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Lecture plan

• A brief overview of formal verification,
dependent types, and Agda

• Differences between Agda and Haskell
• Types as first-class values
• Dependent data types
• Dependent function types
• The Curry-Howard correspondence
• Equational reasoning in Agda
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“Program testing can be
used to show the presence
of bugs, but never to show
their absence!”

– Edsger W. Dijkstra
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When testing is just not enough

Question. In what situations might testing not
be enough to ensure software works correctly?

. . . failure is very costly (e.g. spacecraft,
medical equipment, self-driving cars)

. . . the software is difficult to update
(e.g. embedded software)

. . . it is security-sensitive (e.g. banking, your
private chats)

. . . errors are hard to detect or not apparent
until much later (e.g. compilers, concurrent
systems)
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Formal verification

Formal verification is a collection of techniques
for proving correctness of programs with
respect to a certain formal specification.

These techniques often rely on ideas from
formal logic and mathematics to ensure a very
high degree of trustworthiness.
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Why dependent types?

Dependent types are a form of formal verification that is
embedded in the programming language.

Advantages.

• No different syntax to learn or tools to install

• Tight integration between IDE and type system

• Express invariants of programs in their types

• Use same syntax for programming and proving

Formally verifying a program should not be more
difficult than writing the program in the first place!
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The Agda language

Agda is a purely functional programming
language similar to Haskell.

Unlike Haskell, it has full support for
dependent types.

It also supports interactive programming with
help from the type checker.
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Installing Agda

VS Code plugin.
Install the agda-mode plugin and enable the
Agda Language Server in the settings.

Binary release. (Linux/WSL)
sudo apt install agda

From source. (Cabal/Stack)
cabal install Agda or
stack install Agda
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Installing an editor for Agda

The following editors have support for Agda:

• VS Code: Install the agda-mode plugin
• Emacs: Plugin is distributed with Agda (run
agda-mode setup)

• Atom: https:
//atom.io/packages/agda-mode

• Vim: https://github.com/
derekelkins/agda-vim
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A first Agda program

data Greeting : Set where
hello : Greeting

greet : Greeting
greet = hello

This program:

• Defines a datatype Greeting with one
constructor hello.

• Defines a function greet of type Greeting
that returns hello.
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Loading an Agda file

You can load an Agda file by pressing Ctrl+c
followed by Ctrl+l.

Once the file is loaded (and there are no
errors), other commands become available:

Ctrl+c Ctrl+d Infer type of an expression.
Ctrl+c Ctrl+n Evaluate an expression.
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Agda vs. Haskell



Basic syntax differences

Typing uses a single colon:
b : Bool instead of b :: Bool.

Naming has fewer restrictions: any name can
start with small or capital letter, and
symbols can occur in names.

Whitespace is required more often: 1+1 is a
valid function name, so you need to
write 1 + 1 instead.

Infix operators are indicated by underscores:
_+_ instead of (+)
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Unicode syntax

Agda allows unicode characters in its syntax:

• → can be used instead of ->
• λ can be used instead of \
• Other symbols can also be used as (parts

of) names of functions, variables, or types:
×, Σ, ⊤, ⊥, ≡, ⟨, ⟩, ◦, . . .
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Entering unicode

Editors with Agda support will replace
LaTeX-like syntax (e.g. \to) with unicode:

→ \to

λ \lambda

× \times

Σ \Sigma

⊤ \top

⊥ \bot

≡ \equiv

· · ·
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Quiz question

Question. Which is NOT a valid name for an
Agda function?

1. 1+1=2
2. foo bar

3. λ→×Σ
4. if_then_else_

14 / 125



Declaring new datatypes

To declare a datatype in Agda, we need to give
the full type of each constructor:

data Bool : Set where
true : Bool
false : Bool

We also need to specify that Bool itself has
type Set (see later).
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Defining functions by pattern matching

Just as in Haskell, we can define new functions
by pattern matching:

not : Bool → Bool
not true = false
not false = true
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The type of natural numbers

data Nat : Set where
zero : Nat
suc : Nat → Nat

{-# BUILTIN NATURAL Nat #-}

one = 1 - = suc zero

two = 2 - = suc one

three = 3 - = suc two

four = 4 - = suc three
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Functions on natural numbers

isEven : Nat → Bool
isEven zero = true
isEven (suc zero) = false
isEven (suc (suc x)) = isEven x

_+_ : Nat → Nat → Nat
zero + y = y
(suc x) + y = suc (x + y)
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Holes in programs

A hole is a part of a program that is not yet complete. A
hole can be created by writing ? or {!!} and loading
the file (Ctrl+c Ctrl+l).

New commands for files with holes:

Ctrl+c Ctrl+, Give information about the hole

Ctrl+c Ctrl+c Case split on a variable

Ctrl+c Ctrl+space Give a solution for the hole

Exercise. Use these to define the function
maximum : Nat → Nat → Nat.
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Total functional programming

In contrast to Haskell, Agda is a total language:

• NO runtime errors
• NO incomplete pattern matches
• NO non-terminating functions

So functions are true functions in the
mathematical sense: evaluating a function call
always returns a result in finite time.
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Why should we care about totality?

Some reasons to write total programs:

• Better guarantees of correctness
• Spend less time debugging infinite loops
• Easier to refactor without introducing bugs
• Less need to document valid inputs

Totality is also crucial for working with
dependent types and using Agda as a proof
assistant (see later).
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Coverage checking

Agda performs a coverage check to ensure all
definitions by pattern matching are complete:

pred : Nat → Nat
pred (suc x) = x

Incomplete pattern matching for pred.
Missing cases: pred zero
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Termination checking

Agda performs a termination check to ensure
all recursive definitions are terminating:

inf : Nat → Nat
inf x = 1 + inf x

Termination checking failed for the following
functions: inf
Problematic calls: inf x
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To solve or not to solve the halting problem

Question. Isn’t it impossible to determine
whether a function is terminating? Or does
Agda solve the halting problem?

Answer. No, Agda only accepts functions that
are ‘obviously terminating’, and rejects all
other functions.
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Structural recursion

Agda only accepts functions that are
structurally recursive: the argument of each
recursive call must be a subterm of the
argument on the left of the clause.

For example, this definition is rejected:

f : Nat → Nat
f (suc (suc x)) = f zero
f (suc x) = f (suc (suc x))
f zero = zero
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Types as first-class values



The type Set

In Agda, types such as Nat and (Bool → Bool)
are themselves expressions of type Set.

We can pass around and return values of type
Set just like values of any other type.

Example. Defining a type alias as a function:

MyNat : Set
MyNat = Nat

myFour : MyNat
myFour = 4
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Polymorphic functions in Agda

We can define polymorphic functions as
functions that take an argument of type Set:

id : (A : Set) → A → A
id A x = x

For example, we have id Nat zero : Nat and
id Bool true : Bool.
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Hidden arguments

To avoid repeating the type at which we apply
a polymorphic function, we can declare it as a
hidden argument using curly braces:

id : {A : Set} → A → A
id x = x

Now we have id zero : Nat and id true : Bool.
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If/then/else as a function

We can define if/then/else in Agda as follows:

if_then_else_ : {A : Set} →
Bool → A → A → A

if true then x else y = x
if false then x else y = y

This is an example of a mixfix operator.

Example usage.

test : Nat → Nat
test x = if (x ≤ 9000) then 0 else 42
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Polymorphic datatypes

Just like we can define polymorphic functions,
we can also define polymorphic datatypes by
adding a parameter (A : Set):

data List (A : Set) : Set where
[] : List A
_::_ : A → List A → List A

infixr 5 _::_

Note. Agda does not have built-in support for
list syntax [1, 2, 3]. Instead, we have to write
1 :: 2 :: 3 :: [].
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A tuple type in Agda

Agda does not have a builtin type of tuples
(x, y), but we can define the product type A × B:

data _×_ (A B : Set) : Set where
_,_ : A → B → A × B

fst : {A B : Set} → A × B → A
fst (x , y) = x

snd : {A B : Set} → A × B → B
snd (x , y) = y
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No pattern matching on Set

It is not allowed to pattern match on
arguments of type Set:

- Not valid code:

sneakyType : Set → Set
sneakyType Bool = Nat
sneakyType Nat = Bool

One reason for this is that Agda (like Haskell)
erases all types during compilation.
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Quiz question

Is it possible to implement a function of type
{A : Set} → List A → Nat → A in Agda?
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Dependent types



Cooking with dependent types (1/3)

Suppose we are implementing a cooking assistant that
can help with preparing three kinds of food:

data Food : Set where
pizza : Food
cake : Food
bread : Food

We want to implement a function
amountOfCheese : Food → Nat that computes how much
cheese is needed.

Problem: How can we make sure this function is never
called with argument cake?
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Cooking with dependent types (2/3)

Solution. We can make the type Food more precise
making it into an indexed datatype:

data Flavour : Set where
cheesy : Flavour
chocolatey : Flavour

data Food : Flavour → Set where
pizza : Food cheesy
cake : Food chocolatey
bread : {f : Flavour} → Food f

This defines two types Food cheesy and Food chocolatey.
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Cooking with dependent types (3/3)

We can now rule out invalid inputs by using the more
precise type Food cheesy:

amountOfCheese : Food cheesy → Nat
amountOfCheese pizza = 100
amountOfCheese bread = 20

The coverage checker of Agda knows that cake is not a
valid input!
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Dependent type theory (1972)

Per
Martin-Löf

A dependent type is a fam-
ily of types, depending on a
term of a base type.

Example (not by Martin-Löf).
Food is a dependent type
indexed over the base type
Flavour.
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Vectors: lists that know their length

Vec A n is the type of vectors with exactly n
arguments of type A:

myVec1 : Vec Nat 4
myVec1 = 1 :: 2 :: 3 :: 4 :: []

myVec2 : Vec Nat 0
myVec2 = []

myVec3 : Vec (Bool → Bool) 2
myVec3 = not :: id :: []
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Definition of the Vec type

Vec A n is a dependent type indexed over the
base type Nat:

data Vec (A : Set) : Nat → Set where
[] : Vec A 0
_::_ : {n : Nat} →

A → Vec A n → Vec A (suc n)

This has two constructors [] and _::_ like List,
but the constructors specify the length in their
types.

39 / 125



Parameters vs. indices

The argument (A : Set) in the definition of Vec is
a parameter, and has to be the same in the
type of each constructor.

The argument of type Nat in the definition of
Vec is an index, and must be determined
individually for each constructor.
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Quiz question

Question. How many elements are there in the
type Vec Bool 3?

Answer. 8 elements:
• true :: true :: true :: []
• true :: true :: false :: []
• true :: false :: true :: []
• true :: false :: false :: []
• false :: true :: true :: []
• false :: true :: false :: []
• false :: false :: true :: []
• false :: false :: false :: []
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Type-level computation

During type-checking, Agda will evaluate
expressions in types:

myVec4 : Vec Nat (2 + 2)
myVec4 = 1 :: 2 :: 3 :: 4 :: []

Since Agda is a total language, any expression
can appear inside a type.

(A non-total language with dependent types
would only allow a few ‘safe’ expressions.)
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Checking the length of a vector

Constructing a vector of the wrong length in
any way is a type error:

myVec5 : Vec Nat 0
myVec5 = 1 :: 2 :: []

suc _n_46 != zero of type Nat

when checking that the inferred

type of an application

Vec Nat (suc _n_46)

matches the expected type

Vec Nat 0
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Dependent functions



Dependent function types

A dependent function type is a type of the form
(x : A) → B x where the type of the output
depends on the value of the input.

Example.

zeroes : (n : Nat) → Vec Nat n
zeroes zero = []
zeroes (suc n) = 0 :: zeroes n

E.g. zeroes 3 has type Vec Nat 3 and evaluates
to 0 :: 0 :: 0 :: [].
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Concatenation of vectors

We can pattern match on Vec just like on List:

mapVec : {A B : Set} {n : Nat} →
(A → B) → Vec A n → Vec B n

mapVec f [] = []
mapVec f (x :: xs) = f x :: mapVec f xs

Note. The type of mapVec specifies that the
output has the same length as the input.
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A safe head function

By making the input type of a function more
precise, we can rule out certain cases statically
(= during type checking):

head : {A : Set}{n : Nat} → Vec A (suc n) → A
head (x :: xs) = x

Agda knows the case for head [] is impossible!
(just like for amountOfCheese cake)
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A safe tail function

Question. What should be the type of tail on
vectors with the following definition?

tail (x :: xs) = xs

Answer.

tail : {A : Set} {n : Nat} → Vec A (suc n) → Vec A n
tail (x :: xs) = xs
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Exercise

Define a function zipVec that only accepts
vectors of the same length.
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A safe lookup

By combining head and tail, we can get the 1st,
2nd, 3rd,. . . element of a vector with at least
that many elements.

How can we define a function lookupVec that
get the element at position i of a Vec A n where
i < n?

Note. We want to get an element of A, not of
Maybe A!
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The Fin type

We need a type of indices that are safe for a
vector of length n, i.e. numbers between 0 and
n − 1.

This is the type Fin n of finite numbers:

zero3 one3 two3 : Fin 3
zero3 = zero
one3 = suc zero
two3 = suc (suc zero)
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Definition of the Fin type

data Fin : Nat → Set where
zero : {n : Nat} → Fin (suc n)
suc : {n : Nat} → Fin n → Fin (suc n)
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An empty type

Fin n has n elements, so in particular Fin 0 has
zero elements: it is an empty type.

This means there are no valid indices for a
vector of length 0.

Note. Unlike in Haskell, we cannot even
construct an expression of Fin 0 using
undefined or an infinite loop.
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The family of Fin types

Fin 0 Fin 1 Fin 2 Fin 3 Fin 4 · · ·

zero zero zero zero · · ·

suc suc suc · · ·

suc suc · · ·

suc · · ·
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A safe lookup (1/5)

lookupVec : {A : Set} {n : Nat} →
Vec A n → Fin n → A

lookupVec xs i = {! !}
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A safe lookup (2/5)

lookupVec : {A : Set} {n : Nat} →
Vec A n → Fin n → A

lookupVec (x :: xs) i = {! !}
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A safe lookup (3/5)

lookupVec : {A : Set} {n : Nat} →
Vec A n → Fin n → A

lookupVec (x :: xs) zero = {! !}
lookupVec (x :: xs) (suc i) = {! !}
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A safe lookup (4/5)

lookupVec : {A : Set} {n : Nat} →
Vec A n → Fin n → A

lookupVec (x :: xs) zero = x
lookupVec (x :: xs) (suc i) = {! !}
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A safe lookup (5/5)

lookupVec : {A : Set} {n : Nat} →
Vec A n → Fin n → A

lookupVec (x :: xs) zero = x
lookupVec (x :: xs) (suc i) = lookupVec xs i

We now have a safe and total version of the
Haskell (!!) function, without having to
change the return type in any way.
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Exercise (1/2)

Define a datatype Expr of expressions of a small
programming language with:

• Number literals 0, 1, 2, . . .

• Arithmetic expressions e1 + e2 and e1 ∗ e2

• Booleans true and false
• Comparisons e1 < e2 and e1 == e2
• Conditionals if e1 then e2 else e3

Expr should be a dependent type indexed over the type
Ty of possible types of this language:

data Ty : Set where
tInt : Ty
tBool : Ty

59 / 125



Exercise (2/2)

Next, write a function El : Ty → Set that
interprets a type of this language as an Agda
type.

Finally, define eval : {t : Ty} → Expr t → El t
that evaluates a given expression to an Agda
value.
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Dependent types: Summary

A dependent type is a type that depends on a
value of some base type.

With dependent types, we can specify the
allowed inputs of a function more precisely,
ruling out invalid inputs at compile time.

Examples of dependent types.

• Food f , indexed over f : Flavour
• Vec A n, indexed over n : Nat
• Fin n, indexed over n : Nat
• Expr t, indexed over t : Ty
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The Curry-Howard
Correspondence



“Every good idea will be
discovered twice:
once by a logician and once
by a computer scientist.”

– Philip Wadler
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Formal verification with dependent types

Agda is not just a programming language but
also a proof assistant for verifying properties:

• For any x : Nat, x + x is an even number.
• length (map f xs) = length xs
• foldr (λ x xs → xs ++ x) [] xs

= foldl (λ xs x → x :: xs) [] xs

To do this, we first need to answer the
question: what exactly is a proof?
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What even is a proof? (1/3)

In mathematics, a proof is a sequence of
statements where each statement is a direct
consequence of previous statements.

Example. A proof that if (1) A ⇒ B and (2) A ∧ C,
then B ∧ C:

(3) A (follows from 2)
(4) B (modus ponens with 1 and 3)
(5) C (follows from 2)
(6) B ∧ C (follows from 4 and 5)
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What even is a proof? (2/3)

We can make the dependencies of a proof
more explicit by writing it down as a proof tree.

Example. Here is the same proof that if (1)
A ⇒ B and (2) A ∧ C, then B ∧ C:

A ⇒ B(1) A ∧ C(2)

A
B

A ∧ C(2)

C
B ∧ C
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What even is a proof? (3/3)

To represent these proofs in a programming
language, we can annotate each node of the
tree with a proof term:

p : A ⇒ B
q : A ∧ C
fst q : A

p (fst q) : B
q : A ∧ C
snd q : C

(p (fst q), snd q) : B ∧ C

Hmm, these proof terms start to look a lot like
functional programs. . .
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The Curry-Howard correspondence

Haskell B. Curry

We can interpret logical
propositions (A ∧ B, ¬A,
A ⇒ B, . . . ) as the types of
all their possible proofs.

In particular: A false
proposition has no proofs,
so it corresponds to an
empty type.
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What is conjunction A ∧ B?

What do we know about the proposition A ∧ B
(A and B)?

• To prove A ∧ B, we need to provide a proof
of A and a proof of B.

• Given a proof of A ∧ B, we can get proofs of
A and B

⇒ The type of proofs of A ∧ B is the type of
pairs A × B
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What is implication A ⇒ B?

What do we know about the proposition A ⇒ B
(A implies B)?

• To prove A ⇒ B, we can assume we have a
proof of A and have to provide a proof of B

• From a proof of A ⇒ B and a proof of A, we
can get a proof of B

⇒ The type of proofs of A ⇒ B is the function
type A → B
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Proof by implication (Modus ponens)

Modus ponens says that if P implies Q and P is
true, then Q is true.

Question. How can we prove this in Agda?

Answer.

modusPonens : {P Q : Set} → (P → Q) × P → Q
modusPonens (f , x) = f x
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What is disjunction A ∨ B?

What do we know about the proposition A ∨ B
(A or B)?

• To prove A ∨ B we need to provide a proof
of A or a proof of B.

• If we have:
• a proof of A ∨ B
• a proof of C assuming a proof of A
• a proof of C assuming a proof of B

then we have a proof of C.

⇒ The type of proofs of A ∨ B is the sum type
Either A B
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Proof by cases

Proof by cases says that if P ∨ Q is true and we
can prove R from P and also prove R from Q,
then we can prove R.

Question. How can we prove this in Agda?

Answer.

cases : {P Q R : Set}
→ Either P Q → (P → R) × (Q → R) → R

cases (left x) (f , g) = f x
cases (right y) (f , g) = g y
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Quiz question

Question. Which Agda type represents the
proposition “If (P implies Q) then (P or R)
implies (Q or R)”?

1. (Either P Q) → Either (P → R) (Q → R)
2. (P → Q) → Either P R → Either Q R
3. (P → Q) → Either (P × R) (Q × R)
4. (P × Q) → Either P R → Either Q R
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What is truth?

What do we know about the proposition ‘true’?

• To prove ‘true’, we don’t need to provide
anything

• From ‘true’, we can deduce nothing

⇒ The type of proofs of truth is the unit type ⊤
with one constructor tt:

data ⊤ : Set where
tt : ⊤
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What is falsity?

What do we know about the proposition ‘false’?

• There is no way to prove ‘false’
• From a proof t of ‘false’, we get a proof
absurd t of any proposition A

⇒ The type of proofs of falsity is the empty
type ⊥ with no constructors:

data ⊥ : Set where
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Principle of explosion

The principle of explosion1 says that if we
assume a false statement, we can prove any
proposition P.

Question. How can we prove this in Agda?

Answer.

absurd : {P : Set} → ⊥ → P
absurd ()

1Also known as ex falso quodlibet = from falsity follows anything.
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Curry-Howard for propositional logic

We can translate from the language of logic to
the language of types according to this table:

Propositional logic Type system
proposition P type

proof of a proposition p : P program of a type
conjunction P × Q pair type
disjunction Either P Q either type
implication P → Q function type

truth ⊤ unit type
falsity ⊥ empty type
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Derived notions

Negation. We can encode ¬P (“not P”) as the
type P → ⊥.

Equivalence. We can encode P ⇔ Q (“P is
equivalent to Q”) as (P → Q) × (Q → P).
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Exercise

Translate the following statements to types in
Agda, and prove them by constructing a
program of that type:

1. If P implies Q and Q implies R, then P
implies R

2. If P is false and Q is false, then (either P or
Q) is false.

3. If P is both true and false, then any
proposition Q is true.
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Constructive logic

In classical logic we can prove certain
‘non-constructive’ statements:

• P ∨ (¬P) (excluded middle)
• ¬¬P ⇒ P (double negation elimination)

However, Agda uses a constructive logic: a
proof of A ∨ B gives us a decision procedure to
tell whether A or B holds.

When P is unknown, it’s impossible to decide
whether P or ¬P holds, so the excluded middle
is unprovable in Agda.
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From classical to constructive logic

Consider the proposition P (“P is true”) vs. ¬¬P
(“It would be absurd if P were false”).

Classical logic can’t tell the difference between
the two, but constructive logic can.

Theorem (Gödel and Gentzen). P is provable in
classical logic if and only if ¬¬P is provable in
constructive logic.
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Curry-Howard beyond simple types

• Classical logic corresponds to
continuations (e.g. Lisp)

• Linear logic corresponds to linear types
(e.g. Rust)

• Predicate logic corresponds to dependent
types (e.g. Agda)

“Every good idea will be discovered twice:
once by a logician and once by a computer
scientist.” – Philip Wadler
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Defining predicates

Question. How would you define a type that
expresses that a given number n is even?

data IsEven : Nat → Set where
e-zero : IsEven zero
e-suc2 : {n : Nat} →

IsEven n → IsEven (suc (suc n))

6-is-even : IsEven 6
6-is-even = e-suc2 (e-suc2 (e-suc2 e-zero))

7-is-not-even : IsEven 7 → ⊥
7-is-not-even (e-suc2 (e-suc2 (e-suc2 ())))
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Defining predicates

To define a predicate P on elements of type A,
we can define P as a dependent datatype with
base type A:

data P : A → Set where
c1 : · · · → P a1
c2 : · · · → P a2
- ...
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Universal quantification

What do we know about the proposition
∀(x ∈ A). P(x) (‘for all x in A, P(x) holds’)?

• To prove ∀(x ∈ A). P(x), we assume we have
an unknown x ∈ A and prove that P(x)
holds.

• If we have a proof of ∀(x ∈ A). P(x) and a
concrete a ∈ A, then we know P(a).

⇒ ∀(x ∈ A). P(x) corresponds to the dependent
function type (x : A) → P x.
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Universal quantification

Example. We can state and prove that for any
number n : Nat, double n is even:

double : Nat → Nat
double zero = zero
double (suc m) = suc (suc (double m))

double-even : (n : Nat) → IsEven (double n)
double-even n = {!!}
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Induction in Agda

In general, a proof by induction on natural
numbers in Agda looks like this:

proof : (n : Nat) → P n
proof zero = · · ·
proof (suc n) = · · ·

• proof zero is the base case
• proof (suc n) is the inductive case

When proving the inductive case, we can make
use of the induction hypothesis proof n : P n.
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Proving things about programs

General rule of thumb: A proof about a
function often follows the same structure as
that function:

• To prove something about a function by
pattern matching, the proof will also use
pattern matching (= proof by cases)

• To prove something about a recursive
function, the proof will also be recursive (=
proof by induction)
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On the need for totality

To ensure the proofs we write are correct, we
rely on the totality of Agda:

• The coverage checker ensures that a proof
by cases covers all cases.

• The termination checker ensures that
inductive proofs are well-founded.
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The identity type and equational
reasoning



“Beware of bugs in the
above code; I have only
proved it correct, not tried
it.”

– Donald Knuth
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The identity type

The identity type x ≡ y says x and y are equal:

data _≡_ {A : Set} : A → A → Set where
refl : {x : A} → x ≡ x

The constructor refl proves that two terms are
equal if they have the same normal form:

one-plus-one : 1 + 1 ≡ 2
one-plus-one = refl

91 / 125



Application of the identity type:
Writing test cases

One use case of the identity type is for writing
test cases:

test1 : length (42 :: []) ≡ 1
test1 = refl

test2 : length (map (1 +_) (0 :: 1 :: 2 :: [])) ≡ 3
test2 = refl

The test cases are run each time the file is
loaded!
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Proving correctness of functions

We can use the identity type to prove the
correctness of functional programs.

Example. Prove that not (not b) ≡ b for all
b : Bool:

not-not : (b : Bool) → not (not b) ≡ b
not-not true = refl
not-not false = refl
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Exercise

Write down the Agda type expressing the
statement that for any function f and list xs,
length (map f xs) is equal to length xs.

Then, prove it by implementing a function of
that type.
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Quiz question

Question. What is the type of the Agda
expression λ b → (b ≡ true)?

1. Bool → Bool
2. Bool → Set
3. (b : Bool) → b ≡ true
4. It is not a well-typed expression
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Pattern matching on refl

If we have a proof of x ≡ y as input, we can
pattern match on the constructor refl to show
Agda that x and y are equal:

castVec : {A : Set} {m n : Nat} →
m ≡ n → Vec A m → Vec A n

castVec refl xs = xs

When you pattern match on refl, Agda applies
unification to the two sides of the equality.
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Symmetry of equality

Symmetry states that if x is equal to y, then y is
equal to x:

sym : {A : Set} {x y : A} → x ≡ y → y ≡ x
sym refl = refl
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Congruence

Congruence states that if f : A → B is a function
and x is equal to y, then f x is equal to f y:

cong : {A B : Set} {x y : A} →
(f : A → B) → x ≡ y → f x ≡ f y

cong f refl = refl
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Equational reasoning

In school, we learned how to prove equations
by chaining basic equalities:

(a + b) (a + b)

= a (a + b) + b (a + b)

= a^2 + ab + ba + b^2

= a^2 + ab + ab + b^2

= a^2 + 2ab + b^2

This style of proving is called equational
reasoning.
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Equational reasoning about functional pro-
grams

Equational reasoning is well suited for proving
things about pure functions:

head (replicate 100 "spam")

= head ("spam" : replicate 99 "spam")

= "spam"

Because there are no side effects, everything is
explicit in the program itself.

100 / 125



Equational reasoning in Agda

Consider the following definitions:

[_] : {A : Set} → A → List A
[ x ] = x :: []

reverse : {A : Set} → List A → List A
reverse [] = []
reverse (x :: xs) = reverse xs ++ [ x ]

Goal. Prove that reverse [ x ] = [ x ].
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Example ‘on paper’

reverse [ x ]

= { definition of [_] }

reverse (x :: [])

= { applying reverse (second clause) }

reverse [] ++ [ x ]

= { applying reverse (first clause) }

[] ++ [ x ]

= { applying _++_ }

[ x ]
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Example in Agda

reverse-singleton : {A : Set} (x : A) → reverse [ x ] ≡ [ x ]
reverse-singleton x =

begin
reverse [ x ]

=⟨⟩ - definition of [_]

reverse (x :: [])
=⟨⟩ - applying reverse (second clause)

reverse [] ++ [ x ]
=⟨⟩ - applying reverse (first clause)

[] ++ [ x ]
=⟨⟩ - applying _++_

[ x ]
end
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Equational reasoning in Agda

We can write down an equality proof in
equational reasoning style in Agda:

• The proof starts with begin and ends with
end.

• In between is a sequence of expressions
separated by =⟨⟩, where each expression is
equal to the previous one.

Unlike the proof on paper, here the
typechecker of Agda guarantees that each step
of the proof is correct!
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Behind the scenes

Each proof by equational reasoning can be
desugared to refl (and trans).

Example.

reverse-singleton : {A : Set} (x : A) →
reverse [ x ] ≡ [ x ]

reverse-singleton x = refl

However, proofs by equational reasoning are
much easier to read and debug.
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Equational reasoning + case analysis

We can use equational reasoning in a proof by case
analysis (i.e. pattern matching):

not-not : (b : Bool) → not (not b) ≡ b
not-not false =

begin
not (not false)

=⟨⟩ - applying the inner not

not true
=⟨⟩ - applying not

false
end

not-not true = {!!} - similar to above
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Equational reasoning + induction

We can use equational reasoning in a proof by induction:
add-n-zero : (n : Nat) → n + zero ≡ n
add-n-zero zero = {!!} - easy exercise

add-n-zero (suc n) =
begin

(suc n) + zero
=⟨⟩ - applying +

suc (n + zero)
=⟨ cong suc (add-n-zero n) ⟩ - using IH

suc n
end

Here we have to provide an explicit proof that
suc (n + zero) = suc n (between the =⟨ and ⟩). 107 / 125



Exercise

State and prove associativity of addition on
natural numbers: x + (y + z) = (x + y) + z

Hint. If you get stuck, try to work instead
backwards from the goal you want to reach!
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Application 1: Proving type class
laws



Reminder: functor laws

Remember the two functor laws from Haskell:

• fmap id = id
• fmap (f . g) = fmap f . fmap g

In Haskell we could only verify these laws by
hand for each instance, but in Agda we can
prove that they hold.
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First functor law for List (base case)

map-id : {A : Set} (xs : List A) → map id xs ≡ xs
map-id [] =

begin
map id []

=⟨⟩ - applying map

[]
end
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First functor law for List (inductive case)

map-id (x :: xs) =
begin

map id (x :: xs)
=⟨⟩ - applying map

id x :: map id xs
=⟨⟩ - applying id

x :: map id xs
=⟨ cong (x ::_) (map-id xs) ⟩ - using IH

x :: xs
end
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Exercise

Prove the second functor law for List.

First, we need to define function composition:2

_◦_ : {A B C : Set} →
(B → C) → (A → B) → (A → C)

f ◦ g = λ x → f (g x)

Now we can prove that
map (f ◦ g) x = (map f ◦ map g) x.

2Unicode input for ◦: \circ
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Application 2: Verifying
optimizations



Reminder: working with accumulators

A slow version of reverse in O(n2):

reverse : {A : Set} → List A → List A
reverse [] = []
reverse (x :: xs) = reverse xs ++ [ x ]

A faster version of reverse in O(n):

reverse-acc : {A : Set} → List A → List A → List A
reverse-acc [] ys = ys
reverse-acc (x :: xs) ys = reverse-acc xs (x :: ys)

reverse’ : {A : Set} → List A → List A
reverse’ xs = reverse-acc xs []

How can we be sure they are equivalent? By proving it!
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Equivalence of reverse and reverse’

reverse’-reverse : {A : Set} →
(xs : List A) → reverse’ xs ≡ reverse xs

reverse’-reverse xs =
begin

reverse’ xs
=⟨⟩ - def of reverse’

reverse-acc xs []
=⟨ reverse-acc-lemma xs [] ⟩ - (see next slide)

reverse xs ++ []
=⟨ append-[] (reverse xs) ⟩ - using append-[]

reverse xs
end
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Proving the lemma (base case)

reverse-acc-lemma : {A : Set} → (xs ys : List A)
→ reverse-acc xs ys ≡ reverse xs ++ ys

reverse-acc-lemma [] ys =
begin

reverse-acc [] ys
=⟨⟩ - definition of reverse-acc

ys
=⟨⟩ - unapplying ++

[] ++ ys
=⟨⟩ - unapplying reverse

reverse [] ++ ys
end
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Proving the lemma (inductive case)

reverse-acc-lemma (x :: xs) ys =
begin

reverse-acc (x :: xs) ys
=⟨⟩ - def of reverse-acc

reverse-acc xs (x :: ys)
=⟨ reverse-acc-lemma xs (x :: ys) ⟩

reverse xs ++ (x :: ys) - ^ using IH

=⟨⟩ - unapplying ++

reverse xs ++ ([ x ] ++ ys)
=⟨ sym (append-assoc (reverse xs) [ x ] ys) ⟩

(reverse xs ++ [ x ]) ++ ys - ^ associativity of ++

=⟨⟩ - unapplying reverse

reverse (x :: xs) ++ ys
end 116 / 125



Application 3: Proving compiler
correctness



Real-world application:
The CompCert C compiler

CompCert is an optimizing compiler for C code,
which is formally proven to be correct
according to the semantics of the C language,
using the dependently typed language Coq.

To learn more: https://compcert.org/
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A simple expression language

data Expr : Set where
valE : Nat → Expr
addE : Expr → Expr → Expr

- Example expr: (2 + 3) + 4

expr : Expr
expr = addE (addE (valE 2) (valE 3)) (valE 4)

eval : Expr → Nat
eval (valE x) = x
eval (addE e1 e2) = eval e1 + eval e2
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Evaluating expressions using a stack

data Op : Set where
PUSH : Nat → Op
ADD : Op

Stack = List Nat
Code = List Op

- Example code for (2 + 3) + 4

code : Code
code = PUSH 2 :: PUSH 3 :: ADD

:: PUSH 4 :: ADD :: []
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Executing compiled code

Given a list of instructions and an initial stack,
we can execute the code:

exec : Code → Stack → Stack
exec [] s = s
exec (PUSH x :: c) s = exec c (x :: s)
exec (ADD :: c) (m :: n :: s) = exec c (n + m :: s)
exec (ADD :: c) _ = []
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Compiling expressions

Goal. Compile an expression to a list of stack
instructions.

A first attempt.

comp : Expr → Code
comp (valE x) = [ PUSH x ]
comp (addE e1 e2) =

comp e1 ++ comp e2 ++ [ ADD ]

Problem. This is very inefficient (O(n2)) due to
the repeated use of _++_!
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Compiling with an accumulator

Problem. This is very inefficient (O(n2)) due to
the repeated use of _++_!

Instead, we can use an accumulator for the
already generated code:

comp’ : Expr → Code → Code
comp’ (valE x) c = PUSH x :: c
comp’ (addE e1 e2) c =

comp’ e1 (comp’ e2 (ADD :: c))

comp : Expr → Code
comp e = comp’ e []
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Proving correctness of comp

We want to prove that executing the compiled code has
the same result as evaluating the expression directly:

comp-exec-eval : (e : Expr) → exec (comp e) [] ≡ [ eval e ]
comp-exec-eval e =

begin
exec (comp e) []

=⟨ comp’-exec-eval e [] [] ⟩ - (see next slide)

exec [] (eval e :: [])
=⟨⟩ - applying exec for []

eval e :: []
=⟨⟩ - unapplying [_]

[ eval e ]
end
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Proving correctness of comp’ (valE case)

comp’-exec-eval : (e : Expr) (s : Stack) (c : Code)
→ exec (comp’ e c) s ≡ exec c (eval e :: s)

comp’-exec-eval (valE x) s c =
begin

exec (comp’ (valE x) c) s
=⟨⟩ - applying comp’

exec (PUSH x :: c) s
=⟨⟩ - applying exec for PUSH

exec c (x :: s)
=⟨⟩ - unapplying eval for valE

exec c (eval (valE x) :: s)
end
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Proving correctness of comp’ (addE case)

comp’-exec-eval (addE e1 e2) s c =
begin

exec (comp’ (addE e1 e2) c) s
=⟨⟩ - def of comp’

exec (comp’ e1 (comp’ e2 (ADD :: c))) s
=⟨ comp’-exec-eval e1 s (comp’ e2 (ADD :: c)) ⟩ - IH

exec (comp’ e2 (ADD :: c)) (eval e1 :: s)
=⟨ comp’-exec-eval e2 (eval e1 :: s) (ADD :: c) ⟩ - IH

exec (ADD :: c) (eval e2 :: eval e1 :: s)
=⟨⟩ - applying exec for ADD

exec c (eval e1 + eval e2 :: s)
=⟨⟩ - unapplying eval for addE

exec c (eval (addE e1 e2) :: s)
end 125 / 125
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