
Introduction to Agda

Lecture at the AFP summer school in
Utrecht

Jesper Cockx
7 July 2023
Technical University Delft

Lecture plan

• A brief overview of formal verification,
dependent types, and Agda

• Differences between Agda and Haskell
• Types as first-class values
• Dependent data types
• Dependent function types
• The Curry-Howard correspondence
• Equational reasoning in Agda

1 / 125

“Program testing can be
used to show the presence
of bugs, but never to show
their absence!”

– Edsger W. Dijkstra

2 / 125

When testing is just not enough

Question. In what situations might testing not
be enough to ensure software works correctly?

. . . failure is very costly (e.g. spacecraft,
medical equipment, self-driving cars)

. . . the software is difficult to update
(e.g. embedded software)

. . . it is security-sensitive (e.g. banking, your
private chats)

. . . errors are hard to detect or not apparent
until much later (e.g. compilers, concurrent
systems)

3 / 125

When testing is just not enough

Question. In what situations might testing not
be enough to ensure software works correctly?

. . . failure is very costly (e.g. spacecraft,
medical equipment, self-driving cars)

. . . the software is difficult to update
(e.g. embedded software)

. . . it is security-sensitive (e.g. banking, your
private chats)

. . . errors are hard to detect or not apparent
until much later (e.g. compilers, concurrent
systems) 3 / 125

Formal verification

Formal verification is a collection of techniques
for proving correctness of programs with
respect to a certain formal specification.

These techniques often rely on ideas from
formal logic and mathematics to ensure a very
high degree of trustworthiness.

4 / 125

Why dependent types?

Dependent types are a form of formal verification that is
embedded in the programming language.

Advantages.

• No different syntax to learn or tools to install

• Tight integration between IDE and type system

• Express invariants of programs in their types

• Use same syntax for programming and proving

Formally verifying a program should not be more
difficult than writing the program in the first place!

5 / 125

The Agda language

Agda is a purely functional programming
language similar to Haskell.

Unlike Haskell, it has full support for
dependent types.

It also supports interactive programming with
help from the type checker.

6 / 125

Installing Agda

VS Code plugin.
Install the agda-mode plugin and enable the
Agda Language Server in the settings.

Binary release. (Linux/WSL)
sudo apt install agda

From source. (Cabal/Stack)
cabal install Agda or
stack install Agda

7 / 125

Installing an editor for Agda

The following editors have support for Agda:

• VS Code: Install the agda-mode plugin
• Emacs: Plugin is distributed with Agda (run
agda-mode setup)

• Atom: https:
//atom.io/packages/agda-mode

• Vim: https://github.com/
derekelkins/agda-vim

8 / 125

https://atom.io/packages/agda-mode
https://atom.io/packages/agda-mode
https://github.com/derekelkins/agda-vim
https://github.com/derekelkins/agda-vim

A first Agda program

data Greeting : Set where
hello : Greeting

greet : Greeting
greet = hello

This program:

• Defines a datatype Greeting with one
constructor hello.

• Defines a function greet of type Greeting
that returns hello.

9 / 125

Loading an Agda file

You can load an Agda file by pressing Ctrl+c
followed by Ctrl+l.

Once the file is loaded (and there are no
errors), other commands become available:

Ctrl+c Ctrl+d Infer type of an expression.
Ctrl+c Ctrl+n Evaluate an expression.

10 / 125

Agda vs. Haskell

Basic syntax differences

Typing uses a single colon:
b : Bool instead of b :: Bool.

Naming has fewer restrictions: any name can
start with small or capital letter, and
symbols can occur in names.

Whitespace is required more often: 1+1 is a
valid function name, so you need to
write 1 + 1 instead.

Infix operators are indicated by underscores:
+ instead of (+)

11 / 125

Unicode syntax

Agda allows unicode characters in its syntax:

• → can be used instead of ->
• λ can be used instead of \
• Other symbols can also be used as (parts

of) names of functions, variables, or types:
×, Σ, ⊤, ⊥, ≡, ⟨, ⟩, ◦, . . .

12 / 125

Entering unicode

Editors with Agda support will replace
LaTeX-like syntax (e.g. \to) with unicode:

→ \to

λ \lambda

× \times

Σ \Sigma

⊤ \top

⊥ \bot

≡ \equiv

· · ·
13 / 125

Quiz question

Question. Which is NOT a valid name for an
Agda function?

1. 1+1=2
2. foo bar

3. λ→×Σ
4. if_then_else_

14 / 125

Declaring new datatypes

To declare a datatype in Agda, we need to give
the full type of each constructor:

data Bool : Set where
true : Bool
false : Bool

We also need to specify that Bool itself has
type Set (see later).

15 / 125

Defining functions by pattern matching

Just as in Haskell, we can define new functions
by pattern matching:

not : Bool → Bool
not true = false
not false = true

16 / 125

The type of natural numbers

data Nat : Set where
zero : Nat
suc : Nat → Nat

{-# BUILTIN NATURAL Nat #-}

one = 1 - = suc zero

two = 2 - = suc one

three = 3 - = suc two

four = 4 - = suc three

17 / 125

Functions on natural numbers

isEven : Nat → Bool
isEven zero = true
isEven (suc zero) = false
isEven (suc (suc x)) = isEven x

+ : Nat → Nat → Nat
zero + y = y
(suc x) + y = suc (x + y)

18 / 125

Holes in programs

A hole is a part of a program that is not yet complete. A
hole can be created by writing ? or {!!} and loading
the file (Ctrl+c Ctrl+l).

New commands for files with holes:

Ctrl+c Ctrl+, Give information about the hole

Ctrl+c Ctrl+c Case split on a variable

Ctrl+c Ctrl+space Give a solution for the hole

Exercise. Use these to define the function
maximum : Nat → Nat → Nat.

19 / 125

Total functional programming

In contrast to Haskell, Agda is a total language:

• NO runtime errors
• NO incomplete pattern matches
• NO non-terminating functions

So functions are true functions in the
mathematical sense: evaluating a function call
always returns a result in finite time.

20 / 125

Why should we care about totality?

Some reasons to write total programs:

• Better guarantees of correctness
• Spend less time debugging infinite loops
• Easier to refactor without introducing bugs
• Less need to document valid inputs

Totality is also crucial for working with
dependent types and using Agda as a proof
assistant (see later).

21 / 125

Coverage checking

Agda performs a coverage check to ensure all
definitions by pattern matching are complete:

pred : Nat → Nat
pred (suc x) = x

Incomplete pattern matching for pred.
Missing cases: pred zero

22 / 125

Termination checking

Agda performs a termination check to ensure
all recursive definitions are terminating:

inf : Nat → Nat
inf x = 1 + inf x

Termination checking failed for the following
functions: inf
Problematic calls: inf x

23 / 125

To solve or not to solve the halting problem

Question. Isn’t it impossible to determine
whether a function is terminating? Or does
Agda solve the halting problem?

Answer. No, Agda only accepts functions that
are ‘obviously terminating’, and rejects all
other functions.

24 / 125

To solve or not to solve the halting problem

Question. Isn’t it impossible to determine
whether a function is terminating? Or does
Agda solve the halting problem?

Answer. No, Agda only accepts functions that
are ‘obviously terminating’, and rejects all
other functions.

24 / 125

Structural recursion

Agda only accepts functions that are
structurally recursive: the argument of each
recursive call must be a subterm of the
argument on the left of the clause.

For example, this definition is rejected:

f : Nat → Nat
f (suc (suc x)) = f zero
f (suc x) = f (suc (suc x))
f zero = zero

25 / 125

Types as first-class values

The type Set

In Agda, types such as Nat and (Bool → Bool)
are themselves expressions of type Set.

We can pass around and return values of type
Set just like values of any other type.

Example. Defining a type alias as a function:

MyNat : Set
MyNat = Nat

myFour : MyNat
myFour = 4

26 / 125

Polymorphic functions in Agda

We can define polymorphic functions as
functions that take an argument of type Set:

id : (A : Set) → A → A
id A x = x

For example, we have id Nat zero : Nat and
id Bool true : Bool.

27 / 125

Hidden arguments

To avoid repeating the type at which we apply
a polymorphic function, we can declare it as a
hidden argument using curly braces:

id : {A : Set} → A → A
id x = x

Now we have id zero : Nat and id true : Bool.

28 / 125

If/then/else as a function

We can define if/then/else in Agda as follows:

if_then_else_ : {A : Set} →
Bool → A → A → A

if true then x else y = x
if false then x else y = y

This is an example of a mixfix operator.

Example usage.

test : Nat → Nat
test x = if (x ≤ 9000) then 0 else 42

29 / 125

Polymorphic datatypes

Just like we can define polymorphic functions,
we can also define polymorphic datatypes by
adding a parameter (A : Set):

data List (A : Set) : Set where
[] : List A
:: : A → List A → List A

infixr 5 _::_

Note. Agda does not have built-in support for
list syntax [1, 2, 3]. Instead, we have to write
1 :: 2 :: 3 :: [].

30 / 125

A tuple type in Agda

Agda does not have a builtin type of tuples
(x, y), but we can define the product type A × B:

data _×_ (A B : Set) : Set where
, : A → B → A × B

fst : {A B : Set} → A × B → A
fst (x , y) = x

snd : {A B : Set} → A × B → B
snd (x , y) = y

31 / 125

No pattern matching on Set

It is not allowed to pattern match on
arguments of type Set:

- Not valid code:

sneakyType : Set → Set
sneakyType Bool = Nat
sneakyType Nat = Bool

One reason for this is that Agda (like Haskell)
erases all types during compilation.

32 / 125

Quiz question

Is it possible to implement a function of type
{A : Set} → List A → Nat → A in Agda?

33 / 125

Dependent types

Cooking with dependent types (1/3)

Suppose we are implementing a cooking assistant that
can help with preparing three kinds of food:

data Food : Set where
pizza : Food
cake : Food
bread : Food

We want to implement a function
amountOfCheese : Food → Nat that computes how much
cheese is needed.

Problem: How can we make sure this function is never
called with argument cake?

34 / 125

Cooking with dependent types (2/3)

Solution. We can make the type Food more precise
making it into an indexed datatype:

data Flavour : Set where
cheesy : Flavour
chocolatey : Flavour

data Food : Flavour → Set where
pizza : Food cheesy
cake : Food chocolatey
bread : {f : Flavour} → Food f

This defines two types Food cheesy and Food chocolatey.
35 / 125

Cooking with dependent types (3/3)

We can now rule out invalid inputs by using the more
precise type Food cheesy:

amountOfCheese : Food cheesy → Nat
amountOfCheese pizza = 100
amountOfCheese bread = 20

The coverage checker of Agda knows that cake is not a
valid input!

36 / 125

Dependent type theory (1972)

Per
Martin-Löf

A dependent type is a fam-
ily of types, depending on a
term of a base type.

Example (not by Martin-Löf).
Food is a dependent type
indexed over the base type
Flavour.

37 / 125

Dependent type theory (1972)

Per
Martin-Löf

A dependent type is a fam-
ily of types, depending on a
term of a base type.

Example (not by Martin-Löf).
Food is a dependent type
indexed over the base type
Flavour.

37 / 125

Vectors: lists that know their length

Vec A n is the type of vectors with exactly n
arguments of type A:

myVec1 : Vec Nat 4
myVec1 = 1 :: 2 :: 3 :: 4 :: []

myVec2 : Vec Nat 0
myVec2 = []

myVec3 : Vec (Bool → Bool) 2
myVec3 = not :: id :: []

38 / 125

Definition of the Vec type

Vec A n is a dependent type indexed over the
base type Nat:

data Vec (A : Set) : Nat → Set where
[] : Vec A 0
:: : {n : Nat} →

A → Vec A n → Vec A (suc n)

This has two constructors [] and _::_ like List,
but the constructors specify the length in their
types.

39 / 125

Parameters vs. indices

The argument (A : Set) in the definition of Vec is
a parameter, and has to be the same in the
type of each constructor.

The argument of type Nat in the definition of
Vec is an index, and must be determined
individually for each constructor.

40 / 125

Quiz question

Question. How many elements are there in the
type Vec Bool 3?

Answer. 8 elements:
• true :: true :: true :: []
• true :: true :: false :: []
• true :: false :: true :: []
• true :: false :: false :: []
• false :: true :: true :: []
• false :: true :: false :: []
• false :: false :: true :: []
• false :: false :: false :: []

41 / 125

Quiz question

Question. How many elements are there in the
type Vec Bool 3?
Answer. 8 elements:

• true :: true :: true :: []
• true :: true :: false :: []
• true :: false :: true :: []
• true :: false :: false :: []
• false :: true :: true :: []
• false :: true :: false :: []
• false :: false :: true :: []
• false :: false :: false :: []

41 / 125

Type-level computation

During type-checking, Agda will evaluate
expressions in types:

myVec4 : Vec Nat (2 + 2)
myVec4 = 1 :: 2 :: 3 :: 4 :: []

Since Agda is a total language, any expression
can appear inside a type.

(A non-total language with dependent types
would only allow a few ‘safe’ expressions.)

42 / 125

Checking the length of a vector

Constructing a vector of the wrong length in
any way is a type error:

myVec5 : Vec Nat 0
myVec5 = 1 :: 2 :: []

suc _n_46 != zero of type Nat

when checking that the inferred

type of an application

Vec Nat (suc _n_46)

matches the expected type

Vec Nat 0
43 / 125

Dependent functions

Dependent function types

A dependent function type is a type of the form
(x : A) → B x where the type of the output
depends on the value of the input.

Example.

zeroes : (n : Nat) → Vec Nat n
zeroes zero = []
zeroes (suc n) = 0 :: zeroes n

E.g. zeroes 3 has type Vec Nat 3 and evaluates
to 0 :: 0 :: 0 :: [].

44 / 125

Concatenation of vectors

We can pattern match on Vec just like on List:

mapVec : {A B : Set} {n : Nat} →
(A → B) → Vec A n → Vec B n

mapVec f [] = []
mapVec f (x :: xs) = f x :: mapVec f xs

Note. The type of mapVec specifies that the
output has the same length as the input.

45 / 125

A safe head function

By making the input type of a function more
precise, we can rule out certain cases statically
(= during type checking):

head : {A : Set}{n : Nat} → Vec A (suc n) → A
head (x :: xs) = x

Agda knows the case for head [] is impossible!
(just like for amountOfCheese cake)

46 / 125

A safe tail function

Question. What should be the type of tail on
vectors with the following definition?

tail (x :: xs) = xs

Answer.

tail : {A : Set} {n : Nat} → Vec A (suc n) → Vec A n
tail (x :: xs) = xs

47 / 125

A safe tail function

Question. What should be the type of tail on
vectors with the following definition?

tail (x :: xs) = xs

Answer.

tail : {A : Set} {n : Nat} → Vec A (suc n) → Vec A n
tail (x :: xs) = xs

47 / 125

Exercise

Define a function zipVec that only accepts
vectors of the same length.

48 / 125

A safe lookup

By combining head and tail, we can get the 1st,
2nd, 3rd,. . . element of a vector with at least
that many elements.

How can we define a function lookupVec that
get the element at position i of a Vec A n where
i < n?

Note. We want to get an element of A, not of
Maybe A!

49 / 125

The Fin type

We need a type of indices that are safe for a
vector of length n, i.e. numbers between 0 and
n − 1.

This is the type Fin n of finite numbers:

zero3 one3 two3 : Fin 3
zero3 = zero
one3 = suc zero
two3 = suc (suc zero)

50 / 125

Definition of the Fin type

data Fin : Nat → Set where
zero : {n : Nat} → Fin (suc n)
suc : {n : Nat} → Fin n → Fin (suc n)

51 / 125

An empty type

Fin n has n elements, so in particular Fin 0 has
zero elements: it is an empty type.

This means there are no valid indices for a
vector of length 0.

Note. Unlike in Haskell, we cannot even
construct an expression of Fin 0 using
undefined or an infinite loop.

52 / 125

The family of Fin types

Fin 0 Fin 1 Fin 2 Fin 3 Fin 4 · · ·

zero zero zero zero · · ·

suc suc suc · · ·

suc suc · · ·

suc · · ·

53 / 125

A safe lookup (1/5)

lookupVec : {A : Set} {n : Nat} →
Vec A n → Fin n → A

lookupVec xs i = {! !}

54 / 125

A safe lookup (2/5)

lookupVec : {A : Set} {n : Nat} →
Vec A n → Fin n → A

lookupVec (x :: xs) i = {! !}

55 / 125

A safe lookup (3/5)

lookupVec : {A : Set} {n : Nat} →
Vec A n → Fin n → A

lookupVec (x :: xs) zero = {! !}
lookupVec (x :: xs) (suc i) = {! !}

56 / 125

A safe lookup (4/5)

lookupVec : {A : Set} {n : Nat} →
Vec A n → Fin n → A

lookupVec (x :: xs) zero = x
lookupVec (x :: xs) (suc i) = {! !}

57 / 125

A safe lookup (5/5)

lookupVec : {A : Set} {n : Nat} →
Vec A n → Fin n → A

lookupVec (x :: xs) zero = x
lookupVec (x :: xs) (suc i) = lookupVec xs i

We now have a safe and total version of the
Haskell (!!) function, without having to
change the return type in any way.

58 / 125

Exercise (1/2)

Define a datatype Expr of expressions of a small
programming language with:

• Number literals 0, 1, 2, . . .

• Arithmetic expressions e1 + e2 and e1 ∗ e2

• Booleans true and false
• Comparisons e1 < e2 and e1 == e2
• Conditionals if e1 then e2 else e3

Expr should be a dependent type indexed over the type
Ty of possible types of this language:

data Ty : Set where
tInt : Ty
tBool : Ty

59 / 125

Exercise (2/2)

Next, write a function El : Ty → Set that
interprets a type of this language as an Agda
type.

Finally, define eval : {t : Ty} → Expr t → El t
that evaluates a given expression to an Agda
value.

60 / 125

Dependent types: Summary

A dependent type is a type that depends on a
value of some base type.

With dependent types, we can specify the
allowed inputs of a function more precisely,
ruling out invalid inputs at compile time.

Examples of dependent types.

• Food f , indexed over f : Flavour
• Vec A n, indexed over n : Nat
• Fin n, indexed over n : Nat
• Expr t, indexed over t : Ty

61 / 125

The Curry-Howard
Correspondence

“Every good idea will be
discovered twice:
once by a logician and once
by a computer scientist.”

– Philip Wadler

62 / 125

Formal verification with dependent types

Agda is not just a programming language but
also a proof assistant for verifying properties:

• For any x : Nat, x + x is an even number.
• length (map f xs) = length xs
• foldr (λ x xs → xs ++ x) [] xs

= foldl (λ xs x → x :: xs) [] xs

To do this, we first need to answer the
question: what exactly is a proof?

63 / 125

What even is a proof? (1/3)

In mathematics, a proof is a sequence of
statements where each statement is a direct
consequence of previous statements.

Example. A proof that if (1) A ⇒ B and (2) A ∧ C,
then B ∧ C:

(3) A (follows from 2)
(4) B (modus ponens with 1 and 3)
(5) C (follows from 2)
(6) B ∧ C (follows from 4 and 5)

64 / 125

What even is a proof? (2/3)

We can make the dependencies of a proof
more explicit by writing it down as a proof tree.

Example. Here is the same proof that if (1)
A ⇒ B and (2) A ∧ C, then B ∧ C:

A ⇒ B(1) A ∧ C(2)

A
B

A ∧ C(2)

C
B ∧ C

65 / 125

What even is a proof? (3/3)

To represent these proofs in a programming
language, we can annotate each node of the
tree with a proof term:

p : A ⇒ B
q : A ∧ C
fst q : A

p (fst q) : B
q : A ∧ C
snd q : C

(p (fst q), snd q) : B ∧ C

Hmm, these proof terms start to look a lot like
functional programs. . .

66 / 125

What even is a proof? (3/3)

To represent these proofs in a programming
language, we can annotate each node of the
tree with a proof term:

p : A ⇒ B
q : A ∧ C
fst q : A

p (fst q) : B
q : A ∧ C
snd q : C

(p (fst q), snd q) : B ∧ C

Hmm, these proof terms start to look a lot like
functional programs. . .

66 / 125

The Curry-Howard correspondence

Haskell B. Curry

We can interpret logical
propositions (A ∧ B, ¬A,
A ⇒ B, . . .) as the types of
all their possible proofs.

In particular: A false
proposition has no proofs,
so it corresponds to an
empty type.

67 / 125

What is conjunction A ∧ B?

What do we know about the proposition A ∧ B
(A and B)?

• To prove A ∧ B, we need to provide a proof
of A and a proof of B.

• Given a proof of A ∧ B, we can get proofs of
A and B

⇒ The type of proofs of A ∧ B is the type of
pairs A × B

68 / 125

What is conjunction A ∧ B?

What do we know about the proposition A ∧ B
(A and B)?

• To prove A ∧ B, we need to provide a proof
of A and a proof of B.

• Given a proof of A ∧ B, we can get proofs of
A and B

⇒ The type of proofs of A ∧ B is the type of
pairs A × B

68 / 125

What is implication A ⇒ B?

What do we know about the proposition A ⇒ B
(A implies B)?

• To prove A ⇒ B, we can assume we have a
proof of A and have to provide a proof of B

• From a proof of A ⇒ B and a proof of A, we
can get a proof of B

⇒ The type of proofs of A ⇒ B is the function
type A → B

69 / 125

What is implication A ⇒ B?

What do we know about the proposition A ⇒ B
(A implies B)?

• To prove A ⇒ B, we can assume we have a
proof of A and have to provide a proof of B

• From a proof of A ⇒ B and a proof of A, we
can get a proof of B

⇒ The type of proofs of A ⇒ B is the function
type A → B

69 / 125

Proof by implication (Modus ponens)

Modus ponens says that if P implies Q and P is
true, then Q is true.

Question. How can we prove this in Agda?

Answer.

modusPonens : {P Q : Set} → (P → Q) × P → Q
modusPonens (f , x) = f x

70 / 125

Proof by implication (Modus ponens)

Modus ponens says that if P implies Q and P is
true, then Q is true.

Question. How can we prove this in Agda?

Answer.

modusPonens : {P Q : Set} → (P → Q) × P → Q
modusPonens (f , x) = f x

70 / 125

What is disjunction A ∨ B?

What do we know about the proposition A ∨ B
(A or B)?

• To prove A ∨ B we need to provide a proof
of A or a proof of B.

• If we have:
• a proof of A ∨ B
• a proof of C assuming a proof of A
• a proof of C assuming a proof of B

then we have a proof of C.

⇒ The type of proofs of A ∨ B is the sum type
Either A B

71 / 125

What is disjunction A ∨ B?

What do we know about the proposition A ∨ B
(A or B)?

• To prove A ∨ B we need to provide a proof
of A or a proof of B.

• If we have:
• a proof of A ∨ B
• a proof of C assuming a proof of A
• a proof of C assuming a proof of B

then we have a proof of C.

⇒ The type of proofs of A ∨ B is the sum type
Either A B

71 / 125

Proof by cases

Proof by cases says that if P ∨ Q is true and we
can prove R from P and also prove R from Q,
then we can prove R.

Question. How can we prove this in Agda?

Answer.

cases : {P Q R : Set}
→ Either P Q → (P → R) × (Q → R) → R

cases (left x) (f , g) = f x
cases (right y) (f , g) = g y

72 / 125

Proof by cases

Proof by cases says that if P ∨ Q is true and we
can prove R from P and also prove R from Q,
then we can prove R.

Question. How can we prove this in Agda?

Answer.

cases : {P Q R : Set}
→ Either P Q → (P → R) × (Q → R) → R

cases (left x) (f , g) = f x
cases (right y) (f , g) = g y

72 / 125

Quiz question

Question. Which Agda type represents the
proposition “If (P implies Q) then (P or R)
implies (Q or R)”?

1. (Either P Q) → Either (P → R) (Q → R)
2. (P → Q) → Either P R → Either Q R
3. (P → Q) → Either (P × R) (Q × R)
4. (P × Q) → Either P R → Either Q R

73 / 125

What is truth?

What do we know about the proposition ‘true’?

• To prove ‘true’, we don’t need to provide
anything

• From ‘true’, we can deduce nothing

⇒ The type of proofs of truth is the unit type ⊤
with one constructor tt:

data ⊤ : Set where
tt : ⊤

74 / 125

What is truth?

What do we know about the proposition ‘true’?

• To prove ‘true’, we don’t need to provide
anything

• From ‘true’, we can deduce nothing

⇒ The type of proofs of truth is the unit type ⊤
with one constructor tt:

data ⊤ : Set where
tt : ⊤

74 / 125

What is falsity?

What do we know about the proposition ‘false’?

• There is no way to prove ‘false’
• From a proof t of ‘false’, we get a proof
absurd t of any proposition A

⇒ The type of proofs of falsity is the empty
type ⊥ with no constructors:

data ⊥ : Set where

75 / 125

What is falsity?

What do we know about the proposition ‘false’?

• There is no way to prove ‘false’
• From a proof t of ‘false’, we get a proof
absurd t of any proposition A

⇒ The type of proofs of falsity is the empty
type ⊥ with no constructors:

data ⊥ : Set where

75 / 125

Principle of explosion

The principle of explosion1 says that if we
assume a false statement, we can prove any
proposition P.

Question. How can we prove this in Agda?

Answer.

absurd : {P : Set} → ⊥ → P
absurd ()

1Also known as ex falso quodlibet = from falsity follows anything.
76 / 125

Principle of explosion

The principle of explosion1 says that if we
assume a false statement, we can prove any
proposition P.

Question. How can we prove this in Agda?

Answer.

absurd : {P : Set} → ⊥ → P
absurd ()

1Also known as ex falso quodlibet = from falsity follows anything.
76 / 125

Curry-Howard for propositional logic

We can translate from the language of logic to
the language of types according to this table:

Propositional logic Type system
proposition P type

proof of a proposition p : P program of a type
conjunction P × Q pair type
disjunction Either P Q either type
implication P → Q function type

truth ⊤ unit type
falsity ⊥ empty type

77 / 125

Derived notions

Negation. We can encode ¬P (“not P”) as the
type P → ⊥.

Equivalence. We can encode P ⇔ Q (“P is
equivalent to Q”) as (P → Q) × (Q → P).

78 / 125

Exercise

Translate the following statements to types in
Agda, and prove them by constructing a
program of that type:

1. If P implies Q and Q implies R, then P
implies R

2. If P is false and Q is false, then (either P or
Q) is false.

3. If P is both true and false, then any
proposition Q is true.

79 / 125

Constructive logic

In classical logic we can prove certain
‘non-constructive’ statements:

• P ∨ (¬P) (excluded middle)
• ¬¬P ⇒ P (double negation elimination)

However, Agda uses a constructive logic: a
proof of A ∨ B gives us a decision procedure to
tell whether A or B holds.

When P is unknown, it’s impossible to decide
whether P or ¬P holds, so the excluded middle
is unprovable in Agda.

80 / 125

From classical to constructive logic

Consider the proposition P (“P is true”) vs. ¬¬P
(“It would be absurd if P were false”).

Classical logic can’t tell the difference between
the two, but constructive logic can.

Theorem (Gödel and Gentzen). P is provable in
classical logic if and only if ¬¬P is provable in
constructive logic.

81 / 125

Curry-Howard beyond simple types

• Classical logic corresponds to
continuations (e.g. Lisp)

• Linear logic corresponds to linear types
(e.g. Rust)

• Predicate logic corresponds to dependent
types (e.g. Agda)

“Every good idea will be discovered twice:
once by a logician and once by a computer
scientist.” – Philip Wadler

82 / 125

Curry-Howard beyond simple types

• Classical logic corresponds to
continuations (e.g. Lisp)

• Linear logic corresponds to linear types
(e.g. Rust)

• Predicate logic corresponds to dependent
types (e.g. Agda)

“Every good idea will be discovered twice:
once by a logician and once by a computer
scientist.” – Philip Wadler

82 / 125

Curry-Howard beyond simple types

• Classical logic corresponds to
continuations (e.g. Lisp)

• Linear logic corresponds to linear types
(e.g. Rust)

• Predicate logic corresponds to dependent
types (e.g. Agda)

“Every good idea will be discovered twice:
once by a logician and once by a computer
scientist.” – Philip Wadler

82 / 125

Curry-Howard beyond simple types

• Classical logic corresponds to
continuations (e.g. Lisp)

• Linear logic corresponds to linear types
(e.g. Rust)

• Predicate logic corresponds to dependent
types (e.g. Agda)

“Every good idea will be discovered twice:
once by a logician and once by a computer
scientist.” – Philip Wadler

82 / 125

Defining predicates

Question. How would you define a type that
expresses that a given number n is even?

data IsEven : Nat → Set where
e-zero : IsEven zero
e-suc2 : {n : Nat} →

IsEven n → IsEven (suc (suc n))

6-is-even : IsEven 6
6-is-even = e-suc2 (e-suc2 (e-suc2 e-zero))

7-is-not-even : IsEven 7 → ⊥
7-is-not-even (e-suc2 (e-suc2 (e-suc2 ())))

83 / 125

Defining predicates

Question. How would you define a type that
expresses that a given number n is even?

data IsEven : Nat → Set where
e-zero : IsEven zero
e-suc2 : {n : Nat} →

IsEven n → IsEven (suc (suc n))

6-is-even : IsEven 6
6-is-even = e-suc2 (e-suc2 (e-suc2 e-zero))

7-is-not-even : IsEven 7 → ⊥
7-is-not-even (e-suc2 (e-suc2 (e-suc2 ())))

83 / 125

Defining predicates

To define a predicate P on elements of type A,
we can define P as a dependent datatype with
base type A:

data P : A → Set where
c1 : · · · → P a1
c2 : · · · → P a2
- ...

84 / 125

Universal quantification

What do we know about the proposition
∀(x ∈ A). P(x) (‘for all x in A, P(x) holds’)?

• To prove ∀(x ∈ A). P(x), we assume we have
an unknown x ∈ A and prove that P(x)
holds.

• If we have a proof of ∀(x ∈ A). P(x) and a
concrete a ∈ A, then we know P(a).

⇒ ∀(x ∈ A). P(x) corresponds to the dependent
function type (x : A) → P x.

85 / 125

Universal quantification

What do we know about the proposition
∀(x ∈ A). P(x) (‘for all x in A, P(x) holds’)?

• To prove ∀(x ∈ A). P(x), we assume we have
an unknown x ∈ A and prove that P(x)
holds.

• If we have a proof of ∀(x ∈ A). P(x) and a
concrete a ∈ A, then we know P(a).

⇒ ∀(x ∈ A). P(x) corresponds to the dependent
function type (x : A) → P x.

85 / 125

Universal quantification

Example. We can state and prove that for any
number n : Nat, double n is even:

double : Nat → Nat
double zero = zero
double (suc m) = suc (suc (double m))

double-even : (n : Nat) → IsEven (double n)
double-even n = {!!}

86 / 125

Universal quantification

Example. We can state and prove that for any
number n : Nat, double n is even:

double : Nat → Nat
double zero = zero
double (suc m) = suc (suc (double m))

double-even : (n : Nat) → IsEven (double n)
double-even zero = {!!}
double-even (suc m) = {!!}

86 / 125

Universal quantification

Example. We can state and prove that for any
number n : Nat, double n is even:

double : Nat → Nat
double zero = zero
double (suc m) = suc (suc (double m))

double-even : (n : Nat) → IsEven (double n)
double-even zero = e-zero
double-even (suc m) = {!!}

86 / 125

Universal quantification

Example. We can state and prove that for any
number n : Nat, double n is even:

double : Nat → Nat
double zero = zero
double (suc m) = suc (suc (double m))

double-even : (n : Nat) → IsEven (double n)
double-even zero = e-zero
double-even (suc m) = e-suc2 {!!}

86 / 125

Universal quantification

Example. We can state and prove that for any
number n : Nat, double n is even:

double : Nat → Nat
double zero = zero
double (suc m) = suc (suc (double m))

double-even : (n : Nat) → IsEven (double n)
double-even zero = e-zero
double-even (suc m) = e-suc2 (double-even m)

86 / 125

Induction in Agda

In general, a proof by induction on natural
numbers in Agda looks like this:

proof : (n : Nat) → P n
proof zero = · · ·
proof (suc n) = · · ·

• proof zero is the base case
• proof (suc n) is the inductive case

When proving the inductive case, we can make
use of the induction hypothesis proof n : P n.

87 / 125

Proving things about programs

General rule of thumb: A proof about a
function often follows the same structure as
that function:

• To prove something about a function by
pattern matching, the proof will also use
pattern matching (= proof by cases)

• To prove something about a recursive
function, the proof will also be recursive (=
proof by induction)

88 / 125

On the need for totality

To ensure the proofs we write are correct, we
rely on the totality of Agda:

• The coverage checker ensures that a proof
by cases covers all cases.

• The termination checker ensures that
inductive proofs are well-founded.

89 / 125

The identity type and equational
reasoning

“Beware of bugs in the
above code; I have only
proved it correct, not tried
it.”

– Donald Knuth

90 / 125

The identity type

The identity type x ≡ y says x and y are equal:

data _≡_ {A : Set} : A → A → Set where
refl : {x : A} → x ≡ x

The constructor refl proves that two terms are
equal if they have the same normal form:

one-plus-one : 1 + 1 ≡ 2
one-plus-one = refl

91 / 125

Application of the identity type:
Writing test cases

One use case of the identity type is for writing
test cases:

test1 : length (42 :: []) ≡ 1
test1 = refl

test2 : length (map (1 +_) (0 :: 1 :: 2 :: [])) ≡ 3
test2 = refl

The test cases are run each time the file is
loaded!

92 / 125

Proving correctness of functions

We can use the identity type to prove the
correctness of functional programs.

Example. Prove that not (not b) ≡ b for all
b : Bool:

not-not : (b : Bool) → not (not b) ≡ b
not-not true = refl
not-not false = refl

93 / 125

Exercise

Write down the Agda type expressing the
statement that for any function f and list xs,
length (map f xs) is equal to length xs.

Then, prove it by implementing a function of
that type.

94 / 125

Quiz question

Question. What is the type of the Agda
expression λ b → (b ≡ true)?

1. Bool → Bool
2. Bool → Set
3. (b : Bool) → b ≡ true
4. It is not a well-typed expression

95 / 125

Pattern matching on refl

If we have a proof of x ≡ y as input, we can
pattern match on the constructor refl to show
Agda that x and y are equal:

castVec : {A : Set} {m n : Nat} →
m ≡ n → Vec A m → Vec A n

castVec refl xs = xs

When you pattern match on refl, Agda applies
unification to the two sides of the equality.

96 / 125

Symmetry of equality

Symmetry states that if x is equal to y, then y is
equal to x:

sym : {A : Set} {x y : A} → x ≡ y → y ≡ x
sym refl = refl

97 / 125

Congruence

Congruence states that if f : A → B is a function
and x is equal to y, then f x is equal to f y:

cong : {A B : Set} {x y : A} →
(f : A → B) → x ≡ y → f x ≡ f y

cong f refl = refl

98 / 125

Equational reasoning

In school, we learned how to prove equations
by chaining basic equalities:

(a + b) (a + b)

= a (a + b) + b (a + b)

= a^2 + ab + ba + b^2

= a^2 + ab + ab + b^2

= a^2 + 2ab + b^2

This style of proving is called equational
reasoning.

99 / 125

Equational reasoning about functional pro-
grams

Equational reasoning is well suited for proving
things about pure functions:

head (replicate 100 "spam")

= head ("spam" : replicate 99 "spam")

= "spam"

Because there are no side effects, everything is
explicit in the program itself.

100 / 125

Equational reasoning in Agda

Consider the following definitions:

[_] : {A : Set} → A → List A
[x] = x :: []

reverse : {A : Set} → List A → List A
reverse [] = []
reverse (x :: xs) = reverse xs ++ [x]

Goal. Prove that reverse [x] = [x].

101 / 125

Example ‘on paper’

reverse [x]

= { definition of [_] }

reverse (x :: [])

= { applying reverse (second clause) }

reverse [] ++ [x]

= { applying reverse (first clause) }

[] ++ [x]

= { applying _++_ }

[x]

102 / 125

Example in Agda

reverse-singleton : {A : Set} (x : A) → reverse [x] ≡ [x]
reverse-singleton x =

begin
reverse [x]

=⟨⟩ - definition of [_]

reverse (x :: [])
=⟨⟩ - applying reverse (second clause)

reverse [] ++ [x]
=⟨⟩ - applying reverse (first clause)

[] ++ [x]
=⟨⟩ - applying _++_

[x]
end

103 / 125

Equational reasoning in Agda

We can write down an equality proof in
equational reasoning style in Agda:

• The proof starts with begin and ends with
end.

• In between is a sequence of expressions
separated by =⟨⟩, where each expression is
equal to the previous one.

Unlike the proof on paper, here the
typechecker of Agda guarantees that each step
of the proof is correct!

104 / 125

Behind the scenes

Each proof by equational reasoning can be
desugared to refl (and trans).

Example.

reverse-singleton : {A : Set} (x : A) →
reverse [x] ≡ [x]

reverse-singleton x = refl

However, proofs by equational reasoning are
much easier to read and debug.

105 / 125

Equational reasoning + case analysis

We can use equational reasoning in a proof by case
analysis (i.e. pattern matching):

not-not : (b : Bool) → not (not b) ≡ b
not-not false =

begin
not (not false)

=⟨⟩ - applying the inner not

not true
=⟨⟩ - applying not

false
end

not-not true = {!!} - similar to above

106 / 125

Equational reasoning + induction

We can use equational reasoning in a proof by induction:
add-n-zero : (n : Nat) → n + zero ≡ n
add-n-zero zero = {!!} - easy exercise

add-n-zero (suc n) =
begin

(suc n) + zero
=⟨⟩ - applying +

suc (n + zero)
=⟨ cong suc (add-n-zero n) ⟩ - using IH

suc n
end

Here we have to provide an explicit proof that
suc (n + zero) = suc n (between the =⟨ and ⟩). 107 / 125

Exercise

State and prove associativity of addition on
natural numbers: x + (y + z) = (x + y) + z

Hint. If you get stuck, try to work instead
backwards from the goal you want to reach!

108 / 125

Application 1: Proving type class
laws

Reminder: functor laws

Remember the two functor laws from Haskell:

• fmap id = id
• fmap (f . g) = fmap f . fmap g

In Haskell we could only verify these laws by
hand for each instance, but in Agda we can
prove that they hold.

109 / 125

First functor law for List (base case)

map-id : {A : Set} (xs : List A) → map id xs ≡ xs
map-id [] =

begin
map id []

=⟨⟩ - applying map

[]
end

110 / 125

First functor law for List (inductive case)

map-id (x :: xs) =
begin

map id (x :: xs)
=⟨⟩ - applying map

id x :: map id xs
=⟨⟩ - applying id

x :: map id xs
=⟨ cong (x ::_) (map-id xs) ⟩ - using IH

x :: xs
end

111 / 125

Exercise

Prove the second functor law for List.

First, we need to define function composition:2

◦ : {A B C : Set} →
(B → C) → (A → B) → (A → C)

f ◦ g = λ x → f (g x)

Now we can prove that
map (f ◦ g) x = (map f ◦ map g) x.

2Unicode input for ◦: \circ
112 / 125

Application 2: Verifying
optimizations

Reminder: working with accumulators

A slow version of reverse in O(n2):

reverse : {A : Set} → List A → List A
reverse [] = []
reverse (x :: xs) = reverse xs ++ [x]

A faster version of reverse in O(n):

reverse-acc : {A : Set} → List A → List A → List A
reverse-acc [] ys = ys
reverse-acc (x :: xs) ys = reverse-acc xs (x :: ys)

reverse’ : {A : Set} → List A → List A
reverse’ xs = reverse-acc xs []

How can we be sure they are equivalent? By proving it!
113 / 125

Equivalence of reverse and reverse’

reverse’-reverse : {A : Set} →
(xs : List A) → reverse’ xs ≡ reverse xs

reverse’-reverse xs =
begin

reverse’ xs
=⟨⟩ - def of reverse’

reverse-acc xs []
=⟨ reverse-acc-lemma xs [] ⟩ - (see next slide)

reverse xs ++ []
=⟨ append-[] (reverse xs) ⟩ - using append-[]

reverse xs
end

114 / 125

Proving the lemma (base case)

reverse-acc-lemma : {A : Set} → (xs ys : List A)
→ reverse-acc xs ys ≡ reverse xs ++ ys

reverse-acc-lemma [] ys =
begin

reverse-acc [] ys
=⟨⟩ - definition of reverse-acc

ys
=⟨⟩ - unapplying ++

[] ++ ys
=⟨⟩ - unapplying reverse

reverse [] ++ ys
end

115 / 125

Proving the lemma (inductive case)

reverse-acc-lemma (x :: xs) ys =
begin

reverse-acc (x :: xs) ys
=⟨⟩ - def of reverse-acc

reverse-acc xs (x :: ys)
=⟨ reverse-acc-lemma xs (x :: ys) ⟩

reverse xs ++ (x :: ys) - ^ using IH

=⟨⟩ - unapplying ++

reverse xs ++ ([x] ++ ys)
=⟨ sym (append-assoc (reverse xs) [x] ys) ⟩

(reverse xs ++ [x]) ++ ys - ^ associativity of ++

=⟨⟩ - unapplying reverse

reverse (x :: xs) ++ ys
end 116 / 125

Application 3: Proving compiler
correctness

Real-world application:
The CompCert C compiler

CompCert is an optimizing compiler for C code,
which is formally proven to be correct
according to the semantics of the C language,
using the dependently typed language Coq.

To learn more: https://compcert.org/
117 / 125

https://compcert.org/

A simple expression language

data Expr : Set where
valE : Nat → Expr
addE : Expr → Expr → Expr

- Example expr: (2 + 3) + 4

expr : Expr
expr = addE (addE (valE 2) (valE 3)) (valE 4)

eval : Expr → Nat
eval (valE x) = x
eval (addE e1 e2) = eval e1 + eval e2

118 / 125

Evaluating expressions using a stack

data Op : Set where
PUSH : Nat → Op
ADD : Op

Stack = List Nat
Code = List Op

- Example code for (2 + 3) + 4

code : Code
code = PUSH 2 :: PUSH 3 :: ADD

:: PUSH 4 :: ADD :: []

119 / 125

Executing compiled code

Given a list of instructions and an initial stack,
we can execute the code:

exec : Code → Stack → Stack
exec [] s = s
exec (PUSH x :: c) s = exec c (x :: s)
exec (ADD :: c) (m :: n :: s) = exec c (n + m :: s)
exec (ADD :: c) _ = []

120 / 125

Compiling expressions

Goal. Compile an expression to a list of stack
instructions.

A first attempt.

comp : Expr → Code
comp (valE x) = [PUSH x]
comp (addE e1 e2) =

comp e1 ++ comp e2 ++ [ADD]

Problem. This is very inefficient (O(n2)) due to
the repeated use of _++_!

121 / 125

Compiling with an accumulator

Problem. This is very inefficient (O(n2)) due to
the repeated use of _++_!

Instead, we can use an accumulator for the
already generated code:

comp’ : Expr → Code → Code
comp’ (valE x) c = PUSH x :: c
comp’ (addE e1 e2) c =

comp’ e1 (comp’ e2 (ADD :: c))

comp : Expr → Code
comp e = comp’ e []

122 / 125

Proving correctness of comp

We want to prove that executing the compiled code has
the same result as evaluating the expression directly:

comp-exec-eval : (e : Expr) → exec (comp e) [] ≡ [eval e]
comp-exec-eval e =

begin
exec (comp e) []

=⟨ comp’-exec-eval e [] [] ⟩ - (see next slide)

exec [] (eval e :: [])
=⟨⟩ - applying exec for []

eval e :: []
=⟨⟩ - unapplying [_]

[eval e]
end

123 / 125

Proving correctness of comp’ (valE case)

comp’-exec-eval : (e : Expr) (s : Stack) (c : Code)
→ exec (comp’ e c) s ≡ exec c (eval e :: s)

comp’-exec-eval (valE x) s c =
begin

exec (comp’ (valE x) c) s
=⟨⟩ - applying comp’

exec (PUSH x :: c) s
=⟨⟩ - applying exec for PUSH

exec c (x :: s)
=⟨⟩ - unapplying eval for valE

exec c (eval (valE x) :: s)
end

124 / 125

Proving correctness of comp’ (addE case)

comp’-exec-eval (addE e1 e2) s c =
begin

exec (comp’ (addE e1 e2) c) s
=⟨⟩ - def of comp’

exec (comp’ e1 (comp’ e2 (ADD :: c))) s
=⟨ comp’-exec-eval e1 s (comp’ e2 (ADD :: c)) ⟩ - IH

exec (comp’ e2 (ADD :: c)) (eval e1 :: s)
=⟨ comp’-exec-eval e2 (eval e1 :: s) (ADD :: c) ⟩ - IH

exec (ADD :: c) (eval e2 :: eval e1 :: s)
=⟨⟩ - applying exec for ADD

exec c (eval e1 + eval e2 :: s)
=⟨⟩ - unapplying eval for addE

exec c (eval (addE e1 e2) :: s)
end 125 / 125

	Agda vs. Haskell
	Types as first-class values
	Dependent types
	Dependent functions
	The Curry-Howard Correspondence
	The identity type and equational reasoning
	Application 1: Proving type class laws
	Application 2: Verifying optimizations
	Application 3: Proving compiler correctness

