Depending on equations A proof-relevant framework for unification in dependent type theory

Jesper Cockx

DistriNet - KU Leuven

3 September 2017

Unification for dependent types

Unification is used for many purposes:

logic programming, type inference, term rewriting, automated theorem proving, natural language processing, ...

This talk:

checking definitions by dependent pattern matching

My work is on dependently typed languages, I know little about unification.

My work is on dependently typed languages, I know little about unification.

This talk is about **first-order unification**: $(\operatorname{suc} x = \operatorname{suc} y) \Rightarrow (x = y) \xrightarrow{x := y} \mathsf{OK}$

My work is on dependently typed languages, I know little about unification.

This talk is about **first-order unification**: $(\operatorname{suc} x = \operatorname{suc} y) \Rightarrow (x = y) \xrightarrow{x:=y} OK$ $(\operatorname{suc} x = \operatorname{zero}) \Rightarrow \bot$

My work is on dependently typed languages, I know little about unification.

This talk is about **first-order unification**: $(\operatorname{suc} x = \operatorname{suc} y) \Rightarrow (x = y) \xrightarrow{x:=y} OK$ $(\operatorname{suc} x = \operatorname{zero}) \Rightarrow \bot$

... but there will be types everywhere!

During this presentation, we'll spot:

• Dependent functions: $(x : A) \rightarrow B x$

- Dependent functions: $(x : A) \rightarrow B x$
- Indexed datatypes: Vec A n, ...

- Dependent functions: $(x : A) \rightarrow B x$
- Indexed datatypes: Vec A n, ...
- Identity types: $x \equiv_A y$

- Dependent functions: $(x : A) \rightarrow B x$
- Indexed datatypes: Vec A n, ...
- Identity types: $x \equiv_A y$
- Universes: Type_i

- Dependent functions: $(x : A) \rightarrow B x$
- Indexed datatypes: Vec A n, ...
- Identity types: $x \equiv_A y$
- Universes: Type,
- Univalence: $(A \equiv B) \simeq (A \simeq B)$

During this presentation, we'll spot:

- Dependent functions: $(x : A) \rightarrow B x$
- Indexed datatypes: Vec A n, ...
- Identity types: $x \equiv_A y$
- Universes: Type;
- Univalence: $(A \equiv B) \simeq (A \simeq B)$

and see how they interact with unification!

Depending on equations

Checking dependently typed programs

Unification in dependent type theory

Unification of dependently typed terms

Depending on equations

Checking dependently typed programs

Unification in dependent type theory

Unification of dependently typed terms

With dependent types, you can ...

With dependent types, you can ...

... guarantee that a program matches its specification

With dependent types, you can ...

- ... guarantee that a program matches its specification
- ... use the same language for writing programs and proofs

With dependent types, you can ...

- ... guarantee that a program matches its specification
- ... use the same language for writing programs and proofs
- ... develop programs and proofs interactively

Dependent types

A **dependent type** is a family of types, depending on a term of a **base type**.

Per Martin-Löf

Dependent types

A **dependent type** is a family of types, depending on a term of a **base type**.

e.g. Vec A n is the type of vectors of length n.

Per Martin-Löf

Agda is a purely functional language

Agda is a purely functional language with a strong, static type system

Agda is a purely functional language with a strong, static type system for writing programs and proofs

Agda is a purely functional language ... with a strong, static type system ... for writing programs and proofs ... with datatypes and pattern matching

Agda is a purely functional language ... with a strong, static type system ... for writing programs and proofs ... with datatypes and pattern matching ... with first-class dependent types

Agda is a purely functional language ... with a strong, static type system ... for writing programs and proofs ... with datatypes and pattern matching ... with first-class dependent types ... with support for interactive development

Agda is a purely functional language ... with a strong, static type system ... for writing programs and proofs ... with datatypes and pattern matching ... with first-class dependent types ... with support for interactive development All examples are (mostly) valid Agda code!

With dependent types, we can give more precise types to our programs:

 $\texttt{replicate}:(n:\mathbb{N})\to A\to \texttt{Vec}\;A\;n$

With dependent types, we can give more precise types to our programs:

replicate : $(n : \mathbb{N}) \to A \to \text{Vec } A n$ \Rightarrow replicate 10 'a' : Vec Char 10

With dependent types, we can give more precise types to our programs:

 $\begin{array}{l} \texttt{replicate}:(n:\mathbb{N})\to A\to \texttt{Vec}\;A\;n\\ \texttt{tail}:(n:\mathbb{N})\to \texttt{Vec}\;A\;(\texttt{suc}\;n)\to \texttt{Vec}\;A\;n \end{array}$

- With dependent types, we can give more precise types to our programs:
- $\begin{array}{l} \texttt{replicate}:(n:\mathbb{N}) \to A \to \texttt{Vec}\ A\ n\\ \texttt{tail}:(n:\mathbb{N}) \to \texttt{Vec}\ A\ (\texttt{suc}\ n) \to \texttt{Vec}\ A\ n\\ \texttt{append}:(m\ n:\mathbb{N}) \to \texttt{Vec}\ A\ m \to\\ \texttt{Vec}\ A\ n \to \texttt{Vec}\ A\ (m+n) \end{array}$

data \mathbb{N} : Type where zero : \mathbb{N} suc : $\mathbb{N} \to \mathbb{N}$

data \mathbb{N} : Type where zero : \mathbb{N} suc : $\mathbb{N} \to \mathbb{N}$

 $\begin{array}{ll} \text{minimum}: \mathbb{N} \to \mathbb{N} \to \mathbb{N} \\ \text{minimum} \ x \qquad y \qquad = \left\{ \begin{array}{l} \end{array} \right\} \end{array}$

data \mathbb{N} : Type where zero : \mathbb{N} suc : $\mathbb{N} \to \mathbb{N}$

 $\begin{array}{ll} \text{minimum} : \mathbb{N} \to \mathbb{N} \to \mathbb{N} \\ \text{minimum zero} \quad y \quad &= \left\{ \begin{array}{c} \\ \end{array} \right\} \\ \text{minimum} \left(\text{suc } x \right) y \quad &= \left\{ \begin{array}{c} \\ \end{array} \right\} \end{array}$

data \mathbb{N} : Type where zero : \mathbb{N} suc : $\mathbb{N} \to \mathbb{N}$

 $\begin{array}{ll} \text{minimum} : \mathbb{N} \to \mathbb{N} \to \mathbb{N} \\ \text{minimum zero} \quad y & = \text{zero} \\ \text{minimum} (\operatorname{suc} x) \quad y & = \left\{ \right. \right\} \end{array}$

data \mathbb{N} : Type where zero : \mathbb{N} suc : $\mathbb{N} \to \mathbb{N}$

 $\begin{array}{ll} \text{minimum} : \mathbb{N} \to \mathbb{N} \to \mathbb{N} \\ \text{minimum zero} & y & = \text{zero} \\ \text{minimum} (\text{suc } x) \text{ zero} & = \left\{ \right. \\ \text{minimum} (\text{suc } x) (\text{suc } y) & = \left\{ \right. \right\} \end{array}$
Simple pattern matching

data \mathbb{N} : Type where zero : \mathbb{N} suc : $\mathbb{N} \to \mathbb{N}$

 $\begin{array}{ll} \text{minimum}: \mathbb{N} \to \mathbb{N} \to \mathbb{N} \\ \text{minimum zero} & y & = \text{zero} \\ \text{minimum} (\operatorname{suc} x) \text{ zero} & = \text{zero} \\ \text{minimum} (\operatorname{suc} x) (\operatorname{suc} y) & = \left\{ \right. \right\} \end{array}$

Simple pattern matching

data \mathbb{N} : Type where zero : \mathbb{N} suc : $\mathbb{N} \to \mathbb{N}$

 $\begin{array}{ll} \text{minimum}: \mathbb{N} \to \mathbb{N} \to \mathbb{N} \\ \text{minimum zero} & y & = \text{zero} \\ \text{minimum} (\operatorname{suc} x) \ \text{zero} & = \text{zero} \\ \text{minimum} (\operatorname{suc} x) \ (\operatorname{suc} y) & = \ \text{suc} \ (\text{minimum} \ x \ y) \end{array}$

data Vec $(A : Type) : \mathbb{N} \to Type$ where nil : Vec A zero cons : $(n : \mathbb{N}) \to A \to \text{Vec } A \ n \to \text{Vec } A \ (\text{suc } n)$

data Vec $(A : Type) : \mathbb{N} \to Type$ where nil : Vec A zero cons : $(n : \mathbb{N}) \to A \to \text{Vec } A \ n \to \text{Vec } A \ (\text{suc } n)$ tail : $(k : \mathbb{N}) \to \text{Vec } A \ (\text{suc } k) \to \text{Vec } A \ k$ tail $k \ xs = \{ \}$

data Vec $(A : Type) : \mathbb{N} \to Type$ where nil : Vec A zero cons : $(n : \mathbb{N}) \to A \to \text{Vec } A \ n \to \text{Vec } A \ (\text{suc } n)$ tail : $(k : \mathbb{N}) \to \text{Vec } A \ (\text{suc } k) \to \text{Vec } A \ k$ tail $k \ \text{nil} = \{ \} \ -- \ \text{suc } k = \text{zero}$ tail $k \ (\text{cons } n \times xs) = \{ \} \ -- \ \text{suc } k = \text{suc } n$

data Vec $(A : Type) : \mathbb{N} \to Type$ where nil : Vec A zero cons : $(n : \mathbb{N}) \to A \to \text{Vec } A \ n \to \text{Vec } A \ (\text{suc } n)$ tail : $(k : \mathbb{N}) \to \text{Vec } A \ (\text{suc } k) \to \text{Vec } A \ k$ tail $k \ \text{nil} = \{ \} \ -- \ \text{impossible}$ tail $k \ (\text{cons } n \ x \ xs) = \{ \} \ -- \ \text{suc } k = \ \text{suc } n$

data Vec (A:Type): N \rightarrow Type where nil : Vec A zero cons : (n: N) \rightarrow A \rightarrow Vec A n \rightarrow Vec A (suc n) tail: (k: N) \rightarrow Vec A (suc k) \rightarrow Vec A k tail k (cons n x xs) = { } -- suc k = suc n

data Vec (A:Type): $\mathbb{N} \to \text{Type}$ where nil : Vec A zero cons : (n: \mathbb{N}) $\to A \to \text{Vec } A \ n \to \text{Vec } A \ (\text{suc } n)$ tail: (k: \mathbb{N}) $\to \text{Vec } A \ (\text{suc } k) \to \text{Vec } A \ k$ tail k (cons n x xs) = {} -- k = n

data Vec $(A : Type) : \mathbb{N} \to Type$ where nil : Vec A zero cons : $(n : \mathbb{N}) \to A \to \text{Vec } A \ n \to \text{Vec } A \ (\text{suc } n)$ tail : $(k : \mathbb{N}) \to \text{Vec } A \ (\text{suc } k) \to \text{Vec } A \ k$ tail .n $(\text{cons } n \times xs) = \{ \}$

data Vec $(A : Type) : \mathbb{N} \to Type$ where nil : Vec A zero cons : $(n : \mathbb{N}) \to A \to \text{Vec } A \ n \to \text{Vec } A \ (\text{suc } n)$ tail : $(k : \mathbb{N}) \to \text{Vec } A \ (\text{suc } k) \to \text{Vec } A \ k$

tail .n (cons n x xs) = xs

Specialization by unification

Agda uses unification to:

- eliminate impossible cases
- specialize the result type

Specialization by unification

Agda uses unification to:

- eliminate impossible cases
- specialize the result type

The output of unification can change Agda's notion of equality!

Specialization by unification

Agda uses unification to:

- eliminate impossible cases
- specialize the result type

The output of unification can change Agda's notion of equality!

Main question: How to make sure the output of unification is correct?

Depending on equations

Checking dependently typed programs

Unification in dependent type theory

Unification of dependently typed terms

Q: What is the fastest way to start a fight between type theorists?

Q: What is the fastest way to start a fight between type theorists?

A: Mention the topic of equality.

The identity type

 $x \equiv_A y$

 \ldots a dependent type depending on x, y : A.

The identity type

$x \equiv_A y$

 \ldots a dependent type depending on x, y : A.

... type theory's built-in notion of equality.

The identity type

$x \equiv_A y$

 \ldots a dependent type depending on x, y : A.

... type theory's built-in notion of equality.

... the type of **proofs** that x = y.

refl : $x \equiv_A x$

refl : $x \equiv_A x$

sym : $x \equiv_A y \to y \equiv_A x$

- refl : $x \equiv_A x$
- sym : $x \equiv_A y \to y \equiv_A x$
- trans : $x \equiv_A y \to y \equiv_A z \to x \equiv_A z$

- refl : $x \equiv_A x$
- sym : $x \equiv_A y \to y \equiv_A x$
- $\texttt{trans} \quad : x \equiv_{\mathcal{A}} y \to y \equiv_{\mathcal{A}} z \to x \equiv_{\mathcal{A}} z$
- $\operatorname{cong} f : x \equiv_A y \to f x \equiv_B f y$

- refl : $x \equiv_A x$
- sym : $x \equiv_A y \to y \equiv_A x$
- trans : $x \equiv_A y \to y \equiv_A z \to x \equiv_A z$
- $\operatorname{cong} f : x \equiv_A y \to f \ x \equiv_B f \ y$
- subst $P: x \equiv_A y \to P \ x \to P \ y$

A unification problem consists of

- 1. Flexible variables $x_1 : A_1, x_2 : A_2, \ldots$
- 2. Equations $u_1 = v_1 : B_1, ...$

A unification problem consists of

- 1. Flexible variables $x_1 : A_1, x_2 : A_2, \ldots$
- 2. Equations $u_1 = v_1 : B_1, ...$

е.

This can be represented as a **telescope**:

$$(x_1 : A_1)(x_2 : A_2) \dots$$

 $(e_1 : u_1 \equiv_{B_1} v_1)(e_2 : u_2 \equiv_{B_2} v_2) \dots$
g. $(k : \mathbb{N})(n : \mathbb{N})(e : \operatorname{suc} k \equiv_{\mathbb{N}} \operatorname{suc} n)$

A unification problem consists of

- 1. Flexible variables Γ
- 2. Equations $u_1 = v_1 : B_1, ...$

This can be represented as a **telescope**:

$$\begin{matrix} \mathsf{\Gamma} \\ (e_1 : u_1 \equiv_{B_1} v_1)(e_2 : u_2 \equiv_{B_2} v_2) \dots \\ \text{e.g.} \ (k : \mathbb{N})(n : \mathbb{N})(e : \operatorname{suc} k \equiv_{\mathbb{N}} \operatorname{suc} n) \end{matrix}$$

A unification problem consists of

- 1. Flexible variables Γ
- 2. Equations $\bar{u} = \bar{v} : \Delta$

This can be represented as a **telescope**:

$$\Gamma(\bar{e}:\bar{u}\equiv_{\Delta}\bar{v})$$

e.g. $(k : \mathbb{N})(n : \mathbb{N})(e : \operatorname{suc} k \equiv_{\mathbb{N}} \operatorname{suc} n)$

Unifiers as telescope maps

A unifier of \bar{u} and \bar{v} is a substitution $\sigma: \Gamma' \to \Gamma$ such that $\bar{u}\sigma = \bar{v}\sigma$.

Unifiers as telescope maps

A unifier of \bar{u} and \bar{v} is a substitution $\sigma: \Gamma' \to \Gamma$ such that $\bar{u}\sigma = \bar{v}\sigma$.

This can be represented as a *telescope map*:

$$f: \Gamma' \to \Gamma(\bar{e}: \bar{u} \equiv_{\Delta} \bar{v})$$

$$ext{e.g.} \ f:() o (n:\mathbb{N})(e:n \equiv_{\mathbb{N}} extsf{zero}) \ f() = extsf{zero}; extsf{refl}$$

A map $f: () \to (n:\mathbb{N})(e:n \equiv_{\mathbb{N}} \text{zero})$ gives us two things:

A map $f: () \to (n:\mathbb{N})(e:n \equiv_{\mathbb{N}} \text{zero})$ gives us two things:

1. A value for *n* such that $n \equiv_{\mathbb{N}} \text{zero}$

A map $f: () \to (n:\mathbb{N})(e:n \equiv_{\mathbb{N}} \text{zero})$ gives us two things:

1. A value for *n* such that $n \equiv_{\mathbb{N}} \text{zero}$ 2. Explicit evidence *e* of $n \equiv_{\mathbb{N}} \text{zero}$

A map $f: () \to (n:\mathbb{N})(e:n \equiv_{\mathbb{N}} \text{zero})$ gives us two things:

1. A value for *n* such that $n \equiv_{\mathbb{N}} \text{zero}$ 2. Explicit evidence *e* of $n \equiv_{\mathbb{N}} \text{zero}$

 \implies Unification is guaranteed to respect \equiv !

Three valid unifiers

- $egin{aligned} f_1:(k:\mathbb{N}) &
 ightarrow (k \; n:\mathbb{N})(e:k\equiv_{\mathbb{N}} n) \ f_1\;k=k;k;\texttt{refl} \end{aligned}$
- $egin{aligned} f_2:() &
 ightarrow (k \; n:\mathbb{N})(e:k\equiv_{\mathbb{N}} n) \ f_2\;() = extsf{zero}; extsf{zero}; extsf{refl} \end{aligned}$

 $\begin{array}{l} f_3:(k\ n:\mathbb{N})\rightarrow (k\ n:\mathbb{N})(e:k\equiv_{\mathbb{N}}n)\\ f_3\ k\ n=k;k;\texttt{refl} \end{array}$

Most general unifiers

A most general unifier of \bar{u} and \bar{v} is a unifier σ such that for any σ' with $\bar{u}\sigma' = \bar{v}\sigma'$, there is a ν such that $\sigma' = \sigma \circ \nu$.
Most general unifiers

A most general unifier of \bar{u} and \bar{v} is a unifier σ such that for any σ' with $\bar{u}\sigma' = \bar{v}\sigma'$, there is a ν such that $\sigma' = \sigma \circ \nu$.

This is quite difficult to translate to type theory directly...

Most general unifiers

A most general unifier of \bar{u} and \bar{v} is a unifier σ such that for any σ' with $\bar{u}\sigma' = \bar{v}\sigma'$, there is a ν such that $\sigma' = \sigma \circ \nu$.

This is quite difficult to translate to type theory directly...

Intuition: if $f : \Gamma' \to \Gamma(\bar{e} : \bar{u} \equiv_{\Delta} \bar{v})$ is MGU, we can go back from $\Gamma(\bar{e} : \bar{u} \equiv_{\Delta} \bar{v})$ to Γ' without losing any information.

Equivalences

A function $f : A \rightarrow B$ is an **equivalence** if it has both a left and a right inverse:

$$ext{isLinv}: (x:A) o g_1 (f x) \equiv_A x$$

 $ext{isRinv}: (y:B) o f (g_2 y) \equiv_B y$

In this case, we write $f : A \simeq B$.

Most general unifiers are equivalences!

$f: \Gamma(\bar{e}: \bar{u} \equiv_{\Delta} \bar{v}) \simeq \Gamma'$

$(k \ n : \mathbb{N})(e : \operatorname{suc} k \equiv_{\mathbb{N}} \operatorname{suc} n)$

 $(k \ n : \mathbb{N})(e : suc \ k \equiv_{\mathbb{N}} suc \ n)$ $\stackrel{[2]}{\underset{(k \ n : \mathbb{N})(e : k \equiv_{\mathbb{N}} n)}{\underset{(k \ n : \mathbb{N})(e : k \equiv_{\mathbb{N}} n)}}$

 $(k \ n : \mathbb{N})(e : \operatorname{suc} k \equiv_{\mathbb{N}} \operatorname{suc} n)$ $\stackrel{[?]}{\underset{k \ n : \mathbb{N}}{(e : k \equiv_{\mathbb{N}} n)}}$ $\stackrel{[?]}{\underset{k : \mathbb{N}}{(k : \mathbb{N})}}$

$$(k \ n : \mathbb{N})(e : suc \ k \equiv_{\mathbb{N}} suc \ n)$$

$$(k \ n : \mathbb{N})(e : k \equiv_{\mathbb{N}} n)$$

$$(k \ n : \mathbb{N})(e : k \equiv_{\mathbb{N}} n)$$

$$(k : \mathbb{N})$$

 $egin{array}{lll} f:(k:\mathbb{N}) o (k\ n:\mathbb{N})(e: {f suc}\ k\equiv_{\mathbb{N}}{f suc}\ n)\ f\ k=k;k;{f refl} \end{array}$

The solution rule

solution: $(x : A)(e : x \equiv_A t) \simeq ()$

The deletion rule

deletion : $(e:t\equiv_A t)\simeq ()$

The injectivity rule

$\begin{array}{l} \text{injectivity}_{\texttt{suc}}:\\ (e: \texttt{suc}\; x\equiv_{\mathbb{N}}\texttt{suc}\; y)\simeq (e': x\equiv_{\mathbb{N}} y) \end{array}$

Negative unification rules

A negative unification rule applies to impossible equations, e.g. suc x = zero.

Negative unification rules

A negative unification rule applies to impossible equations, e.g. suc x = zero.

This can be represented by an equivalence:

 $(e: \operatorname{suc} x \equiv_{\mathbb{N}} \operatorname{zero}) \simeq \bot$

where \perp is the **empty type**.

The conflict rule

$\operatorname{conflict}_{\operatorname{suc,zero}}$: $(e:\operatorname{suc} x\equiv_{\mathbb{N}}\operatorname{zero})\simeq \bot$

The cycle rule

$\operatorname{cycle}_{n,\operatorname{suc} n}: (e:n\equiv_{\mathbb{N}}\operatorname{suc} n)\simeq \bot$

Unifiers as equivalences

- By requiring **unifiers** to be **equivalences**:
 - we exclude bad unification rules
 - we can safely introduce new rules

Unifiers as equivalences

By requiring **unifiers** to be **equivalences**:

- we exclude bad unification rules
- we can safely introduce new rules

Next, we'll explore how this idea can help us.

Any questions so far?

Depending on equations

Checking dependently typed programs

Unification in dependent type theory

Unification of dependently typed terms

Time for the interesting bits!

- Equations between types
- Heterogeneous equations
- Equations on indexed datatypes
- Equations between equations

Types are first-class terms of type Type: Bool : Type, \mathbb{N} : Type, $\mathbb{N} \to \mathbb{N}$: Type, ...

Types are first-class terms of type Type: Bool : Type, \mathbb{N} : Type, $\mathbb{N} \to \mathbb{N}$: Type, ... We can form equations between types, e.g. Bool \equiv_{Type} Bool.

- Types are first-class terms of type Type: Bool : Type, \mathbb{N} : Type, $\mathbb{N} \to \mathbb{N}$: Type, ... We can form equations between types, e.g. Bool \equiv_{Type} Bool.
- Q: Can we apply the deletion rule?

- Types are first-class terms of type Type: Bool : Type, \mathbb{N} : Type, $\mathbb{N} \to \mathbb{N}$: Type, ... We can form equations between types, e.g. Bool \equiv_{Type} Bool.
- Q: Can we apply the deletion rule?
- A: Depends on which type theory we use!

Vladimir Voevodsky

Vladimir Voevodsky "Isomorphic types can be identified."

Vladimir Voevodsky "Isomorphic types can be identified."

 $(A \equiv B) \simeq (A \simeq B)$

Bool is equal to Bool in two ways:

Bool

tru	le	false

Bool is equal to Bool in two ways:

Bool

true	false

true false Bool

Bool is equal to Bool in two ways:

Bool is equal to Bool in two ways:

Limiting the deletion rule

The deletion rule does not always hold: there might be multiple proofs of $x \equiv_A x$.

E.g. Bool \equiv_{Type} Bool has two elements.

Limiting the deletion rule

- The deletion rule does not always hold: there might be multiple proofs of $x \equiv_A x$.
- E.g. Bool \equiv_{Type} Bool has two elements.
- We cannot use deletion in this case!

 $\sum_{n:\mathbb{N}} \operatorname{Vec} A n$ is the type of pairs (n, xs) where $n:\mathbb{N}$ and $xs:\operatorname{Vec} A n$.

 $\sum_{n:\mathbb{N}} \operatorname{Vec} A n$ is the type of pairs (n, xs) where $n : \mathbb{N}$ and $xs : \operatorname{Vec} A n$.

 $(e:(0,\mathtt{nil}) \equiv_{\sum_{n:\mathbb{N}} \mathtt{Vec} A n} (1, \mathtt{cons} 0 x xs))$ $\downarrow \wr$ $(e_1: 0 \equiv_{\mathbb{N}} 1)(e_2: \mathtt{nil} \equiv_{\mathtt{Vec} A ???} \mathtt{cons} 0 x xs)$

 $\sum_{n:\mathbb{N}} \operatorname{Vec} A n$ is the type of pairs (n, xs) where $n:\mathbb{N}$ and $xs:\operatorname{Vec} A n$.

 $(e:(0,\mathtt{nil}) \equiv_{\sum_{n:\mathbb{N}} \mathtt{Vec} A n} (1, \mathtt{cons} 0 x xs))$ $\downarrow (e_1: 0 \equiv_{\mathbb{N}} 1)(e_2: \mathtt{nil} \equiv_{\mathtt{Vec} A ???} \mathtt{cons} 0 x xs)$

What is the type of e_2 ?

Solution: use equation variables as placeholders for their solutions:

$$(e:(0,\texttt{nil}) \equiv_{\sum_{n:\mathbb{N}} \texttt{Vec} \ A \ n} (1, \texttt{cons} \ 0 \ x \ xs))$$

$$\downarrow \wr$$

$$(e_1: 0 \equiv_{\mathbb{N}} 1)(e_2: \texttt{nil} \equiv_{\texttt{Vec} \ A \ e_1} \ \texttt{cons} \ 0 \ x \ xs)$$
Heterogeneous equations

Solution: use equation variables as placeholders for their solutions:

 $(e:(0,\texttt{nil}) \equiv_{\sum_{n:\mathbb{N}} \texttt{Vec} \land n} (1, \texttt{cons} \ 0 \ x \ xs))$ $\downarrow \wr$ $(e_1: 0 \equiv_{\mathbb{N}} 1)(e_2: \texttt{nil} \equiv_{\texttt{Vec} \land e_1} \texttt{cons} \ 0 \ x \ xs)$

This is called a *telescopic equality*.

 $(e:(\texttt{Bool},\texttt{true})\equiv_{\Sigma_{A:\texttt{Type}}\mathcal{A}}(\texttt{Bool},\texttt{false}))$

 $(e:(\texttt{Bool},\texttt{true})\equiv_{\Sigma_{A:\texttt{Type}}A}(\texttt{Bool},\texttt{false}))$ \wr $(e_1:\texttt{Bool}\equiv_{\texttt{Type}}\texttt{Bool})(e_2:\texttt{true}\equiv_{e_1}\texttt{false})$

 $(e:(Bool,true) \equiv_{\sum_{A:Type}A} (Bool,false))$ |c| $(e_1:Bool \equiv_{Type} Bool)(e_2:true \equiv_{e_1} false)$ |c|

 $(e:(\texttt{Bool},\texttt{true}) \equiv_{\sum_{A:\texttt{Type}} A} (\texttt{Bool},\texttt{false}))$ $ert (e_1:\texttt{Bool} \equiv_{\texttt{Type}} \texttt{Bool})(e_2:\texttt{true} \equiv_{e_1} \texttt{false})$ $\overset{ ext{R}}{\perp}$

The conflict rule does not apply!

Be careful with heterogeneous equations! $(e: (Bool, true) \equiv_{\Sigma_{A:Type}Bool} (Bool, false))$

Be careful with heterogeneous equations! $(e:(\texttt{Bool},\texttt{true})\equiv_{\Sigma_{A:\texttt{Type}}\texttt{Bool}}(\texttt{Bool},\texttt{false}))$ 12 $(e_1 : \texttt{Bool} \equiv_{\texttt{Type}} \texttt{Bool})(e_2 : \texttt{true} \equiv_{\texttt{Bool}} \texttt{false})$

Be careful with heterogeneous equations! $(e:(\texttt{Bool},\texttt{true})\equiv_{\Sigma_{A:\texttt{Type}}\texttt{Bool}}(\texttt{Bool},\texttt{false}))$ 12 $(e_1 : \texttt{Bool} \equiv_{\texttt{Type}} \texttt{Bool})(e_2 : \texttt{true} \equiv_{\texttt{Bool}} \texttt{false})$ 12

Whether a unification rule can be applied depends on the **type** of the equation!

Do standard unification rules apply to constructors of indexed datatypes?

 $(e: \cos n \ x \ xs \equiv_{\operatorname{Vec} A (\operatorname{suc} n)} \cos n \ y \ ys)$ |????

Idea: simplify equations between indices together with equation between constructors:

$$(e_1 : \operatorname{suc} k \equiv_{\mathbb{N}} \operatorname{suc} n)$$

 $(e_2 : \operatorname{cons} k \times xs \equiv_{\operatorname{Vec} A e_1} \operatorname{cons} n \times ys)$

Idea: simplify equations between indices together with equation between constructors:

$$(e_{1} : \operatorname{suc} k \equiv_{\mathbb{N}} \operatorname{suc} n)$$
$$(e_{2} : \operatorname{cons} k \ x \ xs \equiv_{\operatorname{Vec} A e_{1}} \operatorname{cons} n \ y \ ys)$$
$$\stackrel{|\mathcal{U}|}{\underset{e_{1} : k \equiv_{\mathbb{N}} n}{\underset{e_{1} \in Y = x}{\underset{e_{1} \in Y = x}{$$

Idea: simplify equations between indices together with equation between constructors:

$$(e_{1} : \operatorname{suc} k \equiv_{\mathbb{N}} \operatorname{suc} n)$$
$$(e_{2} : \operatorname{cons} k \ x \ xs \equiv_{\operatorname{Vec} A e_{1}} \operatorname{cons} n \ y \ ys)$$
$$\stackrel{|\mathcal{X}|}{\underset{e_{1} : k \equiv_{\mathbb{N}} n}(e_{2}' : x \equiv_{A} y)}$$
$$(e_{3}' : xs \equiv_{\operatorname{Vec} A e_{1}} ys)$$

Length of the Vec must be *fully general*: must be an equation variable.

The image datatype

The type $\operatorname{Im} f y$ consists of elements image x such that f x = y:

data Im $(f : A \rightarrow B) : B \rightarrow$ Type where image : $(x : A) \rightarrow$ Im f (f x)

Solving unsolvable equations

 $(x_1 \ x_2 : A)(e_1 : f \ x_1 \equiv_B f \ x_2)$ $(e_2 : image \ x_1 \equiv_{Im \ f \ e_1} image \ x_2)$

Solving unsolvable equations

$$(x_1 \ x_2 : A)(e_1 : f \ x_1 \equiv_B f \ x_2)$$
$$(e_2 : \text{image } x_1 \equiv_{\text{Im } f \ e_1} \text{image } x_2)$$
$$|\\(x_1 \ x_2 : A)(e : x_1 \equiv_A x_2)$$

Solving unsolvable equations

$$(x_1 \ x_2 : A)(e_1 : f \ x_1 \equiv_B f \ x_2)$$
$$(e_2 : \text{image } x_1 \equiv_{\text{Im } f \ e_1} \text{ image } x_2)$$
$$|\\(x_1 \ x_2 : A)(e : x_1 \equiv_A x_2)$$
$$|\\(x_1 : A)$$

What if the indices are not fully general? $(e: \cos n \times xs \equiv_{Vec A (suc n)} \cos n \times ys)$

42 / 52

What if the indices are not fully general? $(e: \operatorname{cons} n \times xs \equiv_{\operatorname{Vec} A (\operatorname{suc} n)} \operatorname{cons} n \times ys)$ 12 $(e_1 : \operatorname{suc} n \equiv_{\mathbb{N}} \operatorname{suc} n)$ $(e_2 : \operatorname{cons} n \times xs \equiv_{\operatorname{Vec} A e_1} \operatorname{cons} n \times ys)$ $(p: e_1 \equiv_{\text{suc } n \equiv_{\mathbb{N}} \text{suc } n} \text{refl})$

What if the indices are not fully general? $(e: \operatorname{cons} n \times xs \equiv_{\operatorname{Vec} A (\operatorname{suc} n)} \operatorname{cons} n \times ys)$ 12 $(e_1 : \operatorname{suc} n \equiv_{\mathbb{N}} \operatorname{suc} n)$ $(e_2 : \operatorname{cons} n \ x \ xs \equiv_{\operatorname{Vec} A e_1} \operatorname{cons} n \ y \ ys)$ $(p: e_1 \equiv_{\text{suc } n \equiv_{\mathbb{N}} \text{suc } n} \text{refl})$ $(\boldsymbol{e}'_1: n \equiv_{\mathbb{N}} n)(\boldsymbol{e}'_2: x \equiv_{\mathcal{A}} y)(\boldsymbol{e}'_3: xs \equiv_{\operatorname{Vec} \mathcal{A} e'_1} ys)$ $(p: \operatorname{cong} \operatorname{suc} e'_1 \equiv_{\operatorname{suc}} n =_{\mathbb{N}^{\operatorname{suc}}} n \operatorname{refl})$

What if the indices are not fully general? $(e: \operatorname{cons} n \times xs \equiv_{\operatorname{Vec} A (\operatorname{suc} n)} \operatorname{cons} n \times ys)$ 12 $(e_1 : \operatorname{suc} n \equiv_{\mathbb{N}} \operatorname{suc} n)$ $(e_2 : \operatorname{cons} n \times xs \equiv_{\operatorname{Vec} A e_1} \operatorname{cons} n \times ys)$ $(p: e_1 \equiv_{\text{suc } n \equiv_{\mathbb{N}} \text{suc } n} \text{refl})$ $(e'_1 : n \equiv_{\mathbb{N}} n)(e'_2 : x \equiv_A y)(e'_3 : xs \equiv_{\operatorname{Vec} A e'_1} ys)$ $(p: \operatorname{cong} \operatorname{suc} e'_1 \equiv_{\operatorname{suc}} n =_{\mathbb{N}^{\operatorname{suc}}} n \operatorname{refl})$

Higher-dimensional equations

$(e'_1 : n \equiv_{\mathbb{N}} n)(e'_2 : x \equiv_A y)(e'_3 : xs \equiv_{\operatorname{Vec} A e'_1} ys)$ $(p : \operatorname{cong} \operatorname{suc} e'_1 \equiv_{\operatorname{suc} n \equiv_{\mathbb{N}} \operatorname{suc} n} \operatorname{refl})$

We call an equation between equality proofs (e.g. p) a **higher-dimensional equation**.

How to solve higher-dimensional equations?

Existing unification rules do not apply...

How to solve higher-dimensional equations?

Existing unification rules do not apply...

We solve the problem in three steps:

- 1. lower the dimension of equations
- 2. solve lower-dimensional equations
- 3. lift unifier to higher dimension

Step 1: lower the dimension of equations

We replace all equation variables by regular variables: instead of

$$(e_1 : n \equiv_{\mathbb{N}} n)(e_2 : x \equiv_A y)(e_3 : xs \equiv_{\operatorname{Vec} A e_1} ys)$$
$$(p : \operatorname{cong} \operatorname{suc} e_1 \equiv_{\operatorname{suc} n \equiv_{\mathbb{N}} \operatorname{suc} n} \operatorname{refl})$$

let's first consider

$$(k:\mathbb{N})(u:A)(us:\operatorname{Vec} A k)$$
$$(e:\operatorname{suc} k \equiv_{\mathbb{N}} \operatorname{suc} n)$$

Step 2: solve lower-dimensional equations

This gives us an equivalence f of type

$$(k : \mathbb{N})(u : A)(us : \operatorname{Vec} A k)$$
$$(e : \operatorname{suc} k \equiv_{\mathbb{N}} \operatorname{suc} n)$$
$$\underset{(u : A)(us : \operatorname{Vec} A n)}{\mathbb{N}}$$

Step 3: lift unifier to higher dimension

We lift f to an equivalence f^{\uparrow} of type

$$(e_{1} : n \equiv_{\mathbb{N}} n)(e_{2} : x \equiv_{A} y)$$
$$(e_{3} : xs \equiv_{\operatorname{Vec} A e_{1}} ys)$$
$$(p : \operatorname{cong} \operatorname{suc} e_{1} \equiv_{\operatorname{suc} n \equiv_{\mathbb{N}} \operatorname{suc} n} \operatorname{refl})$$
$$\underset{(e_{2} : x \equiv_{A} y)(e_{3} : xs \equiv_{\operatorname{Vec} A n} ys)$$

Final result of steps 1-3

$$(e: \operatorname{cons} n \ x \ xs \equiv_{\operatorname{Vec} A (\operatorname{suc} n)} \operatorname{cons} n \ y \ ys)$$
$$|?$$
$$(e_2: x \equiv_A y)(e_3: xs \equiv_{\operatorname{Vec} A n} ys)$$

Final result of steps 1-3

$$(e: \operatorname{cons} n \times xs \equiv_{\operatorname{Vec} A (\operatorname{suc} n)} \operatorname{cons} n \times ys)$$
$$|\wr$$
$$(e_2: x \equiv_A y)(e_3: xs \equiv_{\operatorname{Vec} A n} ys)$$

This is the **forcing rule** for **cons**.

Lifting equivalences: (mostly) general case

Theorem. If we have an equivalence f of type

$$(x:A)(e:b_1 x \equiv_{B \times} b_2 x) \simeq C$$

we can construct f^{\uparrow} of type

$$(e: u \equiv_A v)(p: \operatorname{cong} b_1 e \equiv_{r \equiv_B e^s} \operatorname{cong} b_2 e)$$

$$\stackrel{|\wr}{\underset{(e': f u r \equiv_C f v s)}{\underset{(e': f u r \equiv_C f v s)}}}}}}}}}}}}$$

Implementation in Agda

This is all used by Agda to check definitions by dependent pattern matching.

- More general than before
- Fixed many bugs
- Implementation matches theory

You can try it for yourself: wiki.portal.chalmers.se/agda

Conclusion

Unification rules should return **evidence** of their correctness.

Conclusion

Unification rules should return **evidence** of their correctness.

A most general unifier can be represented internally as an **equivalence**.

Conclusion

Unification rules should return **evidence** of their correctness.

A most general unifier can be represented internally as an **equivalence**.

Unification cannot ignore the types!

Questions?

If you want to know more, you can:

- Try out Agda: wiki.portal.chalmers.se/agda
- Look at the source: github.com/agda/agda
- Read my thesis:

Dependent pattern matching and proof-relevant unification (2017)

Two applications of unification

Filling in implicit arguments

Checking definitions by pattern matching

Two applications of unification

Filling in implicit

arguments

• Higher order

Checking definitions by pattern matching

First order
Two applications of unification

Filling in implicit

arguments

- Higher order
- 'Syntactic'

Checking definitions by pattern matching

- First order
- 'Semantic'

Two applications of unification

Filling in implicit

arguments

- Higher order
- 'Syntactic'
- MGU optional

Checking definitions by pattern matching

- First order
- 'Semantic'
- MGU required

Two applications of unification

Filling in implicit

arguments

- Higher order
- 'Syntactic'
- MGU optional

Checking definitions by pattern matching

- First order
- 'Semantic'
- MGU required

Focus of this talk

Definitional equalityPropositional equalityx = y : A $e : x \equiv_A y$

• Weaker

• Stronger

Definitional equality x = y : A

Propositional equality $e: x \equiv_A y$

- Weaker
- Decidable

- Stronger
- Undecidable

Definitional equality x = y : A

- Weaker
- Decidable
- Meta-theoretic

Propositional equality $e: x \equiv_A y$

- Stronger
- Undecidable
- Internal to theory

Definitional equality x = y : A

- Weaker
- Decidable
- Meta-theoretic
- Implicit

Propositional equality $e: x \equiv_A y$

- Stronger
- Undecidable
- Internal to theory
- Explicit