/2011_Bergen.pdf
https://ncatlab.org/homotopytypetheory/files/HTS.pdf
https://ncatlab.org/homotopytypetheory/files/HTS.pdf

	Abstract
	1 Introduction
	2 Lessons from Homotopy Type Theory
	2.1 sProp as a Syntactical Approximation of Mere Propositions
	2.2 Flirting with Extensionality
	2.3 Flirting with Undecidability
	2.4 Dependent Pattern Matching to the Rescue

	3 Adding definitional proof irrelevance to MLTT
	3.1 MLTT
	3.2 Adding sProp to MLTT
	3.3 Empty Type
	3.4 Squash
	3.5 Box
	3.6 Dependent Sums
	3.7 Other Inductive Types

	4 Metatheoretical Properties of sMLTT
	4.1 ETT
	4.2 Consistency of sMLTT
	4.3 sMLTT is Compatible with Univalence
	4.4 Strict Identity and UIP
	4.5 Relevance Marks and Decidability of Type Checking

	5 From inductive type to a fixpoint
	5.1 Constructing the Case Tree
	5.2 Generating the Constructors and the Eliminator

	6 Implementation in Coq and Agda
	6.1 Implementation in Coq
	6.2 Example 1: Prime Numbers
	6.3 Example 2: The Setoid Model
	6.4 Extension of the Equations Plugin
	6.5 Implementation in Agda

	7 Conclusion and Future Work
	A Lean subject reduction failure
	Acknowledgments
	References

