Sprinkles of extensionality for your vanilla type theory Adding custom rewrite rules to Agda

Jesper Cockx Andreas Abel

DistriNet - KU Leuven

24 May 2016

What are we doing?

Take some vanilla Agda . . .

What are we doing?

Take some vanilla Agda . . .

... and sprinkle some rewrite rules on top

Goals of adding rewrite rules

- Turn propositional equalities into definitional ones
- Add new primitives with custom computation rules

Disclaimer

This is basically one big hack. We are not responsible for any unintended side-effects such as unsoundness, non-termination, lack of subject reduction, shark attacks, or zombie outbreaks.

Acknowledgements

A big thanks to

- Guillaume Brunerie
- Nils Anders Danielsson
- Martin Escardo

and other brave early adopters to point out bugs and limitations of the rewriting mechanism! Sprinkles of extensionality for your vanilla type theory

1 What are rewrite rules?

2 What can you do with them?

3 How do they work?

Sprinkles of extensionality for your vanilla type theory

1 What are rewrite rules?

2 What can you do with them?

3 How do they work?

What are rewrite rules?

A way to plug new computation rules into Agda's typechecker

plus0 : $(n : \mathbb{N}) \rightarrow n + 0 \equiv n$ plus0 $n = \dots$ $\{-\# \text{ REWRITE plus0 } \#-\}$

This adds a computation rule $n + 0 \rightarrow n$

What are rewrite rules?

A way to plug new computation rules into Agda's typechecker

$$plus0:(n:\mathbb{N})
ightarrow n+0\equiv n$$

 $plus0\;n=\ldots$
 $\{-\#\; \text{REWRITE}\; plus0\; \#-\}$

This adds a computation rule $n + 0 \rightsquigarrow n$

What are rewrite rules?

Applications the reflection rule ...

$$\frac{\Gamma \vdash e : u \equiv v}{u = v}$$

... but only for specific equality proofs $e \in \text{Rew}$:

$$\frac{\Gamma \vdash e : f \ \bar{p} \equiv v \quad \sigma : \Delta \Rightarrow \Gamma}{f \ \bar{p} \sigma \rightsquigarrow v\sigma} (e \in \mathsf{Rew})$$

What are rewrite rules not?

Not a conservative extension

Can destroy termination

e.g. $x + y \rightsquigarrow y + x$

Can destroy confluence

e.g. true \rightsquigarrow false

Can destroy subject reduction
 e.g. subst P e x → x

Sprinkles of extensionality for your vanilla type theory

1 What are rewrite rules?

2 What can you do with them?

3 How do they work?

Make neutral terms reduce¹

xs ++ || $\sim xs$ $(xs + ys) + zs \rightarrow xs + (ys + zs)$ $map f (xs + ys) \quad \rightsquigarrow map f xs + map f ys$ map $(\lambda x. x)$ xs \rightarrow xs subst $(\lambda_{-}, B) \ p \ x \rightsquigarrow x$ $cong(\lambda x. x) p \longrightarrow p$

¹See *New equations for neutral terms* by Guillaume Allais, Conor McBride, and Pierre Boutillier.

Implement higher inductive types

- Circle : Set
- base : Circle
- loop : base \equiv base
- $\begin{array}{l} \texttt{elim}_{\texttt{Circle}} : (P:\texttt{Circle} \rightarrow \texttt{Set})(b:P \texttt{ base}) \\ (I:\texttt{subst} \ P \texttt{ loop } b \equiv b) \\ (x:\texttt{Circle}) \rightarrow P \ x \end{array}$
- $\begin{array}{c} \texttt{elim}_{\texttt{Circle}} \ P \ b \ I \ \texttt{base} \sim b \\ \texttt{cong} \ (\texttt{elim}_{\texttt{Circle}} \ P \ b \ I) \ \texttt{loop} \sim I \end{array}$

Add custom resizing rules²

resize: $Set_i \rightarrow Set_j$

 $ext{Prop}': extsf{Set}_1 \ ext{Prop}' = \Sigma[X: ext{Set}] \ ((x \ y: X) o x \equiv y) \ ext{Prop}: extsf{Set}_0 \ ext{Prop} = ext{resize} \ ext{Prop}'$

²Based on code by Martin Escardo, see cs.bham.ac.uk/~mhe/impredicativity-via-rewriting/

Add custom resizing rules²

resize : $Set_i \rightarrow Set_j$

 $\begin{array}{l} \operatorname{Prop}': \operatorname{Set}_1\\ \operatorname{Prop}' = \Sigma[X:\operatorname{Set}] \ ((x \ y: X) \to x \equiv y)\\ \operatorname{Prop}: \operatorname{Set}_0\\ \operatorname{Prop} = \operatorname{resize} \operatorname{Prop}' \end{array}$

²Based on code by Martin Escardo, see cs.bham.ac.uk/~mhe/impredicativity-via-rewriting/

Do shallow embeddings: cubical³

- I : Set
- 01 : I
- $\begin{array}{l} \underline{-} & \underline{-} : A \to A \to \mathtt{Set} \\ \langle i \rangle t & : t[i \mapsto 0] t[i \mapsto 1] \\ \underline{-} \$_{-} & : (a b) \to I \to A \end{array}$

 $\begin{array}{l} \texttt{funext}: ((x:A) \rightarrow f \; x - g \; x) \rightarrow (f - g) \\ \texttt{funext} \; p = \langle i \rangle \; (\lambda x. \, p \; x \; \$ \; i) \end{array}$

³Based on *A cubical crossroads* by Conor McBride at AIM XXIII, see github.com/jespercockx/cubes for the Agda code

Do shallow embeddings: cubical³

- I : Set
- 01 : I

$$\begin{array}{l} \underline{--} : A \to A \to \mathbf{Set} \\ \langle i \rangle t : t[i \mapsto 0] - t[i \mapsto 1] \\ \underline{-} & \vdots (a - b) \to I \to A \end{array}$$

$$ext{funext}: ((x:A) o f \ x - g \ x) o (f - g) \ ext{funext} \ p = \langle i \rangle \ (\lambda x. \ p \ x \ i)$$

³Based on *A cubical crossroads* by Conor McBride at AIM XXIII, see github.com/jespercockx/cubes for the Agda code

Sprinkles of extensionality for your vanilla type theory

1 What are rewrite rules?

2 What can you do with them?

3 How do they work?

Higher-order Miller matching The LHS is compiled into a pattern f p₁ ... p_n f should be a defined symbol or postulate patterns p₁,..., p_n should bind all variables

Patterns can be higher-order and non-linear

 $f p_1 \dots p_n$ $x y_1 \dots y_n (x \text{ free}, y_i \text{ bound}, y_i \neq y_j)$ $\lambda x.p$ $y_i \text{ bound}, y_i \neq y_j)$ $(x: P_1) \rightarrow P_2$ $y p_1 \dots p_n (y \text{ bound})$ Set pArbitrary terms t

Higher-order Miller matching The LHS is compiled into a pattern f p₁ ... p_n f should be a defined symbol or postulate patterns p₁,..., p_n should bind all variables

Patterns can be higher-order and non-linear

- $f p_1 \dots p_n$ ■ $\lambda x.p$ ■ $(x : P_1) \rightarrow P_2$ ■ $x y_1 \dots y_n (x \text{ free,} y_i \text{ bound, } y_i \neq y_j)$ ■ $(x : P_1) \rightarrow P_2$ ■ $y p_1 \dots p_n (y \text{ bound})$
- Set p
 Arbitrary terms t

Applying rewrite rules

How to rewrite $f t_1 \ldots t_n$ with rewrite rule $f p_1 \ldots p_n \rightsquigarrow r$?

- t₁...t_n are matched against linear part of p₁...p_n, producing a substitution σ
 Non-linear parts are checked for equality after applying σ
- **3** f t_1 ... t_n is rewritten to $r\sigma$

Effects on constraint solving

- Previously inert terms can now reduce, so we have to postpone constraint solving
 E.g. x + ?0 = x
- Defined functions become matchable, so pruning has to be more conservative
 E.g. ?1 (f x) = true

Effects on constraint solving

- Previously inert terms can now reduce, so we have to postpone constraint solving
 E.g. x + ?0 = x
- Defined functions become matchable, so pruning has to be more conservative
 E.g. ?1 (f x) = true

Rewriting systems in type theory

Other systems based on rewrite rules:

. . .

Dedukti (dedukti.gforge.inria.fr)

CoqMT (github.com/strub/coqmt)

Add proper import system

- Add confluence checking / completion
- Custom eta rules

Conclusion

You can use rewrite rules

to simplify neutral terms such as x + 0
to implement new primitives such as HIT's
to embed other theories such as cubical
... but you should know what you are doing

Why don't you give it a try?

Conclusion

You can use rewrite rules

to simplify neutral terms such as x + 0
to implement new primitives such as HIT's
to embed other theories such as cubical
... but you should know what you are doing
Why don't you give it a try?