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Unification for dependent types
Unification is used for many purposes:

logic programming, type inference, term

rewriting, automated theorem proving,

natural language processing, . . .

This talk:

checking definitions by

dependent pattern matching
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Disclaimer

My work is on dependently typed languages,

I know little about unification.

This talk is about first-order unification:

(suc x = suc y) =⇒ (x = y)
x :=y
==⇒ OK

(suc x = zero) =⇒ ⊥

. . . but there will be types everywhere!
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Dependent types: the ‘big five’

During this presentation, we’ll spot:

• Dependent functions: (x : A)→ B x

• Indexed datatypes: Vec A n, . . .

• Identity types: x ≡A y

• Universes: Typei

• Univalence: (A ≡ B) ' (A ' B)

and see how they interact with unification!
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Checking dependently typed programs

Unification in dependent type theory

Unification of dependently typed terms
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Why use dependent types?

With dependent types, you can . . .

. . . guarantee that a program matches its

specification

. . . use the same language for writing

programs and proofs

. . . develop programs and proofs

interactively
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Dependent types

Per

Martin-Löf

A dependent type is a

family of types, depending

on a term of a base type.

e.g. Vec A n is the type of

vectors of length n.
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The Agda language

Agda is a purely functional language

. . . with a strong, static type system

. . . for writing programs and proofs

. . . with datatypes and pattern matching

. . . with first-class dependent types

. . . with support for interactive development

All examples are (mostly) valid Agda code!
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Using dependent types

With dependent types, we can give more

precise types to our programs:

replicate : (n : N)→ A→ Vec A n

append : (m n : N)→ Vec A m→
Vec A n→ Vec A (m + n)
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Simple pattern matching

data N : Type where
zero : N
suc : N→ N
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suc : N→ N

minimum : N→ N→ N
minimum zero y = zero
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Dependent pattern matching

data Vec (A : Type) : N→ Type where
nil : Vec A zero

cons : (n : N)→ A→ Vec A n→ Vec A (suc n)
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Dependent pattern matching

data Vec (A : Type) : N→ Type where
nil : Vec A zero

cons : (n : N)→ A→ Vec A n→ Vec A (suc n)

tail : (k : N)→ Vec A (suc k)→ Vec A k
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Specialization by unification

Agda uses unification to:

• eliminate impossible cases

• specialize the result type

The output of unification can change

Agda’s notion of equality!

Main question: How to make sure

the output of unification is correct?
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Q: What is the fastest way to start a fight

between type theorists?

A: Mention the topic of equality.
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The identity type

x ≡A y

. . . a dependent type depending on x , y : A.

. . . type theory’s built-in notion of equality.

. . . the type of proofs that x = y .
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Operations on the identity type

refl : x ≡A x

sym : x ≡A y → y ≡A x

trans : x ≡A y → y ≡A z → x ≡A z

cong f : x ≡A y → f x ≡B f y

subst P : x ≡A y → P x → P y
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Unification problems as
telescopes

A unification problem consists of

1. Flexible variables x1 : A1, x2 : A2, . . .

2. Equations u1 = v1 : B1, . . .

This can be represented as a telescope:

(x1 : A1)(x2 : A2) . . .

(e1 : u1 ≡B1 v1)(e2 : u2 ≡B2 v2) . . .

e.g. (k : N)(n : N)(e : suc k ≡N suc n)
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Unification problems as
telescopes

A unification problem consists of

1. Flexible variables Γ

2. Equations ū = v̄ : ∆

This can be represented as a telescope:

Γ(ē : ū ≡∆ v̄)
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Unifiers as telescope maps

A unifier of ū and v̄ is a substitution

σ : Γ′ → Γ such that ūσ = v̄σ.

This can be represented as a telescope map:

f : Γ′ → Γ(ē : ū ≡∆ v̄)

e.g. f : ()→ (n : N)(e : n ≡N zero)

f () = zero; refl
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e.g. f : ()→ (n : N)(e : n ≡N zero)

f () = zero; refl

15 / 52



Evidence of unification

A map f : ()→ (n : N)(e : n ≡N zero)

gives us two things:

1. A value for n such that n ≡N zero

2. Explicit evidence e of n ≡N zero

=⇒ Unification is guaranteed to respect ≡!
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Three valid unifiers

f1 : (k : N)→ (k n : N)(e : k ≡N n)

f1 k = k ; k ; refl

f2 : ()→ (k n : N)(e : k ≡N n)

f2 () = zero; zero; refl

f3 : (k n : N)→ (k n : N)(e : k ≡N n)

f3 k n = k ; k ; refl
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Most general unifiers

A most general unifier of ū and v̄ is a unifier

σ such that for any σ′ with ūσ′ = v̄σ′,

there is a ν such that σ′ = σ ◦ ν.

This is quite difficult to translate to type

theory directly. . .

Intuition: if f : Γ′ → Γ(ē : ū ≡∆ v̄) is MGU,

we can go back from Γ(ē : ū ≡∆ v̄) to Γ′

without losing any information.
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we can go back from Γ(ē : ū ≡∆ v̄) to Γ′
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Equivalences

A function f : A→ B is an equivalence if

it has both a left and a right inverse:

isLinv : (x : A)→ g1 (f x) ≡A x

isRinv : (y : B)→ f (g2 y) ≡B y

In this case, we write f : A ' B .
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Most general unifiers
are equivalences!

f : Γ(ē : ū ≡∆ v̄) ' Γ′
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Example of unification

(k n : N)(e : suc k ≡N suc n)

'

(k n : N)(e : k ≡N n)'
(k : N)

f : (k : N)→ (k n : N)(e : suc k ≡N suc n)

f k = k ; k ; refl
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The solution rule

solution : (x : A)(e : x ≡A t) ' ()
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The deletion rule

deletion : (e : t ≡A t) ' ()
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The injectivity rule

injectivitysuc :
(e : suc x ≡N suc y) ' (e ′ : x ≡N y)
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Negative unification rules

A negative unification rule applies to

impossible equations, e.g. suc x = zero.

This can be represented by an equivalence:

(e : suc x ≡N zero) ' ⊥

where ⊥ is the empty type.
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The conflict rule

conflictsuc,zero :
(e : suc x ≡N zero) ' ⊥
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The cycle rule

cyclen,suc n : (e : n ≡N suc n) ' ⊥
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Unifiers as equivalences

By requiring unifiers to be equivalences:

• we exclude bad unification rules

• we can safely introduce new rules

Next, we’ll explore how this idea can help us.

Any questions so far?
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Depending on equations

Checking dependently typed programs

Unification in dependent type theory

Unification of dependently typed terms



Time for the interesting bits!

• Equations between types

• Heterogeneous equations

• Equations on indexed datatypes

• Equations between equations
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Equations between types

Types are first-class terms of type Type:

Bool : Type, N : Type, N→ N : Type, . . .

We can form equations between types,

e.g. Bool ≡Type Bool.

Q: Can we apply the deletion rule?

A: Depends on which type theory we use!
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The univalence axiom (2009)

Vladimir

Voevodsky

“Isomorphic types

can be identified.”

(A ≡ B) ' (A ' B)
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The univalence axiom (2009)

Bool is equal to Bool in two ways:

true false

Bool

true false

Bool
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Limiting the deletion rule

The deletion rule does not always hold:

there might be multiple proofs of x ≡A x .

E.g. Bool ≡Type Bool has two elements.

We cannot use deletion in this case!
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Heterogeneous equations

Σn:NVec A n is the type of pairs (n, xs)

where n : N and xs : Vec A n.

(e : (0, nil) ≡Σn:NVec A n (1, cons 0 x xs))'
(e1 : 0 ≡N 1)(e2 : nil ≡Vec A ??? cons 0 x xs)

What is the type of e2?
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Heterogeneous equations

Solution: use equation variables as

placeholders for their solutions:

(e : (0, nil) ≡Σn:NVec A n (1, cons 0 x xs))'
(e1 : 0 ≡N 1)(e2 : nil ≡Vec A e1 cons 0 x xs)

This is called a telescopic equality.
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Be careful with
heterogeneous equations!

(e : (Bool, true) ≡ΣA:TypeA (Bool, false))

'
(e1 : Bool ≡Type Bool)(e2 : true ≡e1 false)

⊥

The conflict rule does not apply!
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⊥

Whether a unification rule can be applied

depends on the type of the equation!
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Injectivity for indexed data

Do standard unification rules apply to

constructors of indexed datatypes?

(e : cons n x xs ≡Vec A (suc n) cons n y ys)'
???
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Injectivity for indexed data
Idea: simplify equations between indices

together with equation between constructors:

(e1 : suc k ≡N suc n)

(e2 : cons k x xs ≡Vec A e1 cons n y ys)

'
(e ′1 : k ≡N n)(e ′2 : x ≡A y)

(e ′3 : xs ≡Vec A e1 ys)

Length of the Vec must be fully general:

must be an equation variable.
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The image datatype

The type Im f y consists of elements

image x such that f x = y :

data Im (f : A→ B) : B → Type where
image : (x : A)→ Im f (f x)
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Solving unsolvable equations

(x1 x2 : A)(e1 : f x1 ≡B f x2)

(e2 : image x1 ≡Im f e1 image x2)

'
(x1 x2 : A)(e : x1 ≡A x2)'

(x1 : A)
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What if the indices are not
fully general?

(e : cons n x xs ≡Vec A (suc n) cons n y ys)

'

(e1 : suc n ≡N suc n)

(e2 : cons n x xs ≡Vec A e1 cons n y ys)

(p : e1 ≡suc n≡Nsuc n refl)'

(e ′1 : n ≡N n)(e ′2 : x ≡A y)(e ′3 : xs ≡Vec A e′1
ys)

(p : cong suc e ′1 ≡suc n≡Nsuc n refl)
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Higher-dimensional equations

(e ′1 : n ≡N n)(e ′2 : x ≡A y)(e ′3 : xs ≡Vec A e′1
ys)

(p : cong suc e ′1 ≡suc n≡Nsuc n refl)

We call an equation between equality proofs

(e.g. p) a higher-dimensional equation.
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How to solve
higher-dimensional equations?

Existing unification rules do not apply. . .

We solve the problem in three steps:

1. lower the dimension of equations

2. solve lower-dimensional equations

3. lift unifier to higher dimension
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Step 1: lower
the dimension of equations

We replace all equation variables

by regular variables: instead of

(e1 : n ≡N n)(e2 : x ≡A y)(e3 : xs ≡Vec A e1 ys)

(p : cong suc e1 ≡suc n≡Nsuc n refl)

let’s first consider

(k : N)(u : A)(us : Vec A k)

(e : suc k ≡N suc n)
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Step 2: solve
lower-dimensional equations

This gives us an equivalence f of type

(k : N)(u : A)(us : Vec A k)

(e : suc k ≡N suc n)'
(u : A)(us : Vec A n)
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Step 3: lift
unifier to higher dimension

We lift f to an equivalence f ↑ of type

(e1 : n ≡N n)(e2 : x ≡A y)

(e3 : xs ≡Vec A e1 ys)

(p : cong suc e1 ≡suc n≡Nsuc n refl)'

(e2 : x ≡A y)(e3 : xs ≡Vec A n ys)
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Final result of steps 1-3

(e : cons n x xs ≡Vec A (suc n) cons n y ys)'

(e2 : x ≡A y)(e3 : xs ≡Vec A n ys)

This is the forcing rule for cons.
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Lifting equivalences:
(mostly) general case

Theorem. If we have an equivalence f of type

(x : A)(e : b1 x ≡B x b2 x) ' C

we can construct f ↑ of type

(e : u ≡A v)(p : cong b1 e ≡r≡B es cong b2 e)'

(e ′ : f u r ≡C f v s)
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Implementation in Agda

This is all used by Agda to check definitions

by dependent pattern matching.

• More general than before

• Fixed many bugs

• Implementation matches theory

You can try it for yourself:

wiki.portal.chalmers.se/agda
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Conclusion

Unification rules should return evidence
of their correctness.

A most general unifier can be represented

internally as an equivalence.

Unification cannot ignore the types!
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Questions?

If you want to know more, you can:

• Try out Agda:

wiki.portal.chalmers.se/agda

• Look at the source:

github.com/agda/agda

• Read my thesis:

Dependent pattern matching and

proof-relevant unification (2017)

52 / 52
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Two applications of unification

Filling in implicit

arguments

• Higher order

• ‘Syntactic’

• MGU optional

Checking definitions

by pattern matching

• First order

• ‘Semantic’

• MGU required

Focus of this talk
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Two notions of equality

Definitional equality

x = y : A

• Weaker

• Decidable

• Meta-theoretic

• Implicit

Propositional equality

e : x ≡A y

• Stronger

• Undecidable

• Internal to theory

• Explicit
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