
Depending on equations
A proof-relevant framework for unification

in dependent type theory

Jesper Cockx

DistriNet – KU Leuven

3 September 2017



Unification for dependent types
Unification is used for many purposes:

logic programming, type inference, term

rewriting, automated theorem proving,

natural language processing, . . .

This talk:

checking definitions by

dependent pattern matching

1 / 52



Disclaimer

My work is on dependently typed languages,

I know little about unification.

This talk is about first-order unification:

(suc x = suc y) =⇒ (x = y)
x :=y
==⇒ OK

(suc x = zero) =⇒ ⊥

. . . but there will be types everywhere!

2 / 52



Disclaimer

My work is on dependently typed languages,

I know little about unification.

This talk is about first-order unification:

(suc x = suc y) =⇒ (x = y)
x :=y
==⇒ OK

(suc x = zero) =⇒ ⊥

. . . but there will be types everywhere!

2 / 52



Disclaimer

My work is on dependently typed languages,

I know little about unification.

This talk is about first-order unification:

(suc x = suc y) =⇒ (x = y)
x :=y
==⇒ OK

(suc x = zero) =⇒ ⊥

. . . but there will be types everywhere!

2 / 52



Disclaimer

My work is on dependently typed languages,

I know little about unification.

This talk is about first-order unification:

(suc x = suc y) =⇒ (x = y)
x :=y
==⇒ OK

(suc x = zero) =⇒ ⊥

. . . but there will be types everywhere!

2 / 52



Dependent types: the ‘big five’

During this presentation, we’ll spot:

• Dependent functions: (x : A)→ B x

• Indexed datatypes: Vec A n, . . .

• Identity types: x ≡A y

• Universes: Typei

• Univalence: (A ≡ B) ' (A ' B)

and see how they interact with unification!

3 / 52



Dependent types: the ‘big five’

During this presentation, we’ll spot:

• Dependent functions: (x : A)→ B x

• Indexed datatypes: Vec A n, . . .

• Identity types: x ≡A y

• Universes: Typei

• Univalence: (A ≡ B) ' (A ' B)

and see how they interact with unification!

3 / 52



Dependent types: the ‘big five’

During this presentation, we’ll spot:

• Dependent functions: (x : A)→ B x

• Indexed datatypes: Vec A n, . . .

• Identity types: x ≡A y

• Universes: Typei

• Univalence: (A ≡ B) ' (A ' B)

and see how they interact with unification!

3 / 52



Dependent types: the ‘big five’

During this presentation, we’ll spot:

• Dependent functions: (x : A)→ B x

• Indexed datatypes: Vec A n, . . .

• Identity types: x ≡A y

• Universes: Typei

• Univalence: (A ≡ B) ' (A ' B)

and see how they interact with unification!

3 / 52



Dependent types: the ‘big five’

During this presentation, we’ll spot:

• Dependent functions: (x : A)→ B x

• Indexed datatypes: Vec A n, . . .

• Identity types: x ≡A y

• Universes: Typei

• Univalence: (A ≡ B) ' (A ' B)

and see how they interact with unification!

3 / 52



Dependent types: the ‘big five’

During this presentation, we’ll spot:

• Dependent functions: (x : A)→ B x

• Indexed datatypes: Vec A n, . . .

• Identity types: x ≡A y

• Universes: Typei

• Univalence: (A ≡ B) ' (A ' B)

and see how they interact with unification!

3 / 52



Depending on equations

Checking dependently typed programs

Unification in dependent type theory

Unification of dependently typed terms



Depending on equations

Checking dependently typed programs

Unification in dependent type theory

Unification of dependently typed terms



Why use dependent types?

With dependent types, you can . . .

. . . guarantee that a program matches its

specification

. . . use the same language for writing

programs and proofs

. . . develop programs and proofs

interactively

4 / 52



Why use dependent types?

With dependent types, you can . . .

. . . guarantee that a program matches its

specification

. . . use the same language for writing

programs and proofs

. . . develop programs and proofs

interactively

4 / 52



Why use dependent types?

With dependent types, you can . . .

. . . guarantee that a program matches its

specification

. . . use the same language for writing

programs and proofs

. . . develop programs and proofs

interactively

4 / 52



Why use dependent types?

With dependent types, you can . . .

. . . guarantee that a program matches its

specification

. . . use the same language for writing

programs and proofs

. . . develop programs and proofs

interactively

4 / 52



Dependent types

Per

Martin-Löf

A dependent type is a

family of types, depending

on a term of a base type.

e.g. Vec A n is the type of

vectors of length n.

5 / 52



Dependent types

Per

Martin-Löf

A dependent type is a

family of types, depending

on a term of a base type.

e.g. Vec A n is the type of

vectors of length n.

5 / 52



The Agda language

Agda is a purely functional language

. . . with a strong, static type system

. . . for writing programs and proofs

. . . with datatypes and pattern matching

. . . with first-class dependent types

. . . with support for interactive development

All examples are (mostly) valid Agda code!

6 / 52



The Agda language

Agda is a purely functional language

. . . with a strong, static type system

. . . for writing programs and proofs

. . . with datatypes and pattern matching

. . . with first-class dependent types

. . . with support for interactive development

All examples are (mostly) valid Agda code!

6 / 52



The Agda language

Agda is a purely functional language

. . . with a strong, static type system

. . . for writing programs and proofs

. . . with datatypes and pattern matching

. . . with first-class dependent types

. . . with support for interactive development

All examples are (mostly) valid Agda code!

6 / 52



The Agda language

Agda is a purely functional language

. . . with a strong, static type system

. . . for writing programs and proofs

. . . with datatypes and pattern matching

. . . with first-class dependent types

. . . with support for interactive development

All examples are (mostly) valid Agda code!

6 / 52



The Agda language

Agda is a purely functional language

. . . with a strong, static type system

. . . for writing programs and proofs

. . . with datatypes and pattern matching

. . . with first-class dependent types

. . . with support for interactive development

All examples are (mostly) valid Agda code!

6 / 52



The Agda language

Agda is a purely functional language

. . . with a strong, static type system

. . . for writing programs and proofs

. . . with datatypes and pattern matching

. . . with first-class dependent types

. . . with support for interactive development

All examples are (mostly) valid Agda code!

6 / 52



The Agda language

Agda is a purely functional language

. . . with a strong, static type system

. . . for writing programs and proofs

. . . with datatypes and pattern matching

. . . with first-class dependent types

. . . with support for interactive development

All examples are (mostly) valid Agda code!

6 / 52



Using dependent types

With dependent types, we can give more

precise types to our programs:

replicate : (n : N)→ A→ Vec A n

append : (m n : N)→ Vec A m→
Vec A n→ Vec A (m + n)

7 / 52



Using dependent types

With dependent types, we can give more

precise types to our programs:

replicate : (n : N)→ A→ Vec A n

⇒ replicate 10 ‘a’ : Vec Char 10

append : (m n : N)→ Vec A m→
Vec A n→ Vec A (m + n)

7 / 52



Using dependent types

With dependent types, we can give more

precise types to our programs:

replicate : (n : N)→ A→ Vec A n

tail : (n : N)→ Vec A (suc n)→ Vec A n

append : (m n : N)→ Vec A m→
Vec A n→ Vec A (m + n)

7 / 52



Using dependent types

With dependent types, we can give more

precise types to our programs:

replicate : (n : N)→ A→ Vec A n

tail : (n : N)→ Vec A (suc n)→ Vec A n

append : (m n : N)→ Vec A m→
Vec A n→ Vec A (m + n)

7 / 52



Simple pattern matching

data N : Type where
zero : N
suc : N→ N

8 / 52



Simple pattern matching

data N : Type where
zero : N
suc : N→ N

minimum : N→ N→ N
minimum x y = { }

8 / 52



Simple pattern matching

data N : Type where
zero : N
suc : N→ N

minimum : N→ N→ N
minimum zero y = { }
minimum (suc x) y = { }

8 / 52



Simple pattern matching

data N : Type where
zero : N
suc : N→ N

minimum : N→ N→ N
minimum zero y = zero

minimum (suc x) y = { }

8 / 52



Simple pattern matching

data N : Type where
zero : N
suc : N→ N

minimum : N→ N→ N
minimum zero y = zero

minimum (suc x) zero = { }
minimum (suc x) (suc y) = { }

8 / 52



Simple pattern matching

data N : Type where
zero : N
suc : N→ N

minimum : N→ N→ N
minimum zero y = zero

minimum (suc x) zero = zero

minimum (suc x) (suc y) = { }

8 / 52



Simple pattern matching

data N : Type where
zero : N
suc : N→ N

minimum : N→ N→ N
minimum zero y = zero

minimum (suc x) zero = zero

minimum (suc x) (suc y) = suc (minimum x y)

8 / 52



Dependent pattern matching

data Vec (A : Type) : N→ Type where
nil : Vec A zero

cons : (n : N)→ A→ Vec A n→ Vec A (suc n)

9 / 52



Dependent pattern matching

data Vec (A : Type) : N→ Type where
nil : Vec A zero

cons : (n : N)→ A→ Vec A n→ Vec A (suc n)

tail : (k : N)→ Vec A (suc k)→ Vec A k

tail k xs = { }

9 / 52



Dependent pattern matching

data Vec (A : Type) : N→ Type where
nil : Vec A zero

cons : (n : N)→ A→ Vec A n→ Vec A (suc n)

tail : (k : N)→ Vec A (suc k)→ Vec A k

tail k nil = { } -- suc k = zero

tail k (cons n x xs) = { } -- suc k = suc n

9 / 52



Dependent pattern matching

data Vec (A : Type) : N→ Type where
nil : Vec A zero

cons : (n : N)→ A→ Vec A n→ Vec A (suc n)

tail : (k : N)→ Vec A (suc k)→ Vec A k

tail k nil = { } -- impossible

tail k (cons n x xs) = { } -- suc k = suc n

9 / 52



Dependent pattern matching

data Vec (A : Type) : N→ Type where
nil : Vec A zero

cons : (n : N)→ A→ Vec A n→ Vec A (suc n)

tail : (k : N)→ Vec A (suc k)→ Vec A k

tail k (cons n x xs) = { } -- suc k = suc n

9 / 52



Dependent pattern matching

data Vec (A : Type) : N→ Type where
nil : Vec A zero

cons : (n : N)→ A→ Vec A n→ Vec A (suc n)

tail : (k : N)→ Vec A (suc k)→ Vec A k

tail k (cons n x xs) = { } --

suc

k =

suc

n

9 / 52



Dependent pattern matching

data Vec (A : Type) : N→ Type where
nil : Vec A zero

cons : (n : N)→ A→ Vec A n→ Vec A (suc n)

tail : (k : N)→ Vec A (suc k)→ Vec A k

tail .n (cons n x xs) = { }

9 / 52



Dependent pattern matching

data Vec (A : Type) : N→ Type where
nil : Vec A zero

cons : (n : N)→ A→ Vec A n→ Vec A (suc n)

tail : (k : N)→ Vec A (suc k)→ Vec A k

tail .n (cons n x xs) = xs

9 / 52



Specialization by unification

Agda uses unification to:

• eliminate impossible cases

• specialize the result type

The output of unification can change

Agda’s notion of equality!

Main question: How to make sure

the output of unification is correct?

10 / 52



Specialization by unification

Agda uses unification to:

• eliminate impossible cases

• specialize the result type

The output of unification can change

Agda’s notion of equality!

Main question: How to make sure

the output of unification is correct?

10 / 52



Specialization by unification

Agda uses unification to:

• eliminate impossible cases

• specialize the result type

The output of unification can change

Agda’s notion of equality!

Main question: How to make sure

the output of unification is correct?

10 / 52



Depending on equations

Checking dependently typed programs

Unification in dependent type theory

Unification of dependently typed terms



Q: What is the fastest way to start a fight

between type theorists?

A: Mention the topic of equality.

11 / 52



Q: What is the fastest way to start a fight

between type theorists?

A: Mention the topic of equality.

11 / 52



The identity type

x ≡A y

. . . a dependent type depending on x , y : A.

. . . type theory’s built-in notion of equality.

. . . the type of proofs that x = y .

12 / 52



The identity type

x ≡A y

. . . a dependent type depending on x , y : A.

. . . type theory’s built-in notion of equality.

. . . the type of proofs that x = y .

12 / 52



The identity type

x ≡A y

. . . a dependent type depending on x , y : A.

. . . type theory’s built-in notion of equality.

. . . the type of proofs that x = y .

12 / 52



Operations on the identity type

refl : x ≡A x

sym : x ≡A y → y ≡A x

trans : x ≡A y → y ≡A z → x ≡A z

cong f : x ≡A y → f x ≡B f y

subst P : x ≡A y → P x → P y

13 / 52



Operations on the identity type

refl : x ≡A x

sym : x ≡A y → y ≡A x

trans : x ≡A y → y ≡A z → x ≡A z

cong f : x ≡A y → f x ≡B f y

subst P : x ≡A y → P x → P y

13 / 52



Operations on the identity type

refl : x ≡A x

sym : x ≡A y → y ≡A x

trans : x ≡A y → y ≡A z → x ≡A z

cong f : x ≡A y → f x ≡B f y

subst P : x ≡A y → P x → P y

13 / 52



Operations on the identity type

refl : x ≡A x

sym : x ≡A y → y ≡A x

trans : x ≡A y → y ≡A z → x ≡A z

cong f : x ≡A y → f x ≡B f y

subst P : x ≡A y → P x → P y

13 / 52



Operations on the identity type

refl : x ≡A x

sym : x ≡A y → y ≡A x

trans : x ≡A y → y ≡A z → x ≡A z

cong f : x ≡A y → f x ≡B f y

subst P : x ≡A y → P x → P y

13 / 52



Unification problems as
telescopes

A unification problem consists of

1. Flexible variables x1 : A1, x2 : A2, . . .

2. Equations u1 = v1 : B1, . . .

This can be represented as a telescope:

(x1 : A1)(x2 : A2) . . .

(e1 : u1 ≡B1 v1)(e2 : u2 ≡B2 v2) . . .

e.g. (k : N)(n : N)(e : suc k ≡N suc n)

14 / 52



Unification problems as
telescopes

A unification problem consists of

1. Flexible variables x1 : A1, x2 : A2, . . .

2. Equations u1 = v1 : B1, . . .

This can be represented as a telescope:

(x1 : A1)(x2 : A2) . . .

(e1 : u1 ≡B1 v1)(e2 : u2 ≡B2 v2) . . .

e.g. (k : N)(n : N)(e : suc k ≡N suc n)
14 / 52



Unification problems as
telescopes

A unification problem consists of

1. Flexible variables Γ

2. Equations u1 = v1 : B1, . . .

This can be represented as a telescope:

Γ

(e1 : u1 ≡B1 v1)(e2 : u2 ≡B2 v2) . . .

e.g. (k : N)(n : N)(e : suc k ≡N suc n)
14 / 52



Unification problems as
telescopes

A unification problem consists of

1. Flexible variables Γ

2. Equations ū = v̄ : ∆

This can be represented as a telescope:

Γ(ē : ū ≡∆ v̄)

e.g. (k : N)(n : N)(e : suc k ≡N suc n)
14 / 52



Unifiers as telescope maps

A unifier of ū and v̄ is a substitution

σ : Γ′ → Γ such that ūσ = v̄σ.

This can be represented as a telescope map:

f : Γ′ → Γ(ē : ū ≡∆ v̄)

e.g. f : ()→ (n : N)(e : n ≡N zero)

f () = zero; refl

15 / 52



Unifiers as telescope maps

A unifier of ū and v̄ is a substitution

σ : Γ′ → Γ such that ūσ = v̄σ.

This can be represented as a telescope map:

f : Γ′ → Γ(ē : ū ≡∆ v̄)

e.g. f : ()→ (n : N)(e : n ≡N zero)

f () = zero; refl

15 / 52



Evidence of unification

A map f : ()→ (n : N)(e : n ≡N zero)

gives us two things:

1. A value for n such that n ≡N zero

2. Explicit evidence e of n ≡N zero

=⇒ Unification is guaranteed to respect ≡!

16 / 52



Evidence of unification

A map f : ()→ (n : N)(e : n ≡N zero)

gives us two things:

1. A value for n such that n ≡N zero

2. Explicit evidence e of n ≡N zero

=⇒ Unification is guaranteed to respect ≡!

16 / 52



Evidence of unification

A map f : ()→ (n : N)(e : n ≡N zero)

gives us two things:

1. A value for n such that n ≡N zero

2. Explicit evidence e of n ≡N zero

=⇒ Unification is guaranteed to respect ≡!

16 / 52



Evidence of unification

A map f : ()→ (n : N)(e : n ≡N zero)

gives us two things:

1. A value for n such that n ≡N zero

2. Explicit evidence e of n ≡N zero

=⇒ Unification is guaranteed to respect ≡!

16 / 52



Three valid unifiers

f1 : (k : N)→ (k n : N)(e : k ≡N n)

f1 k = k ; k ; refl

f2 : ()→ (k n : N)(e : k ≡N n)

f2 () = zero; zero; refl

f3 : (k n : N)→ (k n : N)(e : k ≡N n)

f3 k n = k ; k ; refl

17 / 52



Most general unifiers

A most general unifier of ū and v̄ is a unifier

σ such that for any σ′ with ūσ′ = v̄σ′,

there is a ν such that σ′ = σ ◦ ν.

This is quite difficult to translate to type

theory directly. . .

Intuition: if f : Γ′ → Γ(ē : ū ≡∆ v̄) is MGU,

we can go back from Γ(ē : ū ≡∆ v̄) to Γ′

without losing any information.

18 / 52



Most general unifiers

A most general unifier of ū and v̄ is a unifier

σ such that for any σ′ with ūσ′ = v̄σ′,

there is a ν such that σ′ = σ ◦ ν.

This is quite difficult to translate to type

theory directly. . .

Intuition: if f : Γ′ → Γ(ē : ū ≡∆ v̄) is MGU,

we can go back from Γ(ē : ū ≡∆ v̄) to Γ′

without losing any information.

18 / 52



Most general unifiers

A most general unifier of ū and v̄ is a unifier

σ such that for any σ′ with ūσ′ = v̄σ′,

there is a ν such that σ′ = σ ◦ ν.

This is quite difficult to translate to type

theory directly. . .

Intuition: if f : Γ′ → Γ(ē : ū ≡∆ v̄) is MGU,

we can go back from Γ(ē : ū ≡∆ v̄) to Γ′

without losing any information.

18 / 52



Equivalences

A function f : A→ B is an equivalence if

it has both a left and a right inverse:

isLinv : (x : A)→ g1 (f x) ≡A x

isRinv : (y : B)→ f (g2 y) ≡B y

In this case, we write f : A ' B .

19 / 52



Most general unifiers
are equivalences!

f : Γ(ē : ū ≡∆ v̄) ' Γ′

20 / 52



Example of unification

(k n : N)(e : suc k ≡N suc n)

'

(k n : N)(e : k ≡N n)'
(k : N)

f : (k : N)→ (k n : N)(e : suc k ≡N suc n)

f k = k ; k ; refl

21 / 52



Example of unification

(k n : N)(e : suc k ≡N suc n)'

(k n : N)(e : k ≡N n)

'
(k : N)

f : (k : N)→ (k n : N)(e : suc k ≡N suc n)

f k = k ; k ; refl

21 / 52



Example of unification

(k n : N)(e : suc k ≡N suc n)'

(k n : N)(e : k ≡N n)'
(k : N)

f : (k : N)→ (k n : N)(e : suc k ≡N suc n)

f k = k ; k ; refl

21 / 52



Example of unification

(k n : N)(e : suc k ≡N suc n)'

(k n : N)(e : k ≡N n)'
(k : N)

f : (k : N)→ (k n : N)(e : suc k ≡N suc n)

f k = k ; k ; refl

21 / 52



The solution rule

solution : (x : A)(e : x ≡A t) ' ()

22 / 52



The deletion rule

deletion : (e : t ≡A t) ' ()

23 / 52



The injectivity rule

injectivitysuc :
(e : suc x ≡N suc y) ' (e ′ : x ≡N y)

24 / 52



Negative unification rules

A negative unification rule applies to

impossible equations, e.g. suc x = zero.

This can be represented by an equivalence:

(e : suc x ≡N zero) ' ⊥

where ⊥ is the empty type.

25 / 52



Negative unification rules

A negative unification rule applies to

impossible equations, e.g. suc x = zero.

This can be represented by an equivalence:

(e : suc x ≡N zero) ' ⊥

where ⊥ is the empty type.

25 / 52



The conflict rule

conflictsuc,zero :
(e : suc x ≡N zero) ' ⊥

26 / 52



The cycle rule

cyclen,suc n : (e : n ≡N suc n) ' ⊥

27 / 52



Unifiers as equivalences

By requiring unifiers to be equivalences:

• we exclude bad unification rules

• we can safely introduce new rules

Next, we’ll explore how this idea can help us.

Any questions so far?

28 / 52



Unifiers as equivalences

By requiring unifiers to be equivalences:

• we exclude bad unification rules

• we can safely introduce new rules

Next, we’ll explore how this idea can help us.

Any questions so far?

28 / 52



Depending on equations

Checking dependently typed programs

Unification in dependent type theory

Unification of dependently typed terms



Time for the interesting bits!

• Equations between types

• Heterogeneous equations

• Equations on indexed datatypes

• Equations between equations

29 / 52



Equations between types

Types are first-class terms of type Type:

Bool : Type, N : Type, N→ N : Type, . . .

We can form equations between types,

e.g. Bool ≡Type Bool.

Q: Can we apply the deletion rule?

A: Depends on which type theory we use!

30 / 52



Equations between types

Types are first-class terms of type Type:

Bool : Type, N : Type, N→ N : Type, . . .

We can form equations between types,

e.g. Bool ≡Type Bool.

Q: Can we apply the deletion rule?

A: Depends on which type theory we use!

30 / 52



Equations between types

Types are first-class terms of type Type:

Bool : Type, N : Type, N→ N : Type, . . .

We can form equations between types,

e.g. Bool ≡Type Bool.

Q: Can we apply the deletion rule?

A: Depends on which type theory we use!

30 / 52



Equations between types

Types are first-class terms of type Type:

Bool : Type, N : Type, N→ N : Type, . . .

We can form equations between types,

e.g. Bool ≡Type Bool.

Q: Can we apply the deletion rule?

A: Depends on which type theory we use!

30 / 52



The univalence axiom (2009)

Vladimir

Voevodsky

“Isomorphic types

can be identified.”

(A ≡ B) ' (A ' B)

31 / 52



The univalence axiom (2009)

Vladimir

Voevodsky

“Isomorphic types

can be identified.”

(A ≡ B) ' (A ' B)

31 / 52



The univalence axiom (2009)

Vladimir

Voevodsky

“Isomorphic types

can be identified.”

(A ≡ B) ' (A ' B)

31 / 52



The univalence axiom (2009)

Bool is equal to Bool in two ways:

true false

Bool

true false

Bool

32 / 52



The univalence axiom (2009)

Bool is equal to Bool in two ways:

true false

Bool

true false

Bool

32 / 52



The univalence axiom (2009)

Bool is equal to Bool in two ways:

true false

Bool

true false

Bool

32 / 52



The univalence axiom (2009)

Bool is equal to Bool in two ways:

true false

Bool

true false

Bool

32 / 52



Limiting the deletion rule

The deletion rule does not always hold:

there might be multiple proofs of x ≡A x .

E.g. Bool ≡Type Bool has two elements.

We cannot use deletion in this case!

33 / 52



Limiting the deletion rule

The deletion rule does not always hold:

there might be multiple proofs of x ≡A x .

E.g. Bool ≡Type Bool has two elements.

We cannot use deletion in this case!

33 / 52



Heterogeneous equations

Σn:NVec A n is the type of pairs (n, xs)

where n : N and xs : Vec A n.

(e : (0, nil) ≡Σn:NVec A n (1, cons 0 x xs))'
(e1 : 0 ≡N 1)(e2 : nil ≡Vec A ??? cons 0 x xs)

What is the type of e2?

34 / 52



Heterogeneous equations

Σn:NVec A n is the type of pairs (n, xs)

where n : N and xs : Vec A n.

(e : (0, nil) ≡Σn:NVec A n (1, cons 0 x xs))'
(e1 : 0 ≡N 1)(e2 : nil ≡Vec A ??? cons 0 x xs)

What is the type of e2?

34 / 52



Heterogeneous equations

Σn:NVec A n is the type of pairs (n, xs)

where n : N and xs : Vec A n.

(e : (0, nil) ≡Σn:NVec A n (1, cons 0 x xs))'
(e1 : 0 ≡N 1)(e2 : nil ≡Vec A ??? cons 0 x xs)

What is the type of e2?

34 / 52



Heterogeneous equations

Solution: use equation variables as

placeholders for their solutions:

(e : (0, nil) ≡Σn:NVec A n (1, cons 0 x xs))'
(e1 : 0 ≡N 1)(e2 : nil ≡Vec A e1 cons 0 x xs)

This is called a telescopic equality.

35 / 52



Heterogeneous equations

Solution: use equation variables as

placeholders for their solutions:

(e : (0, nil) ≡Σn:NVec A n (1, cons 0 x xs))'
(e1 : 0 ≡N 1)(e2 : nil ≡Vec A e1 cons 0 x xs)

This is called a telescopic equality.

35 / 52



Be careful with
heterogeneous equations!

(e : (Bool, true) ≡ΣA:TypeA (Bool, false))

'
(e1 : Bool ≡Type Bool)(e2 : true ≡e1 false)

⊥

The conflict rule does not apply!

36 / 52



Be careful with
heterogeneous equations!

(e : (Bool, true) ≡ΣA:TypeA (Bool, false))

'
(e1 : Bool ≡Type Bool)(e2 : true ≡e1 false)

⊥

The conflict rule does not apply!

36 / 52



Be careful with
heterogeneous equations!

(e : (Bool, true) ≡ΣA:TypeA (Bool, false))

'
(e1 : Bool ≡Type Bool)(e2 : true ≡e1 false)'

⊥

The conflict rule does not apply!

36 / 52



Be careful with
heterogeneous equations!

(e : (Bool, true) ≡ΣA:TypeA (Bool, false))

'
(e1 : Bool ≡Type Bool)(e2 : true ≡e1 false)6'

⊥

The conflict rule does not apply!

36 / 52



Be careful with
heterogeneous equations!

(e : (Bool, true) ≡ΣA:TypeBool (Bool, false))

'

(e1 : Bool ≡Type Bool)(e2 : true ≡Bool false)'
⊥

Whether a unification rule can be applied

depends on the type of the equation!

37 / 52



Be careful with
heterogeneous equations!

(e : (Bool, true) ≡ΣA:TypeBool (Bool, false))

'

(e1 : Bool ≡Type Bool)(e2 : true ≡Bool false)

'
⊥

Whether a unification rule can be applied

depends on the type of the equation!

37 / 52



Be careful with
heterogeneous equations!

(e : (Bool, true) ≡ΣA:TypeBool (Bool, false))

'

(e1 : Bool ≡Type Bool)(e2 : true ≡Bool false)'
⊥

Whether a unification rule can be applied

depends on the type of the equation!

37 / 52



Injectivity for indexed data

Do standard unification rules apply to

constructors of indexed datatypes?

(e : cons n x xs ≡Vec A (suc n) cons n y ys)'
???

38 / 52



Injectivity for indexed data
Idea: simplify equations between indices

together with equation between constructors:

(e1 : suc k ≡N suc n)

(e2 : cons k x xs ≡Vec A e1 cons n y ys)

'
(e ′1 : k ≡N n)(e ′2 : x ≡A y)

(e ′3 : xs ≡Vec A e1 ys)

Length of the Vec must be fully general:

must be an equation variable.

39 / 52



Injectivity for indexed data
Idea: simplify equations between indices

together with equation between constructors:

(e1 : suc k ≡N suc n)

(e2 : cons k x xs ≡Vec A e1 cons n y ys)'
(e ′1 : k ≡N n)(e ′2 : x ≡A y)

(e ′3 : xs ≡Vec A e1 ys)

Length of the Vec must be fully general:

must be an equation variable.

39 / 52



Injectivity for indexed data
Idea: simplify equations between indices

together with equation between constructors:

(e1 : suc k ≡N suc n)

(e2 : cons k x xs ≡Vec A e1 cons n y ys)'
(e ′1 : k ≡N n)(e ′2 : x ≡A y)

(e ′3 : xs ≡Vec A e1 ys)

Length of the Vec must be fully general:

must be an equation variable.
39 / 52



The image datatype

The type Im f y consists of elements

image x such that f x = y :

data Im (f : A→ B) : B → Type where
image : (x : A)→ Im f (f x)

40 / 52



Solving unsolvable equations

(x1 x2 : A)(e1 : f x1 ≡B f x2)

(e2 : image x1 ≡Im f e1 image x2)

'
(x1 x2 : A)(e : x1 ≡A x2)'

(x1 : A)

41 / 52



Solving unsolvable equations

(x1 x2 : A)(e1 : f x1 ≡B f x2)

(e2 : image x1 ≡Im f e1 image x2)'
(x1 x2 : A)(e : x1 ≡A x2)

'
(x1 : A)

41 / 52



Solving unsolvable equations

(x1 x2 : A)(e1 : f x1 ≡B f x2)

(e2 : image x1 ≡Im f e1 image x2)'
(x1 x2 : A)(e : x1 ≡A x2)'

(x1 : A)

41 / 52



What if the indices are not
fully general?

(e : cons n x xs ≡Vec A (suc n) cons n y ys)

'

(e1 : suc n ≡N suc n)

(e2 : cons n x xs ≡Vec A e1 cons n y ys)

(p : e1 ≡suc n≡Nsuc n refl)'

(e ′1 : n ≡N n)(e ′2 : x ≡A y)(e ′3 : xs ≡Vec A e′1
ys)

(p : cong suc e ′1 ≡suc n≡Nsuc n refl)

42 / 52



What if the indices are not
fully general?

(e : cons n x xs ≡Vec A (suc n) cons n y ys)'

(e1 : suc n ≡N suc n)

(e2 : cons n x xs ≡Vec A e1 cons n y ys)

(p : e1 ≡suc n≡Nsuc n refl)

'

(e ′1 : n ≡N n)(e ′2 : x ≡A y)(e ′3 : xs ≡Vec A e′1
ys)

(p : cong suc e ′1 ≡suc n≡Nsuc n refl)

42 / 52



What if the indices are not
fully general?

(e : cons n x xs ≡Vec A (suc n) cons n y ys)'

(e1 : suc n ≡N suc n)

(e2 : cons n x xs ≡Vec A e1 cons n y ys)

(p : e1 ≡suc n≡Nsuc n refl)'

(e ′1 : n ≡N n)(e ′2 : x ≡A y)(e ′3 : xs ≡Vec A e′1
ys)

(p : cong suc e ′1 ≡suc n≡Nsuc n refl)

42 / 52



What if the indices are not
fully general?

(e : cons n x xs ≡Vec A (suc n) cons n y ys)'

(e1 : suc n ≡N suc n)

(e2 : cons n x xs ≡Vec A e1 cons n y ys)

(p : e1 ≡suc n≡Nsuc n refl)'

(e ′1 : n ≡N n)(e ′2 : x ≡A y)(e ′3 : xs ≡Vec A e′1
ys)

(p : cong suc e ′1 ≡suc n≡Nsuc n refl)

42 / 52



Higher-dimensional equations

(e ′1 : n ≡N n)(e ′2 : x ≡A y)(e ′3 : xs ≡Vec A e′1
ys)

(p : cong suc e ′1 ≡suc n≡Nsuc n refl)

We call an equation between equality proofs

(e.g. p) a higher-dimensional equation.

43 / 52



How to solve
higher-dimensional equations?

Existing unification rules do not apply. . .

We solve the problem in three steps:

1. lower the dimension of equations

2. solve lower-dimensional equations

3. lift unifier to higher dimension

44 / 52



How to solve
higher-dimensional equations?

Existing unification rules do not apply. . .

We solve the problem in three steps:

1. lower the dimension of equations

2. solve lower-dimensional equations

3. lift unifier to higher dimension

44 / 52



Step 1: lower
the dimension of equations

We replace all equation variables

by regular variables: instead of

(e1 : n ≡N n)(e2 : x ≡A y)(e3 : xs ≡Vec A e1 ys)

(p : cong suc e1 ≡suc n≡Nsuc n refl)

let’s first consider

(k : N)(u : A)(us : Vec A k)

(e : suc k ≡N suc n)

45 / 52



Step 2: solve
lower-dimensional equations

This gives us an equivalence f of type

(k : N)(u : A)(us : Vec A k)

(e : suc k ≡N suc n)'
(u : A)(us : Vec A n)

46 / 52



Step 3: lift
unifier to higher dimension

We lift f to an equivalence f ↑ of type

(e1 : n ≡N n)(e2 : x ≡A y)

(e3 : xs ≡Vec A e1 ys)

(p : cong suc e1 ≡suc n≡Nsuc n refl)'

(e2 : x ≡A y)(e3 : xs ≡Vec A n ys)

47 / 52



Final result of steps 1-3

(e : cons n x xs ≡Vec A (suc n) cons n y ys)'

(e2 : x ≡A y)(e3 : xs ≡Vec A n ys)

This is the forcing rule for cons.

48 / 52



Final result of steps 1-3

(e : cons n x xs ≡Vec A (suc n) cons n y ys)'

(e2 : x ≡A y)(e3 : xs ≡Vec A n ys)

This is the forcing rule for cons.

48 / 52



Lifting equivalences:
(mostly) general case

Theorem. If we have an equivalence f of type

(x : A)(e : b1 x ≡B x b2 x) ' C

we can construct f ↑ of type

(e : u ≡A v)(p : cong b1 e ≡r≡B es cong b2 e)'

(e ′ : f u r ≡C f v s)

49 / 52



Implementation in Agda

This is all used by Agda to check definitions

by dependent pattern matching.

• More general than before

• Fixed many bugs

• Implementation matches theory

You can try it for yourself:

wiki.portal.chalmers.se/agda

50 / 52

wiki.portal.chalmers.se/agda


Conclusion

Unification rules should return evidence
of their correctness.

A most general unifier can be represented

internally as an equivalence.

Unification cannot ignore the types!

51 / 52



Conclusion

Unification rules should return evidence
of their correctness.

A most general unifier can be represented

internally as an equivalence.

Unification cannot ignore the types!

51 / 52



Conclusion

Unification rules should return evidence
of their correctness.

A most general unifier can be represented

internally as an equivalence.

Unification cannot ignore the types!

51 / 52



Questions?

If you want to know more, you can:

• Try out Agda:

wiki.portal.chalmers.se/agda

• Look at the source:

github.com/agda/agda

• Read my thesis:

Dependent pattern matching and

proof-relevant unification (2017)

52 / 52

wiki.portal.chalmers.se/agda
github.com/agda/agda


Two applications of unification

Filling in implicit

arguments

• Higher order

• ‘Syntactic’

• MGU optional

Checking definitions

by pattern matching

• First order

• ‘Semantic’

• MGU required

Focus of this talk

52 / 52



Two applications of unification

Filling in implicit

arguments

• Higher order

• ‘Syntactic’

• MGU optional

Checking definitions

by pattern matching

• First order

• ‘Semantic’

• MGU required

Focus of this talk

52 / 52



Two applications of unification

Filling in implicit

arguments

• Higher order

• ‘Syntactic’

• MGU optional

Checking definitions

by pattern matching

• First order

• ‘Semantic’

• MGU required

Focus of this talk

52 / 52



Two applications of unification

Filling in implicit

arguments

• Higher order

• ‘Syntactic’

• MGU optional

Checking definitions

by pattern matching

• First order

• ‘Semantic’

• MGU required

Focus of this talk

52 / 52



Two applications of unification

Filling in implicit

arguments

• Higher order

• ‘Syntactic’

• MGU optional

Checking definitions

by pattern matching

• First order

• ‘Semantic’

• MGU required

Focus of this talk

52 / 52



Two notions of equality

Definitional equality

x = y : A

• Weaker

• Decidable

• Meta-theoretic

• Implicit

Propositional equality

e : x ≡A y

• Stronger

• Undecidable

• Internal to theory

• Explicit

52 / 52



Two notions of equality

Definitional equality

x = y : A

• Weaker

• Decidable

• Meta-theoretic

• Implicit

Propositional equality

e : x ≡A y

• Stronger

• Undecidable

• Internal to theory

• Explicit

52 / 52



Two notions of equality

Definitional equality

x = y : A

• Weaker

• Decidable

• Meta-theoretic

• Implicit

Propositional equality

e : x ≡A y

• Stronger

• Undecidable

• Internal to theory

• Explicit

52 / 52



Two notions of equality

Definitional equality

x = y : A

• Weaker

• Decidable

• Meta-theoretic

• Implicit

Propositional equality

e : x ≡A y

• Stronger

• Undecidable

• Internal to theory

• Explicit

52 / 52


