Sprinkles of extensionality
for your vanilla type theory

Adding custom rewrite rules to Agda

Jesper Cockx Andreas Abel

DistriNet — KU Leuven

24 May 2016

What are we doing?

Take some vanilla
Agda ...

1/17

What are we doing?

Take some vanilla ...and sprinkle some

Agda ... rewrite rules on top

1/17

Goals of adding rewrite rules

Turn propositional equalities
into definitional ones

Add new primitives with
custom computation rules

Disclaimer

This is basically one big hack. We are not
responsible for any unintended side-effects such
as unsoundness, non-termination, lack of subject
reduction, shark attacks, or zombie outbreaks.

Acknowledgements

A big thanks to
m Guillaume Brunerie
m Nils Anders Danielsson
m Martin Escardo

and other brave early adopters to point out
bugs and limitations of the rewriting mechanism!

Sprinkles of extensionality
for your vanilla type theory

What are rewrite rules?
What can you do with them?

How do they work?

Sprinkles of extensionality
for your vanilla type theory

What are rewrite rules?

What are rewrite rules?

A way to plug new computation rules
into Agda’s typechecker

What are rewrite rules?

A way to plug new computation rules
into Agda’s typechecker

plusO: (n:N)—=n+0=n
plusOn=...
{-# REWRITE plusO #-}

This adds a computation rule n + 0~ n

What are rewrite rules?

Applications the reflection rule . ..

[Fe:u=vVv
Ug=v

... but only for specific equality proofs e € Rew:

[Fe:fp=v oc:A=T

f po~ vo

(e € Rew)

What are rewrite rules not?

Not a conservative extension

m Can destroy termination
eg. X+y~y+x

m Can destroy confluence
e.g. true ~ false

m Can destroy subject reduction
e.g. subst P e x~ x

Sprinkles of extensionality
for your vanilla type theory

What can you do with them?

Make neutral terms reducel

xs +] ~> XS
(xs +H ys) H zs ~ xs +H (ys +H zs)

map f (xs + ys) ~» map f xs +map f ys
map (Ax.x) xs ~ xs

subst (A B) p x ~ x
cong (Ax.x)p ~p

1See New equations for neutral terms by Guillaume Allais,
Conor McBride, and Pierre Boutillier.

Implement higher inductive types

Circle : Set

base : Circle

loop : base = base

elimgircie @ (P : Circle — Set)(b: P base)
(/ : subst P loop b = b)
(x : Circle) — P x

elimgircie P b/ base ~ b
cong (elimgircie P b 1) loop ~ |

9/17

Add custom resizing rules?

resize : Set; — Set;

2Based on code by Martin Escardo, see

cs.bham.ac.uk/~mhe/impredicativity-via-rewriting/
10/17

cs.bham.ac.uk/~mhe/impredicativity-via-rewriting/

Add custom resizing rules?

resize : Set; — Set;

Prop’ : Set;

Prop’ = X[X : Set| ((xy: X) —

Prop : Sety
Prop = resize Prop’

2Based on code by Martin Escardo, see

cs.bham.ac.uk/~mhe/impredicativity-via-

X=y)

rewriting/
10/17

cs.bham.ac.uk/~mhe/impredicativity-via-rewriting/

Do shallow embeddings: cubical®

I . Set

01 I
—_:A— A— Set
(iYt :tli— 0] —t[i — 1]
$ (a—bhH)—=I1—-A

3Based on A cubical crossroads by Conor McBride at AIM XXIII,

see github.com/jespercockx/cubes for the Agda code
11/17

github.com/jespercockx/cubes

Do shallow embeddings: cubical®

I . Set

01 I
—_:A— A— Set
(iYt :tli— 0] —t[i — 1]
$ (a—bhH)—=I1—-A

funext: ((x: A) > f x—g x) = (f—g)
funext p = (i) (Ax.px$1)

3Based on A cubical crossroads by Conor McBride at AIM XXIII,

see github.com/jespercockx/cubes for the Agda code
11/17

github.com/jespercockx/cubes

Sprinkles of extensionality
for your vanilla type theory

How do they work?

Higher-order Miller matching
The LHS is compiled into a pattern f p; ... px
m f should be a defined symbol or postulate

m patterns pi, ..., p, should bind all variables

12/17

Higher-order Miller matching
The LHS is compiled into a pattern f p1 ... p,
m f should be a defined symbol or postulate

m patterns pi, ..., p, should bind all variables
Patterns can be higher-order and non-linear

mfp...p, mXy...Y, (x free,
m AX.p yi bound, yi # yj)
m(x:P)—=P, ®ypi...p,(ybound)
m Set p m Arbitrary terms t

12/17

Applying rewrite rules

How to rewrite f t; ... t,
with rewrite rule f p; ... pp,~ r?

ty ...t, are matched against linear part of
p1 ... Py producing a substitution o

Non-linear parts are checked for equality
after applying o

ft; ... t,is rewritten to ro

13/17

Effects on constraint solving

m Previously inert terms can now reduce,
so we have to postpone constraint solving
Eg x+70=x

14 /17

Effects on constraint solving

m Previously inert terms can now reduce,
so we have to postpone constraint solving
Eg x+70=x

m Defined functions become matchable,
so pruning has to be more conservative
E.g. 71 (f x) = true

14 /17

Rewriting systems in type theory

Other systems based on rewrite rules:
m Dedukti (dedukti.gforge.inria.fr)
m CogMT (github.com/strub/coqmt)

15 /17

dedukti.gforge.inria.fr
github.com/strub/coqmt

Future work

m Add proper import system
m Add confluence checking / completion

m Custom eta rules

16 /17

Conclusion

You can use rewrite rules
m to simplify neutral terms such as x + 0
m to implement new primitives such as HIT's
m to embed other theories such as cubical

... but you should know what you are doing

17 /17

Conclusion

You can use rewrite rules
m to simplify neutral terms such as x + 0
m to implement new primitives such as HIT's
m to embed other theories such as cubical

... but you should know what you are doing

Why don't you give it a try?

17 /17

