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An outsider perspective on confluence

About me:

● I study the theory and implementation of
dependently typed languages, in particular
Agda.

● 2 years ago, I knew nothing about confluence.

● Since then I’ve worked on a confluence checker
for rewrite rules in Agda.

● I still don’t know much, but I’m eager to learn
more!
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Highlights of this talk

● Rewriting Type Theory (RTT): dependent type
theory with user-definable rewrite rules

● A modular and decidable confluence criterion
based on the triangle propert of parallel
reduction

● An implementation of RTT and our confluence
check as an extension to Agda

● A formal proof of confluence and subject
reduction using MetaCoq
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One step building on a long legacy

● Extensions of the Calculus of Constructions
with rewrite rules [Barbamera et al 1997,
Walukiewicz-Crzaszcz 2003, Blanqui 2005, . . . ]

● CoqMT(U), extending Coq with decidable
first-order theory [Strub 2010, Barras et al
2011, . . . ]

● Dedukti, a logical framework based on rewrite
rules [Cousineau and Dowek 2007, Boespflug et
al 2012, Ferey and Jouannaud 2019, . . . ]
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Dramatic arc of this talk

Part I Type theory unchained
(Everything is awesome!)

Part II Problems in the metatheory
(Everything is awful. . . )

Part III Global confluence checking
(Everything is ok again?)
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Outline

1. Type Theory Unchained

2. Metatheory of RTT

3. Global confluence checking
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Type theory as the foundation of
modern proof assistants

Modern proof assistants (e.g. Coq
& Agda) are based on Martin-
Löf’s dependent type theory.

● Lambda calculus at the core

● Dependent function space
(b ∶ B) → if b then N else B

● Universes: B ∶ Type,
Type ∶ Type1, . . .

● Identity type, inductive
types, . . .

Per Martin-Löf
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Löf’s dependent type theory.

● Lambda calculus at the core

● Dependent function space
(b ∶ B) → if b then N else B

● Universes: B ∶ Type,
Type ∶ Type1, . . .

● Identity type, inductive
types, . . .

Per Martin-Löf
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The modular set-up of
Martin-Löf Type Theory

Each type former is defined by four sets of rules:

Formation rule N ∶ Type

Introduction rules zero ∶ N and suc ∶ N→ N

Elimination rule ind ∶ (P ∶ N→ Type)

→ P zero

→ ((n ∶ N) → P n → P (suc n))
→ (n ∶ N) → P n

Computation rules ind P pz ps zero↝ pz and
ind P pz ps (suc n)
↝ ps n (ind P pz ps n)
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The limitations of a proof assistant

In a proof assistant such as Agda & Coq, one
cannot freely add new type formers.

Instead, one can define. . .

● inductive types that are strictly positive

● functions through complete case splits

● fixpoints that are structurally recursive

. . . but this is not always enough!
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Two notions of equality in MLTT

Definitional equality Propositional equality

x = y p ∶ x ≡A y

x and y have the there is a proof that
same normal form x and y are equal

(λx .x) 4 = 4 refl ∶ (λx .x) 4 ≡N 4

x + y /= y + x +-comm x y ∶ x + y ≡N y + x

fixed by the language can be extended with axioms

checked automatically has to be applied manually
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Problem #1:
Definitional equality is fragile

+ ∶ N→ N→ N
zero + y = y
(suc x) + y = suc (x + y)

comm ∶ (x y ∶ N) → x + y ≡N y + x
comm zero y = refl

comm (suc x) y = { }0

Agda protests: y != y + zero of type N
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Problem #2:
Intensional equality is not extensible

postulate

N/2 ∶ Type

proj ∶ N→ N/2
quot ∶ (x y ∶ N) → x % 2 ≡N y % 2→

proj x ≡N/2 proj y

rec ∶ (f ∶ N→ A) →
(q ∶ ∀x y → x % 2 ≡N y % 2→ f x ≡A f y) →
(x ∶ N/2) → A

The term rec f q (proj x) should evaluate to f x ,
but it is stuck!
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A non-solution: equality reflection

Applying propositional equalities by hand is very
verbose and error-prone.

Instead, we can consider adding the equality
reflection rule:

Γ ⊢ p ∶ x ≡A y

Γ ⊢ x = y

This solves the two problems by merging definitional
and propositional equality.

However, it makes type checking undecidable.

Do we want equality to be decidable or
extensible?

YES!
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Rewrite rules to the rescue!
By adding rewrite rules, definitional equality
becomes extensible while staying decidable.1

In a proof assistant with rewrite rules, we can. . .

1. Add computation rules to existing definitions:

x + zero _ x
x + (suc y) _ suc (x + y)

2. Postulate new primitives that compute:

rec f q (proj x)_ f x

1If we choose rewrite rules carefully.
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Rewrite rules in practice

Demo time!
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General shape of a rewrite rule

?x ?y ?z
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

pattern variables

⊢ f p1 . . . pn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

patterns

_ t

1. Pattern variables must be left-linear

2. f must be fresh (defined in same block)

3. No higher-order rules (for now)

Rewriting Type Theory (RTT) is Martin-Löf’s
type theory extended with user-defined rewrite rules
of this shape.
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Outline

1. Type Theory Unchained

2. Metatheory of RTT

3. Global confluence checking
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Metatheory of MLTT 101

MLTT satisfies many ‘good’ properties:

Logical consistency
There is no term u such that ⊢ u ∶ �

Decidable typechecking
We can decide whether Γ ⊢ u ∶ A

Subject reduction
If Γ ⊢ u ∶ A and u ↝ v then Γ ⊢ v ∶ A

Do these properties still hold in a type theory with
rewrite rules??
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Logical consistency

Q: Doesn’t a rewrite rule 0 _ 1 breaks consistency?

A: Yes, but this is no diffent from using
postulate! We can regain soundness by requiring
a proof for each rewrite rule.

Theorem (Consistency of RTT). If for each rewrite
rule l _ r we have a proof ⊢ e ∶ l ≡ r , then the
system is consistent.
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Soundness of type checking

Q: Doesn’t a rewrite rule loop _ loop break
normalization, and hence decidable typechecking?

A: Yes it does, but the usual algorithm is still
correct if it terminates!

Theorem (Soundness of typechecking for RTT). If
type checking terminates successfully on input
context Γ, term u, and type A, then Γ ⊢ u ∶ A.
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Completeness of type checking

Q: What about completeness? If we have two rules
X _ N and X _ B and u ∶ B, will type checking
accept u ∶ X?

A: No, for type checking to be complete we need
confluence of reduction.

Theorem (Completeness of typechecking for RTT).
Assume that reduction with the given set of rewrite
rules is confluent. If Γ ⊢ u ∶ A, then type checking
will not throw an error on input context Γ, term u,
and type A.
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Practical type checking

We say type checking is practical if it is sound and
complete: when it terminates, it is correct.

● RTT with confluent reduction has practical
type checking.

● Type theory with equality reflection does not.

The only thing that can go wrong is that the type
checker loops because of a non-terminating set of
rewrite rules.
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Subject reduction

Q: Doesn’t a rewrite rule true _ 42 break subject
reduction?

A: Yes it does, but we can restrict ourselves to
homogeneous rewrite rules where both sides have
the same type.

Theorem. If all rewrite rules are homogeneous,
types are preserved during reduction.

THIS IS FALSE!!
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Counterexamples to subject reduction

The rule (N→ N)_ (N→ B) breaks safety:

zero’ ∶ B
zero’ = (λx . x ∶ N→ B) zero

test = if zero’ then 42 else 9000

The (non-confluent) rules X _ (N→ N) and
X _ (N→ B) similarly break subject reduction.
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Regaining subject reduction

To prove subject reduction, we require three
properties:

● All rewrite rules are homogeneous

● Rewrite rules do not rewrite type constructors
(such as →)

● Reduction is confluent

Again confluence is required!
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Metatheory of Type Theory

Decidable
typechecking

Subject
reduction

Logical
consistency
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Metatheory of Type Theory

Decidable
typechecking

Strong
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Subject
reduction
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Metatheory of Rewriting Type Theory

Decidable
typechecking

Strong
normalization

Subject
reduction

Injectivity of
Pi types

“Effective”
typechecking

Universe
consistency

All rewrite rules
are provable

Logical
consistency

Datatypes
are strictly

positive

Fixpoints are 
well-foundedFixpoints are 

well-founded Datatypes are
strictly positive
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Metatheory of Rewriting Type Theory
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Can you spot the problem?

Decidable
typechecking

Strong
normalization

Subject
reduction

Injectivity of
Pi types

Global
confluence

Local
confluence

“Effective”
typechecking

No rewriting
of type

constructors

Universe
consistency

All rewrite rules
are provable

Logical
consistency

Rewrite rules
preserve

types
Datatypes
are strictly

positive

Fixpoints are 
well-foundedFixpoints are 

well-founded Datatypes are
strictly positive
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Breaking the loop
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Wanted: a confluence checker

To restore the metatheory of RTT, we need a
confluence check that. . .

. . . can deal with with all features of MLTT

. . . accepts the examples we want to support

. . . checks global confluence without assuming
termination

. . . is modular so we can check files separately and
use external libraries without re-checking them

No quick off-the-shelf solution fits all of these. . .

37 / 45



Some inspiration from the masters

Tait and Martin-Löf gave a classic proof of
confluence of untyped lambda calculus that relies on
parallel reduction.

Parallel reduction (⇛) reduces all immediate
redexes by one step:

(suc a) + ((λx . x + b) 0) ⇛ suc (a + (0 + b))
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The Tait-Martin-Löf criterion
Triangle property: each term t has an
optimal reduct ρ(t)

t


� �(

u *4 ρ(t)

The triangle property implies global confluence:

t
q}


�

!-
u

 ,
u′

r~
ρ(t)

Moreover, it can be checked modularly!
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Checking the triangle property of
rewrite rules in three steps

1. Pick an order on the rewrite rules

2. Check that lhs are closed under unification:
if two lhs l1 and l2 have a most general unifier
l , then l is the lhs of an earlier rewrite rule

3. For every rule l _ r and every parallel step
l ⇛ w , check that w ⇛ r

If step 2 fails we must add auxiliary rules, e.g.

(suc x) + (suc y)_ suc (suc (x + y))
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The triangle criterion in practice

Demo time!
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Can we do better?

The triangle criterion is not the most general.

However, its simplicity has some advantages as well:

● We have a formal proof of its correctness

● It is not too hard to implement

● It is predictable to the user

● When it fails, it is usually clear how to fix it

Open question: can we do better?
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A request for the confluence
community

What would have helped the me from two years ago
is a collection of different criteria for confluence
that:

- are considered ‘best in class’

- cover all combinations of requirements
(first-order vs. higher-order, terminating
vs. non-terminating, modular vs. global, . . . )

- have a clear demo implementation

- (bonus) have been formally verified
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Conclusion
The tension between propositional and definitional
equality is a big barrier to entry for modern proof
assistants.

We make definitional equality extensible by adding
rewrite rules to type theory:

● Improve computation of existing definitions

● Add new primitives that compute

Thanks to the triangle property, we can ensure they
preserve type safety in a modular way.

All formalized in MetaCoq & implemented in Agda!
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Want to learn more?

● Read the papers:
▸ TYPES ’19: Type theory unchained (https:

//doi.org/10.4230/LIPIcs.TYPES.2019.2)
▸ POPL ’21: The taming of the rew (https:

//hal.archives-ouvertes.fr/hal-02901011)

● Play with rewriting in Agda:
https://agda.readthedocs.io/en/v2.6.

2/language/rewriting.html

● Look at the formalization:
https://github.com/TheoWinterhalter/

template-coq/
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