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data Vec (A : Set) : N→ Set where
[] : Vec A zero

cons : (n : N)→ A→ Vec A n→ Vec A (suc n)

tail : (k : N)→ Vec A (suc k)→ Vec A k

tail k xs = { }
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Introduction

• In a dependently typed language, you often encounter
equations in the context that you’d like to discharge.

• For example, the indexed datatype Vec has two
constructors: one for the empty vector of length zero

and one for prepending an element to an existing vector,
increasing the length by 1. When you want to
implement a type-safe tail function on vectors, you have
to do a case analysis on a vector of length suc k ,
resulting in the two equations suc k = zero and
suc k = suc n.

• Agda automatically detects that the first case is
impossible and that k = n in the second case. How
does it do this?



Agda uses unification to:

• eliminate impossible cases

• specialize the result type

The output of unification can change

Agda’s notion of equality!

Main question: How to make sure

the output of unification is correct?
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Introduction

• The answer is in the title: Agda applies unification to
solve these equations automatically.

• Similar equations arise in other dependently typed
languages, e.g. in Coq you may use constructors with
embedded equality proofs instead of an indexed
datatype. So unification can also be applied there.

• The main question I will try to answer in this
presentation is: how can we be sure the output of
unification is correct?

• In particular, I argue that the naieve idea of unification
as finding a substitution making two terms equal is not
sufficient.



Flavors of type theory

Classical HoTT
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Introduction

Flavors of type theory

• Let’s start with the question why the standard definition of a most general
unifier isn’t sufficient.

• For this, we first need to zoom out. Intuitionistic type theory can be seen as
a vanilla theory plus a number of flavors in the form of axioms or new
primitives.

• For example, you can add a classical flavor such as the law of the excluded
middle, impredicativity, and uniqueness of identity proofs.

• On the other hand, you can add homotopy flavor with primitives such as
functional extensionality, univalence, and higher inductive types.

• However, using these flavors together blows up the whole theory, making it
inconsistent.

• There’s a third flavor that I’d call the syntactic properties. These are the
properties that are true in a syntactic model.

• For example, there’s injectivity of type constructors, stating that e.g.
List A = List B implies A = B.

• These properties are in general incompatible with both classical logic and
HoTT, so we want to avoid them if possible.

• However, a purely syntactic unification algorithm implicitely relies on these
properties to justify its steps.

• To make sure the output of unification is consistent with whatever flavor
we’re working in, we need evidence of unification internal to our theory.



We want something that works for all flavors,

so a purely syntactic algorithm doesn’t work.

Core idea: unification should return evidence

of unification in the form of an equivalence

(a ≡ b) ' (c ≡ d)
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Introduction

• My answer to this problem is that you should think of
unifiers as type-theoretic equivalences between two
equations. An equivalence means (roughly) that we
have functions back and forth that are mutually inverses.

• This means we give a computational interpretation to
the concept of a unifier: not just a substitution, but
functions manipulating identity proofs.

• By requiring evidence of unification internal to the type
theory, we make sure the unification doesn’t rely on any
unspecified assumptions (e.g. uniqueness of identity
proofs or injective type constructors).

• Additionally, it can be used in the translation of
dependent pattern matching to eliminators



Unifiers as equivalences

Proof-relevant unification

Depending on equations
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Introduction

• First I’ll explain why it’s a good idea to see unifiers as
equivalences

• Next I’ll show concretely how the standard unification
rules can be viewed as equivalences

• Finally I’ll go more into what happens when
dependently typed terms themselves become the subject
of unification



Unifiers as equivalences

Proof-relevant unification

Depending on equations



What is a unification problem?

A unification problem consists of

1. A context of free variables Γ

2. Equations u1 = v1, u2 = v2, . . .

This can be represented as a telescope

Γ(ē : ū ≡∆ v̄)

e.g. (k : N)(n : N)(e : suc k ≡N suc n)
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Unifiers as equivalences

What is a unification problem?

• So, to begin we need to think about what a unification problem is. We know
that it should consist of one or more equations and that these equations can
contain free variables that we are trying to solve.

• Of course, we take a typed view on unification, so we collect the unification
variables in a context assigning a type to each variable.

• For the internal representation of the equations, we make use of Martin-Löf’s
identity type. This type is written with a triple equals sign in Agda, I will be
using this notation as well.

• The bar above u and v simply means that there may be more than one
equation.

• For easy reference, we also give each equation a name (ē in this case). This
will become important once we discuss dependencies between equations in
the third part of the presentation.
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A unifier of ū and v̄ consists of:

1. A reduced context Γ′

2. A substitution σ : Γ′ → Γ s.t. ūσ = v̄σ
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f : Γ′ → Γ(ē : ū ≡A v̄)

e.g. f : ()→ (n : N)(e : n ≡N zero)
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What is a unifier?

• A unifier is usually defined as any substitution σ that
makes all the equations true. Since we take a typed
view on unification, we also make the domain of the
substitution, Γ′, explicit. Note that Γ′ contains the
variables that are not assigned a value by σ.

• We can encode both the substitution σ and the fact
that it makes the equations hold together as a telescope
map. This is simply a function that takes its arguments
from Γ′ and returns the values of the variables in Γ plus
proofs that the equations hold under this substitution.

• For example, if we had one variable n and one equation
n = zero then Γ′ is empty and f assigns zero to n and
refl to e.



What is a most general unifier?

Γ′ Γ(ē : ū ≡∆ v̄)

Γ′′

f

f ′

h g1

g2

f has a right inverse g1 ⇒ h exists

f has a left inverse g2 ⇒ h is unique
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What is a most general unifier?

• We call a unifier f : Γ′ → Γ(ē : ū ≡A v̄) most general if any other unifier
f ′ : Γ′′ → Γ(ē : ū ≡A v̄) can be decomposed as f ◦ h.

• However, this definition quantifies over all telescopes Γ′′ and unifiers f ′,
which is annoying. Can we find a better definition?

• If we require that f has a right inverse g1, we don’t need h any more, since
we can always define it as g1 ◦ f ′!

• (If anyone asks how to construct g1: Take Γ′′ = Γ(ē : ū ≡∆ v̄) and f ′ = id.
This gives us a function g1 : Γ(ē : ū ≡∆ v̄)→ Γ′ such that id = f ◦ g1, i.e.
g1 is a right inverse to f .)

• Usually it is also required that the substitution h is unique, otherwise Γ′ may
contain unneccessary ‘ghost variables’.

• If we require that f also has a left inverse g2, we don’t need uniqueness of h
either.

• Note that g1 and g2 don’t have to be the same, but they can be (and often
are).

• (If anyone asks how to construct g2: Note that we have two functions h from
Γ′ to Γ′ such that f ◦ h = f : h = g1 ◦ f and h = id. By uniqueness, we must
have g1 ◦ f = id, so g1 is also a left inverse to f .)



Most general unifiers
are equivalences!

f : Γ(ē : ū ≡∆ v̄) ' Γ′
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Unifiers as equivalences

Most general unifiers are
equivalences!

• So now we have a function f with left and a right
inverses. In type-theoretic circles, this is called an
equivalence, famous for its role in Voevodsky’s
univalence axiom.

• This is great because there already is a great amount of
theory dealing with equivalences that we can borrow.



Unifiers as equivalences

Proof-relevant unification

Depending on equations



Example

(k n : N)(e : suc k ≡N suc n)

'

(k n : N)(e : k ≡N n)'
(k : N)
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Proof-relevant unification

Example

• Now that we know what a most general unifier is, we
can try to construct them. We start with an easy
example from the introduction: suc k = suc n.

• We construct the most general unifier by applying
unification rules that simplify the equations. Each
unification rule also takes the form of an equivalence.

• These equivalences can be chained together by
transitivity of the equivalence relation, thus producing
the final MGU in the end.



The solution rule

solution : (x : A)(e : x ≡A t) ' ()

10 / 21



The solution rule

solution : (x : A)(e : x ≡A t) ' ()

20
16

-0
9-

21
Proof-relevant unification

The solution rule

• The most basic unification rule is the solution rule. It
takes a variable and an equation having this variable on
one side and solves it. This removes the variable in the
process.

• On the right of the equivalence is the empty telescope.
You can think of it as a unit type with a single element.

• The function from right to left in the equivalence
assigns t to the variable x and refl to e.



The deletion rule

deletion : (e : t ≡A t) ' ()

Requires uniqueness of identity proofs!

11 / 21



The deletion rule

deletion : (e : t ≡A t) ' ()

Requires uniqueness of identity proofs!

11 / 21



The deletion rule

deletion : (e : t ≡A t) ' ()

Requires uniqueness of identity proofs!20
16

-0
9-

21
Proof-relevant unification

The deletion rule

• The next basic unification rule is the deletion rule. It
removes a reflexive equation from the telescope, leaving
the rest of it unchanged.

• The construction of deletion requires uniqueness of
identity proofs however, so think before including this
rule in your unification algorithm!



The injectivity rule

injectivitysuc :
(e : suc x ≡N suc y) ' (e ′ : x ≡N y)
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Proof-relevant unification

The injectivity rule

• Next up is the injectivity rule: if we have an equation
between two equal constructors, we can simplify it to an
equation between the arguments.

• It’s important that the constructors are fully applied,
otherwise we may run into trouble with functional
extensionality!



The conflict rule

conflictleft,right :
(e : left x ≡A]B right y) ' ⊥
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Proof-relevant unification

The conflict rule

• Next to the basic unification rules we just saw, there are
also rules for detecting absurd equations. In the spirit of
this talk, we represent also these rules as equivalences,
but this time with the empty type ⊥ on the right.

• The conflict rule can be applied when there is an
equation between two distinct constructors. Again, both
constructors should be fully applied.

• Since the right side is ⊥, the only interesting
information in this equivalence is the function from left
to right.



The cycle rule

cyclen,suc n : (e : n ≡N suc n) ' ⊥
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Proof-relevant unification

The cycle rule

• Finally, there is the cycle rule. This rule can be applied
when the term on the left occurs strongly rigid on the
right, i.e. as a (nested) constructor argument.



Unifiers as equivalences

Proof-relevant unification

Depending on equations



What’s the type of a
heterogeneous equation?

(e : N, zero ≡ΣA:SetA Bool, true)

'
(e1 : N ≡Set Bool)(e2 : zero ≡??? true)
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Depending on equations

What’s the type of a
heterogeneous equation?

• When we try to unify dependently typed terms, we can
encounter heterogeneous equations: equations where
the left- and right-hand side don’t have the same type.
For example, we may have an equation between pairs of
a type and an element of that type.

• Can we allow heterogeneous equalities? If yes, can we
still apply the standard unification rules to them?



Why not use
heterogeneous equality?

(e : Bool, true ≡ΣA:SetA Bool, false)

vs

(e : Bool, true ≡Set×Bool Bool, false)
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Depending on equations

Why not use heterogeneous
equality?

• To answer this question, consider the following two
unification problems. They look very much alike, except
that the type of the first one is a dependent product
ΣA:SetA while the second one has a non-dependent
product Set × Bool as its type.

• If we used heterogeneous equality, both equations would
be simplified to the same two equations Bool = Bool

and true = false.
• However, the first equation is actually provable if you

use the univalence axiom, while the second one is false
in any type theory. So heterogeneous equality loses
information that is essential to the problem!



Telescopic equality

Solution: keep track of dependencies by

introducing a new variable for each equation

(E : N ≡Set Bool)(e : zero ≡E true)

This is called a telescopic equality
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Telescopic equality

• Instead, we solve the problem by using telescopic
equality. This means that the name of each equation
can occur in the types of subsequent equations.

• This means we can keep track precisely how the type of
each equation depends on the previous equations, and
in particular when it becomes again homogeneous. If an
equation is homogeneous, we know it’s safe to apply the
unification rules to it.

• Telescopic equalities can be formalized by using the
‘path over a path’ construction from homotopy type
theory. Our notation in particular is inspired by cubical
type theory.



Exploiting the dependencies
between equations

(e1 : suc m ≡N suc n)

(e2 : cons m x xs ≡Vec A e1 cons n y ys)

'
(e1 : m ≡N n)(e2 : x ≡A y)

(e3 : xs ≡Vec A e1 ys)
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Exploiting the dependencies
between equations

• Telescopic equalities don’t just tell us when it’s safe to apply unification rules.
They also play an essential role in the unification rules for indexed datatypes.

• For example, consider the two equations e1 and e2, where the type of the
second one depends on the first one. The injectivity rule for the constructor
cons of the Vec datatype takes both of these equations at once and simplifies
them to equations between the constructor arguments.

• In general, the unification rules for indexed datatypes always solve the
equations between the indices together with equations between constructors
themselves.

• The reason why the rules work in this way is because it is the total type
Σ(n:N) Vec A n of an indexed datatype that is inductively defined, not the
individual types Vec A n.



Solving unsolvable equations
data Im (f : A→ B) : B → Set where
image : (x : A)→ Im f (f x)

(x1 x2 : A)(e1 : f x1 ≡B f x2)

(e2 : image x1 ≡Im f e1 image x2)'
(x1 x2 : A)(e : x1 ≡A x2)'

(x1 : A)
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Depending on equations

Solving unsolvable equations

• Some people consider this datatype to be criminal. I ask
these people kindly to imagine the image constructor
takes an additional argument of type f x ≡B y .

• You can think of Im f y as the set of x : A such that
f x = y .

• If we apply the injectivity rule to the image constructor,
we see that it simplifies the two equations f x ≡B f y
and image x ≡Im f e1 image x2 to the single equation
x1 ≡A x2.

• This is neat because it would’ve been impossible to
solve the equation f x = f y by itself. Hooray for the
power of dependent types!



Things I didn’t mention

• Construction of the unification rules

• Computational interpretation of unifiers

• Eta rules for record types

• Reverse unification rules (outdated)

• Implementation in Agda
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Conclusion

Things I didn’t mention

• Read the paper if you want to know about these things!
• I’m also working on an extension to the algorithm called

higher-dimensional unification that replaces the reverse
unification rules in the paper. You’ll hear more about
that in the future.



Conclusion

We have a new definition of the MGU

. . . internal to the type theory

. . . that is correct by construction
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Conclusion

• In a dependently typed language, it is possible to
enforce correctness properties internal to the language.
We apply this idea to unification, discovering that
unifiers can be represented internally as equivalences.

• This idea allows us to give a new implementation of the
unification algorithm used by Agda for dependent
pattern matching, that avoids many of the problems
troubling the old algorithm.

• Additionally, by giving a computational interpretation to
unifiers we can use them directly in our type-theoretic
developments, for example in the translation of
dependent pattern matching to eliminators.


