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What are we doing?

Take some vanilla

Agda . . .
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Goals of adding rewrite rules

1 Turn propositional equalities

into definitional ones

2 Add new primitives with

custom computation rules
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Disclaimer

This is basically one big hack. We are not

responsible for any unintended side-effects such

as unsoundness, non-termination, lack of subject

reduction, shark attacks, or zombie outbreaks.
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What are rewrite rules?

A way to plug new computation rules

into Agda’s typechecker

plus0 : (n : N)→ n + 0 ≡ n

plus0 n = . . .

{-# REWRITE plus0 #-}

This adds a computation rule n + 0 ; n
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What are rewrite rules?

Applications the reflection rule . . .

Γ ` e : u ≡ v
u = v

. . . but only for specific equality proofs e ∈ Rew:

Γ ` e : f p̄ ≡ v σ : ∆⇒ Γ
(e ∈ Rew)

f p̄σ ; vσ
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What are rewrite rules not?

Not a conservative extension

Can destroy termination

e.g. x + y ; y + x

Can destroy confluence

e.g. true ; false

Can destroy subject reduction

e.g. subst P e x ; x
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Make neutral terms reduce1

xs ++ [] ; xs

(xs ++ ys) ++ zs ; xs ++ (ys ++ zs)

map f (xs ++ ys) ; map f xs ++ map f ys

map (λx . x) xs ; xs

subst (λ .B) p x ; x

cong (λx . x) p ; p

1See New equations for neutral terms by Guillaume Allais,
Conor McBride, and Pierre Boutillier.
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Implement higher inductive types

Circle : Set

base : Circle

loop : base ≡ base

elimCircle : (P : Circle→ Set)(b : P base)

(l : subst P loop b ≡ b)

(x : Circle)→ P x

elimCircle P b l base ; b

cong (elimCircle P b l) loop ; l

9 / 17



Add custom resizing rules2

resize : Seti → Setj

Prop′ : Set1
Prop′ = Σ[X : Set] ((x y : X )→ x ≡ y)

Prop : Set0
Prop = resize Prop′

2Based on code by Martin Escardo, see
cs.bham.ac.uk/~mhe/impredicativity-via-rewriting/
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Do shallow embeddings: cubical3

I : Set

0 1 : I

— : A→ A→ Set

〈i〉 t : t[i 7→ 0] — t[i 7→ 1]

$ : (a — b)→ I → A

funext : ((x : A)→ f x — g x)→ (f — g)

funext p = 〈i〉 (λx . p x $ i)

3Based on A cubical crossroads by Conor McBride at AIM XXIII,
see github.com/jespercockx/cubes for the Agda code
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Higher-order Miller matching
The LHS is compiled into a pattern f p1 . . . pn

f should be a defined symbol or postulate

patterns p1, . . . , pn should bind all variables

Patterns can be higher-order and non-linear

f p1 . . . pn

λx .p

(x : P1)→ P2

Set p

x y1 . . . yn (x free,

yi bound, yi 6= yj)

y p1 . . . pn (y bound)

Arbitrary terms t
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Applying rewrite rules

How to rewrite f t1 . . . tn
with rewrite rule f p1 . . . pn ; r?

1 t1 . . . tn are matched against linear part of

p1 . . . pn, producing a substitution σ

2 Non-linear parts are checked for equality

after applying σ

3 f t1 . . . tn is rewritten to rσ
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Effects on constraint solving

Previously inert terms can now reduce,

so we have to postpone constraint solving

E.g. x + ?0 = x

Defined functions become matchable,

so pruning has to be more conservative

E.g. ?1 (f x) = true
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Rewriting systems in type theory

Other systems based on rewrite rules:

Dedukti (dedukti.gforge.inria.fr)

CoqMT (github.com/strub/coqmt)

. . .
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Future work

Add proper import system

Add confluence checking / completion

Custom eta rules
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Conclusion

You can use rewrite rules

to simplify neutral terms such as x + 0

to implement new primitives such as HIT’s

to embed other theories such as cubical

. . . but you should know what you are doing

Why don’t you give it a try?
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