Sprinkles of extensionality
 for your vanilla type theory

Adding custom rewrite rules to Agda

Jesper Cockx Andreas Abel
DistriNet - KU Leuven
24 May 2016

What are we doing?

Take some vanilla Agda ...

What are we doing?

Take some vanilla Agda ...

... and sprinkle some rewrite rules on top

Goals of adding rewrite rules

1 Turn propositional equalities into definitional ones

2 Add new primitives with custom computation rules

Disclaimer

This is basically one big hack. We are not responsible for any unintended side-effects such as unsoundness, non-termination, lack of subject reduction, shark attacks, or zombie outbreaks.

Acknowledgements

A big thanks to
■ Guillaume Brunerie
■ Nils Anders Danielsson
■ Martin Escardo
and other brave early adopters to point out bugs and limitations of the rewriting mechanism!

Sprinkles of extensionality
 for your vanilla type theory

1 What are rewrite rules?

2 What can you do with them?

3 How do they work?

Sprinkles of extensionality
 for your vanilla type theory

1 What are rewrite rules?

2 What can you do with them?

3 How do they work?

What are rewrite rules?

A way to plug new computation rules into Agda's typechecker

What are rewrite rules?

A way to plug new computation rules into Agda's typechecker
plus0: $(n: \mathbb{N}) \rightarrow n+0 \equiv n$
plus0 $n=\ldots$
\{-\# REWRITE plus0 \#-\}
This adds a computation rule $n+0 \sim n$

What are rewrite rules?

Applications the reflection rule ...

$$
\frac{\Gamma \vdash e: u \equiv v}{u=v}
$$

... but only for specific equality proofs $e \in$ Rew:

$$
\frac{\Gamma \vdash e: f \bar{p} \equiv v \quad \sigma: \Delta \Rightarrow \Gamma}{f \bar{p} \sigma \sim v \sigma}(e \in \operatorname{Rew})
$$

What are rewrite rules not?

Not a conservative extension

- Can destroy termination e.g. $x+y \leadsto y+x$
- Can destroy confluence
e.g. true \sim false
- Can destroy subject reduction e.g. subst P e $x \sim x$

Sprinkles of extensionality
 for your vanilla type theory

1 What are rewrite rules?

2 What can you do with them?

3 How do they work?

Make neutral terms reduce ${ }^{1}$

$x s+[]$
$\sim x s$
$(x s+y s)+z s \sim x s+(y s+z s)$
$\operatorname{map} f(x s+y s) \sim \operatorname{map} f x s+\operatorname{map} f y s$ $\operatorname{map}(\lambda x, x) x s \sim x s$
subst $\left(\lambda_{-} . B\right) p x \leadsto x$
cong $(\lambda x . x) p \sim p$
${ }^{1}$ See New equations for neutral terms by Guillaume Allais, Conor McBride, and Pierre Boutillier.

Implement higher inductive types

Circle : Set
base : Circle
loop : base \equiv base
elim $_{\text {Circle }}:(P:$ Circle \rightarrow Set $)(b: P$ base $)$
($/$: subst P loop $b \equiv b$)
$(x:$ Circle $) \rightarrow P_{x}$
$\begin{aligned} \text { elim }_{\text {Circle }} P b / \text { base } & \sim b \\ \text { cong }\left(\operatorname{elim}_{\text {Circle }} P b /\right) \text { loop } & \sim I\end{aligned}$

Add custom resizing rules ${ }^{2}$

resize $:$ Set $_{i} \rightarrow$ Set $_{j}$

Prop: Seto

${ }^{2}$ Based on code by Martin Escardo, see
cs.bham.ac.uk/~mhe/impredicativity-via-rewriting/

Add custom resizing rules ${ }^{2}$

resize $:$ Set $_{i} \rightarrow$ Set $_{j}$
Prop ${ }^{\prime}$: Set_{1}
Prop $^{\prime}=\Sigma[X: \operatorname{Set}]((x y: X) \rightarrow x \equiv y)$
Prop: Set $_{0}$
Prop $=$ resize Prop'
${ }^{2}$ Based on code by Martin Escardo, see
cs.bham.ac.uk/~mhe/impredicativity-via-rewriting/

Do shallow embeddings: cubical ${ }^{3}$

$$
\begin{array}{ll}
\mathrm{I} & : \text { Set } \\
01 & : \text { I } \\
-Z_{-} & : A \rightarrow A \rightarrow \operatorname{Set} \\
\langle i\rangle t & : t[i \mapsto 0]-t[i \mapsto 1] \\
\$- & :(a-b) \rightarrow I \rightarrow A
\end{array}
$$

${ }^{3}$ Based on A cubical crossroads by Conor McBride at AIM XXIII, see github.com/jespercockx/cubes for the Agda code

Do shallow embeddings: cubical ${ }^{3}$

$$
\begin{array}{ll}
I & : \text { Set } \\
01 & : \text { I } \\
-—_{-} & A \rightarrow A \rightarrow \operatorname{Set} \\
\langle i\rangle t & : t[i \mapsto 0]-t[i \mapsto 1] \\
\$- & :(a-b) \rightarrow I \rightarrow A
\end{array}
$$

$$
\text { funext }:((x: A) \rightarrow f x-g x) \rightarrow(f-g)
$$

$$
\text { funext } p=\langle i\rangle(\lambda x . p \times \$ i)
$$

${ }^{3}$ Based on A cubical crossroads by Conor McBride at AIM XXIII, see github.com/jespercockx/cubes for the Agda code

Sprinkles of extensionality
 for your vanilla type theory

1 What are rewrite rules?

2 What can you do with them?

3 How do they work?

Higher-order Miller matching

The LHS is compiled into a pattern $f p_{1} \ldots p_{n}$

- f should be a defined symbol or postulate - patterns p_{1}, \ldots, p_{n} should bind all variables

Patterns can be higher-order and non-linear

Higher-order Miller matching

The LHS is compiled into a pattern $f p_{1} \ldots p_{n}$ - f should be a defined symbol or postulate $■$ patterns p_{1}, \ldots, p_{n} should bind all variables

Patterns can be higher-order and non-linear
■ $f p_{1} \ldots p_{n}$
■ $x y_{1} \ldots y_{n}(x$ free,

- $\lambda x . p$ y_{i} bound, $\left.y_{i} \neq y_{j}\right)$
- $\left(x: P_{1}\right) \rightarrow P_{2}$
- y $p_{1} \ldots p_{n}$ (y bound)
- Set p
- Arbitrary terms t

Applying rewrite rules

How to rewrite $f t_{1} \ldots t_{n}$
with rewrite rule $f p_{1} \ldots p_{n} \sim r$?
$1 t_{1} \ldots t_{n}$ are matched against linear part of $p_{1} \ldots p_{n}$, producing a substitution σ
2 Non-linear parts are checked for equality after applying σ
з $f t_{1} \ldots t_{n}$ is rewritten to $r \sigma$

Effects on constraint solving

■ Previously inert terms can now reduce, so we have to postpone constraint solving E.g. $x+? 0=x$

- Defined functions become matchable, so nruning has to be more conservative

Effects on constraint solving

- Previously inert terms can now reduce, so we have to postpone constraint solving E.g. $x+? 0=x$

■ Defined functions become matchable, so pruning has to be more conservative E.g. ? $1(f x)=$ true

Rewriting systems in type theory

Other systems based on rewrite rules:

■ Dedukti (dedukti.gforge.inria.fr)
■ CoqMT (github.com/strub/coqmt)

Future work

- Add proper import system
- Add confluence checking / completion
- Custom eta rules

Conclusion

You can use rewrite rules

- to simplify neutral terms such as $x+0$
- to implement new primitives such as HIT's

■ to embed other theories such as cubical
... but you should know what you are doing

Conclusion

You can use rewrite rules

- to simplify neutral terms such as $x+0$
- to implement new primitives such as HIT's
- to embed other theories such as cubical
... but you should know what you are doing
Why don't you give it a try?

