A sound unification algorithm based on telescope equivalences

Jesper Cockx
DistriNet - KU Leuven
20 April 2016

Pattern matching is awesome

 Agda uses unification to:- check which constructors are possible - specialize the result type

Pattern matching is awesome

 Agda uses unification to:■ check which constructors are possible ■ specialize the result type

Pattern matching is awesome

Agda uses unification to:

- check which constructors are possible - specialize the result type
data $\operatorname{Vec}(A: \operatorname{Set}): \mathbb{N} \rightarrow$ Set where

$$
[]: \operatorname{Vec} A 0
$$

$$
\text { cons : }(n: \mathbb{N}) \rightarrow A \rightarrow \operatorname{Vec} A n
$$

$$
\rightarrow \operatorname{Vec} A(1+n)
$$

$f: \operatorname{Vec} A 1 \rightarrow T$
$f($ cons $.0 \times x s)=\ldots$

Details of unification are important

Agda has pattern matching as a primitive, so results of unification determine Agda's notion of equality

Details of unification are important

Agda has pattern matching as a primitive, so results of unification determine
Agda's notion of equality
Example: deleting reflexive equations implies K

Time for a quiz

Should the following code be accepted?
\{-\# OPTIONS --without-K \#-\}
... -- imports
$f:($ Bool, true $) \equiv($ Bool , false $) \rightarrow \perp$ $f()$

Time for a quiz

Should the following code be accepted?
\{-\# OPTIONS --without-K \#-\}
... -- imports
$f:($ Bool, true $) \equiv($ Bool , false $) \rightarrow \perp$ $f()$

Answer: depends on the type of the equation!

Postponing equations causes problems

If we postpone an equation,
following equations can be heterogeneous

■ Equality of second projections

Postponing equations causes problems

If we postpone an equation,
following equations can be heterogeneous
Naively continuing unification is bad

- Equality of second projections
- Injectivity of type constructors

Postponing equations causes problems

If we postpone an equation,
following equations can be heterogeneous
Naively continuing unification is bad - Equality of second projections

- Injectivity of type constructors

It's hard to distinguish good and bad situations!

We need a general way to think about unification

It's not sufficient to "make things equal"
Core idea:
Unification rules are equivalences
between telescopes of equations
This is the basis of the new
unification algorithm in Agda 2.5.1

We need a general way to think about unification

It's not sufficient to "make things equal"
Core idea:
Unification rules are equivalences
between telescopes of equations
This is the basis of the new
unification algorithm in Agda 2.5.1

We need a general way to think about unification

It's not sufficient to "make things equal"
Core idea:
Unification rules are equivalences
between telescopes of equations
This is the basis of the new
unification algorithm in Agda 2.5.1

A sound unification algorithm based on telescope equivalences

1 Unifiers as equivalences
2 Unification rules

3 Higher-dimensional unification

A sound unification algorithm based on telescope equivalences

1 Unifiers as equivalences

2 Unification rules

3 Higher-dimensional unification

What do we want from unification?

It has to be possible to translate pattern matching to eliminators

What do we want from unification?

It has to be possible to translate pattern matching to eliminators

The core tool we need is specialization by unification

Build a function $m: \Gamma \rightarrow \bar{u} \equiv \Delta \bar{v} \rightarrow T$
from a function $m^{\prime}: \Gamma^{\prime} \rightarrow T \sigma$
where $\sigma: \Gamma^{\prime} \rightarrow \Gamma$ is computed by unification

Intermezzo: telescopic equality

Type of an equation may depend on solution of previous equations

Heterogeneous equality doesn't keep enough information:

Intermezzo: telescopic equality

Type of an equation may depend on solution of previous equations

Heterogeneous equality doesn't keep enough information:

■ Safe to consider equation homogeneous?
$■$ Does equation depend on other equation?
■ How do equations depend on each other?

Intermezzo: telescopic equality

Solution: use "path over" construction to keep track of dependencies

For example:

$$
\left(e_{1}: m \equiv_{\mathbb{N}} n\right)\left(e_{2}: u \equiv_{\operatorname{Vec} A}^{e_{1}} v\right)
$$

Cubical (abuse of) notation:

$$
\left(e_{1}: m \equiv_{\mathbb{N}} n\right)\left(e_{2}: u \equiv_{\text {Vec } A e_{1}} v\right)
$$

Intermezzo: telescopic equality

Solution: use "path over" construction to keep track of dependencies

For example:

$$
\left(e_{1}: m \equiv_{\mathbb{N}} n\right)\left(e_{2}: u \equiv_{\operatorname{Vec} A}^{e_{1}} v\right)
$$

Cubical (abuse of) notation:

$$
\left(e_{1}: m \equiv_{\mathbb{N}} n\right)\left(e_{2}: u \equiv_{\operatorname{Vec} A e_{1}} v\right)
$$

Specialization by unification
 The goal is to construct $m: \Gamma \rightarrow \bar{u} \equiv_{\Delta} \bar{v} \rightarrow T$

- Telescope「 of flexible variables - Telescone $\bar{u}=\wedge \bar{v}$ of equations

Specialization by unification

The goal is to construct $m: \Gamma \rightarrow \bar{u} \equiv \Delta \bar{v} \rightarrow T$
Input:

- Telescope「 of flexible variables

■ Telescope $\bar{u} \equiv_{\Delta} \bar{v}$ of equations

Specialization by unification

The goal is to construct $m: \Gamma \rightarrow \bar{u} \equiv_{\Delta} \bar{v} \rightarrow T$
Input:
■ Telescope「 of flexible variables

- Telescope $\bar{u} \equiv_{\Delta} \bar{v}$ of equations

Output:
■ New telescope Γ^{\prime}
■ Substitution $\sigma: \Gamma^{\prime} \rightarrow \Gamma$

- Evidence of unification

$$
\bar{e}: \Gamma^{\prime} \rightarrow \bar{u} \sigma \equiv_{\Delta \sigma} \bar{v} \sigma
$$

Specialization by unification

The goal is to construct $m: \Gamma \rightarrow \bar{u} \equiv{ }_{\Delta} \bar{v} \rightarrow T$ Input:

- Telescope「 of flexible variables
- Telescope $\bar{u} \equiv_{\Delta} \bar{v}$ of equations

Output:

- New telescope Γ^{\prime}

■ Telescope mapping $f: \Gamma^{\prime} \rightarrow \Gamma\left(\bar{u} \equiv{ }_{\Delta} \bar{v}\right)$

Two more requirements

Let $f: \Gamma^{\prime} \rightarrow \Gamma(\bar{u} \equiv \Delta \bar{v})$ be a unifier

$$
\begin{aligned}
& f \text { should be most general } \\
& \Rightarrow f \text { needs a right inverse } g_{1} \\
& \Gamma^{\prime} \text { should be minimal } \\
& \Rightarrow f \text { needs a left inverse } g_{2}
\end{aligned}
$$

Two more requirements

Let $f: \Gamma^{\prime} \rightarrow \Gamma\left(\bar{u} \equiv{ }_{\Delta} \bar{v}\right)$ be a unifier

- f should be most general
$\Rightarrow f$ needs a right inverse g_{1}

Two more requirements

Let $f: \Gamma^{\prime} \rightarrow \Gamma\left(\bar{u} \equiv{ }_{\Delta} \bar{v}\right)$ be a unifier

- f should be most general
$\Rightarrow f$ needs a right inverse g_{1}
■ Γ^{\prime} should be minimal
$\Rightarrow f$ needs a left inverse g_{2}

Most general unifiers as equivalences

A most general unifier of \bar{u} and \bar{v} is an equivalence $f: \Gamma\left(\bar{u} \equiv_{\Delta} \bar{v}\right) \simeq \Gamma^{\prime}$ for some Γ^{\prime} Specialization by unification:

Most general unifiers as equivalences

A most general unifier of \bar{u} and \bar{v} is an equivalence $f: \Gamma\left(\bar{u} \equiv_{\Delta} \bar{v}\right) \simeq \Gamma^{\prime}$ for some Γ^{\prime}

Specialization by unification:

$$
\begin{aligned}
& m: \Gamma \rightarrow \bar{u} \equiv \Delta \bar{v} \rightarrow T \\
& m \bar{x} \bar{e}=\overline{\operatorname{subst}(\lambda \bar{x} \bar{e} . T)(\text { isLinv } f \bar{x} \bar{e})} \\
& \quad\left(m^{\prime}(f \bar{x} \bar{e})\right)
\end{aligned}
$$

Disunifiers

A disunifier of \bar{u} and \bar{v} is an equivalence $f: \Gamma(\bar{u} \equiv \Delta \bar{v}) \simeq \perp$ Specialization by unification:

Disunifiers

A disunifier of \bar{u} and \bar{v} is an equivalence $f: \Gamma(\bar{u} \equiv \Delta \bar{v}) \simeq \perp$

Specialization by unification:

$$
\begin{aligned}
& m: \Gamma \rightarrow \bar{u} \equiv \Delta \bar{v} \rightarrow T \\
& m \bar{x} \bar{e}=\operatorname{elim}_{\perp} T(f \bar{x} \bar{e})
\end{aligned}
$$

A sound unification algorithm based on telescope equivalences

1 Unifiers as equivalences

2 Unification rules

3 Higher-dimensional unification

Basic unification rules

MGU is constructed by chaining together equivalences given by unification rules

Basic unification rules

MGU is constructed by chaining together equivalences given by unification rules

$$
\begin{aligned}
& (k l: \mathbb{N})\left(\underline{e}: \operatorname{suc} k \equiv_{\mathbb{N}} \operatorname{suc} l\right) \\
& \simeq(k \underline{l}: \mathbb{e})(\underline{e}: k=I) \\
& \simeq(k:)
\end{aligned}
$$

Basic unification rules

MGU is constructed by chaining together equivalences given by unification rules

$$
\begin{aligned}
& (k l: \mathbb{N})\left(\underline{e}: \operatorname{suc} k \equiv_{\mathbb{N}} \operatorname{suc} l\right) \\
& \simeq(k \underline{l}: \mathbb{N})\left(\underline{e}: k \equiv_{\mathbb{N}} l\right) \\
& \simeq(k:)
\end{aligned}
$$

Basic unification rules

MGU is constructed by chaining together equivalences given by unification rules

$$
\begin{aligned}
& (k l: \mathbb{N})\left(\underline{e}: \operatorname{suc} k \equiv_{\mathbb{N}} \operatorname{suc} l\right) \\
& \simeq(k \underline{l}: \mathbb{N})\left(\underline{e}: k \equiv_{\mathbb{N}} l\right) \\
& \simeq(k: \mathbb{N})
\end{aligned}
$$

Basic unification rules

MGU is constructed by chaining together equivalences given by unification rules

$$
\begin{aligned}
& (k l: \mathbb{N})\left(\underline{e}: \operatorname{suc} k \equiv_{\mathbb{N}} \operatorname{suc} l\right) \\
& \simeq(k \underline{l}: \mathbb{N})\left(\underline{e}: k \equiv_{\mathbb{N}} l\right) \\
& \simeq(k: \mathbb{N})
\end{aligned}
$$

$f^{-1}:(k: \mathbb{N}) \rightarrow(k I: \mathbb{N})\left(e: \operatorname{suc} k \equiv_{\mathbb{N}} \operatorname{suc} l\right)$
$f^{-1} k=k ; k ; r e f 1$

Basic unification rules

Solution: $(x: A)\left(e: x \equiv{ }_{A} t\right) \simeq()$
Deletion: $\left(f x \equiv_{\mathbb{N}} f x\right) \simeq()$
Injectivity: $\left(\operatorname{suc} x \equiv_{\mathbb{N}} \operatorname{suc} y\right) \simeq\left(x \equiv_{\mathbb{N}} y\right)$
Conflict: $\left(\operatorname{inj}_{1} x \equiv_{A \uplus B} \operatorname{inj}_{2} y\right) \simeq \perp$
Cycle: $\left(n \equiv_{\mathbb{N}}\right.$ suc $\left.n\right) \simeq \perp$

+ auxiliary rules for weakening and reordering

Rules for η-equality of records η-expansion of a flexible variable:

$$
\begin{aligned}
& \underline{p}: \mathbb{N} \times \mathbb{N})\left(e: \text { fst }^{p} \equiv_{\mathbb{N}} \text { zero }\right) \\
& \simeq(\underline{x}: \mathbb{N})(y: \mathbb{N})\left(\underline{e}: x \equiv_{\mathbb{N}} \text { zero }\right) \\
& \simeq(y: \mathbb{N})
\end{aligned}
$$

$$
\eta \text {-expansion of an equation: }
$$

Rules for η-equality of records

 η-expansion of a flexible variable:$$
\begin{aligned}
& \underline{p}: \mathbb{N} \times \mathbb{N})\left(e: \text { fst } p \equiv_{\mathbb{N}} \text { zero }\right) \\
& \simeq(\underline{x}: \mathbb{N})(y: \mathbb{N})\left(\underline{e}: x \equiv_{\mathbb{N}} \text { zero }\right) \\
& \simeq(y: \mathbb{N})
\end{aligned}
$$

η-expansion of an equation:

$$
\begin{aligned}
& \left(e: x, y \equiv_{\mathbb{N} \times \mathbb{N}} f z\right) \\
& \simeq\left(e_{1}: x \equiv_{\mathbb{N}} \text { fst }(f z)\right) \\
& \left(e_{2}: y \equiv_{\mathbb{N}} \text { snd }(f z)\right)
\end{aligned}
$$

Rules for indexed data types

Idea: rules solve equations between indices together with equations between constructors

Rules for indexed data types

Idea: rules solve equations between indices together with equations between constructors

Example:

$$
\begin{aligned}
& \left(e_{1}: \text { suc } m \equiv_{\mathbb{N}} \operatorname{suc} n\right) \\
& \left(e_{2}: \text { cons } m x x \equiv_{\operatorname{Vec} A e_{1}} \text { cons } n y y s\right) \\
& \left.\simeq \begin{array}{l}
\left(e_{1}: m \equiv_{\mathbb{N}} n\right)\left(e_{2}: x \equiv_{A} y\right) \\
\left(e_{3}: x s \equiv_{\operatorname{Vec} A e_{1}} y s\right)
\end{array}\right)
\end{aligned}
$$

Rules for indexed data types

This can give a real boost to power:
data $\operatorname{Im}(f: A \rightarrow B): B \rightarrow$ Set where
image : $(x: A) \rightarrow \operatorname{Im} f(f x)$

$$
\begin{aligned}
& (x y: A)\left(\underline{e_{1}}: f x \equiv_{B} f y\right) \\
& \left(\underline{e_{2}}: \text { image } x \equiv_{\operatorname{Im}} f e_{1} \text { image } y\right) \\
& \simeq(x y: A)\left(e: x \equiv_{A} y\right) \\
& \simeq(x: A)
\end{aligned}
$$

From this point, there be dragons

Any questions so far?

A sound unification algorithm based on telescope equivalences

1 Unifiers as equivalences

2 Unification rules

3 Higher-dimensional unification

Indexed rules are too restrictive

Rules for indexed datatypes require indices to be fully general

This is too restrictive:

Indexed rules are too restrictive

Rules for indexed datatypes require indices to be fully general

This is too restrictive:

$$
\begin{aligned}
& \left(e_{1}: \text { cons } n x x s \equiv_{\operatorname{Vec} A(\operatorname{suc} n)} \text { cons } n y y s\right) \\
& \not \neq\left(e_{1}: x \equiv_{A} y\right)\left(e_{2}: x s \equiv_{\operatorname{Vec} A n} y s\right)
\end{aligned}
$$

Generalized rules for indexed data

The following rules can be generalized to arbitrary indices:

■ Conflict

- Cycle

■ Injectivity: only if index types satisfy K!

Reverse unification rules

Idea: we can generalize the indices
by applying unification rules in reverse

Reverse unification rules: example

$(\underline{n}: \mathbb{N})(x y: A)(x s$ ys : Vec $A n)$
(e:cons $n x x s \equiv_{\operatorname{Vec} A(\operatorname{suc} n)}$ cons $\left.n y y s\right)$

Reverse unification rules: example

$(\underline{n}: \mathbb{N})(x y: A)(x s$ ys $: \operatorname{Vec} A n)$
(e : cons $n x x s \equiv_{\text {Vec } A(\text { suc } n)}$ cons $\left.n y y s\right)$
$(m n: \mathbb{N})(x y: A)(x s: \operatorname{Vec} A m)(y s: \operatorname{Vec} A n)$
$\simeq\left(\underline{e_{1}}: m \equiv_{\mathbb{N}} n\right)$
(e_{2} : cons $m x x s \equiv_{\operatorname{Vec} A\left(\operatorname{suc} e_{1}\right)}$ cons $\left.n y y s\right)$

Reverse unification rules: example

$(\underline{n}: \mathbb{N})(x y: A)(x s$ ys $: \operatorname{Vec} A n)$
(e : cons $n x x s \equiv_{\text {Vec } A(\operatorname{suc} n)}$ cons $\left.n y y s\right)$
$(m n: \mathbb{N})(x y: A)(x s: \operatorname{Vec} A m)(y s: \operatorname{Vec} A n)$
$\simeq\left(\underline{e_{1}}: m \equiv_{\mathbb{N}} n\right)$
(e_{2} : cons $\left.m x x s \equiv_{\operatorname{Vec} A\left(\text { suc } e_{1}\right)} \operatorname{cons} n y y s\right)$
$(m n: \mathbb{N})(x y: A)(x s: \operatorname{Vec} A m)(y s: \operatorname{Vec} A n)$
$\simeq\left(e_{1}:\right.$ suc $m \equiv_{\mathbb{N}}$ suc $\left.n\right)$
($\underline{e_{2}}$: cons $m x x s \equiv_{\text {Vec } A e_{1}}$ cons $n y y s$)

Reverse unification rules: example

$(\underline{n}: \mathbb{N})(x y: A)(x s$ ys $: \operatorname{Vec} A n)$
(e : cons $n x x s \equiv_{\text {Vec } A(\text { suc } n)}$ cons $\left.n y y s\right)$
$(m n: \mathbb{N})(x y: A)(x s: \operatorname{Vec} A m)(y s: \operatorname{Vec} A n)$
$\simeq\left(\underline{e_{1}}: m \equiv_{\mathbb{N}} n\right)$
($\overline{e_{2}}$: cons $m x x s \equiv_{\operatorname{Vec} A\left(\operatorname{suc} e_{1}\right)}$ cons $\left.n y y s\right)$
$(m n: \mathbb{N})(x y: A)(x s: \operatorname{Vec} A m)(y s: V e c A n)$
$\simeq\left(e_{1}:\right.$ suc $m \equiv_{\mathbb{N}}$ suc $\left.n\right)$
($\underline{e_{2}}$: cons $m x x s \equiv_{\operatorname{Vec} A e_{1}}$ cons $\left.n y y s\right)$
$\simeq \begin{aligned} & (\underline{m} n: \mathbb{N})(x y: A)(x s: \operatorname{Vec} A m)(\underline{y s}: \operatorname{Vec} A n) \\ & \left(\underline{e_{1}}: m \equiv_{\mathbb{N}} n\right)\left(\underline{e_{2}}: x \equiv_{A} y\right)\left(\underline{e_{3}}: x s \equiv_{\operatorname{Vec} A e_{1}} y s\right)\end{aligned}$

Reverse unification rules: example

$(\underline{n}: \mathbb{N})(x y: A)(x s$ ss $: \operatorname{Vec} A n)$
(e : cons $n x x s \equiv_{\text {eec } A(\text { sue } n)}$ cons $\left.n y y s\right)$
$(m n: \mathbb{N})(x y: A)(x s: \operatorname{Vec} A m)(y s: \operatorname{Vec} A n)$
$\simeq\left(\underline{e_{1}}: m \equiv_{\mathbb{N}} n\right)$
($\overline{e_{2}}$: cons $m x x s \equiv_{\operatorname{Vec} A\left(\operatorname{suc} e_{1}\right)}$ cons $\left.n y y s\right)$
$(m n: \mathbb{N})(x y: A)(x s: \operatorname{Vec} A m)(y s: V e c A n)$
$\simeq\left(e_{1}:\right.$ such $m \equiv_{\mathbb{N}}$ such $\left.n\right)$
($\underline{e_{2}}$: cons $m x x s \equiv_{\operatorname{Vec} A e_{1}}$ cons $\left.n y y s\right)$
$\sim(\underline{m} n: \mathbb{N})(x \underline{y}: A)(x s: \operatorname{Vec} A m)(\underline{y s}: \operatorname{Vec} A n)$
$\simeq\left(\underline{e_{1}}: m \equiv_{\mathbb{N}} n\right)\left(\underline{e_{2}}: x \equiv_{A} y\right)\left(\underline{e_{3}}: x s \equiv_{\operatorname{Vec} A e_{1}} y s\right)$
$\simeq(n: \mathbb{N})(x: A)(x s: \operatorname{Vec} A n)$

Reverse unification rules: problems

- Applicability is limited: indices need to be linear patterns
- Hard to implement

■ Not clear how to apply injectivity for indexed data in reverse

Going beyond the first level

Realization: same problem as for case splitting, only for equations instead of variables

Going beyond the first level

Realization: same problem as for case splitting, only for equations instead of variables

We can solve it in the same way as well: by specialization by unification

Going beyond the first level

Realization: same problem as for case splitting, only for equations instead of variables

We can solve it in the same way as well: by specialization by unification

Higher-dimensional unification: example

(e:cons $n x x s \equiv_{\operatorname{Vec} A(\underline{\operatorname{suc} n)}}$ cons $\left.n y y s\right)$
$\left(\underline{e_{1}}: \operatorname{suc} n \equiv_{\mathbb{N}}\right.$ suc $\left.n\right)$
$\simeq\left(\underline{e_{2}}:\right.$ cons $n x x s \equiv_{\operatorname{Vec} A e_{1}}$ cons $\left.n y y s\right)$
$\left(\bar{f}: e_{1} \equiv_{\text {suc } n \equiv_{\text {Nsuc } n}}\right.$ refl $)$

Higher-dimensional unification: example

(e: cons $n x x s \equiv_{\operatorname{Vec} A(\underline{\operatorname{suc} n)}}$ cons $\left.n y y s\right)$
$\left(\underline{e_{1}}: \operatorname{suc} n \equiv_{\mathbb{N}}\right.$ suc $\left.n\right)$
$\simeq\left(\underline{e_{2}}:\right.$ cons $n x x s \equiv_{\mathrm{Vec} A e_{1}}$ cons $\left.n y y s\right)$
$\left(\bar{f}: e_{1} \equiv_{\text {suc } n \equiv_{\text {Nsuc } n}}\right.$ refl $)$
$\left(e_{1}: n \equiv_{\mathbb{N}} n\right)\left(e_{2}: x \equiv_{A} y\right)\left(e_{3}: x s \equiv_{\text {Vec } A e_{1}} y s\right)$
(\underline{f} : cong suc $e_{1} \equiv_{\left.\text {suc } n \equiv_{\text {Nsuc }} n \text { refl }\right) ~}^{\text {ren }}$

Higher-dimensional unification: example

(e: cons $n x x s \equiv_{\operatorname{Vec} A(\underline{\operatorname{suc} n)}}$ cons $\left.n y y s\right)$
$\left(\underline{e_{1}}: \operatorname{suc} n \equiv_{\mathbb{N}}\right.$ suc $\left.n\right)$
$\simeq\left(\underline{\overline{e_{2}}}:\right.$ cons $n x x s \equiv_{\mathrm{Vec} A e_{1}}$ cons $\left.n y y s\right)$
$\left(\bar{f}: e_{1} \equiv_{\text {suc } n \equiv_{\text {Nsuc } n}}\right.$ refl $)$
$\simeq\left(e_{1}: n \equiv_{\mathbb{N}} n\right)\left(e_{2}: x \equiv_{A} y\right)\left(e_{3}: x s \equiv_{\text {Vec } A e_{1}} y s\right)$
$\left(\underline{f}\right.$: cong suc $e_{1} \equiv_{\left.\text {suc } n \equiv_{\mathbb{N}} \text { suc } n \text { refl }\right) ~}^{\text {ren }}$)
$\simeq\left(e_{1}: n \equiv_{\mathbb{N}} n\right)\left(e_{2}: x \equiv_{A} y\right)\left(e_{3}: x s \equiv_{\operatorname{Vec} A e_{1}} y s\right)$
$\left(\underline{f}: e_{1} \equiv_{n \equiv_{\mathbb{N}} n}\right.$ refl $)$

Higher-dimensional unification: example

(e: cons $n x x s \equiv_{\operatorname{Vec} A(\underline{\operatorname{suc} n)}}$ cons $\left.n y y s\right)$
$\left(\underline{e_{1}}: \operatorname{suc} n \equiv_{\mathbb{N}} \operatorname{suc} n\right)$
$\simeq\left(\underline{\overline{e_{2}}}:\right.$ cons $n x x s \equiv_{\mathrm{Vec} A e_{1}}$ cons $\left.n y y s\right)$
$\left(\bar{f}: e_{1} \equiv_{\text {suc } n \equiv_{\text {Nsuc } n}}\right.$ refl)
$\simeq\left(e_{1}: n \equiv_{\mathbb{N}} n\right)\left(e_{2}: x \equiv_{A} y\right)\left(e_{3}: x s \equiv_{\text {Vec } A e_{1}} y s\right)$
$\left(\underline{f}\right.$: cong suc $e_{1} \equiv_{\left.\text {suc } n \equiv_{\mathbb{N}} \text { suc } n \text { refl }\right) ~}^{\text {ren }}$)
$\simeq\left(e_{1}: n \equiv_{\mathbb{N}} n\right)\left(e_{2}: x \equiv_{A} y\right)\left(e_{3}: x s \equiv_{\operatorname{Vec} A e_{1}} y s\right)$
$\simeq\left(\underline{f}: e_{1} \equiv_{n \equiv_{\mathbb{N}} n}\right.$ refl $)$
$\simeq\left(e_{2}: x \equiv_{A} y\right)\left(e_{3}: x s \equiv_{\operatorname{Vec} A n} y s\right)$

Representing higher-order problems using first-order syntax

An n-dimensional unification problem consists of

- a telescope 「 of flexible variables
- equation telescopes $\Delta_{1}, \ldots, \Delta_{n}$
such that $\vdash \Gamma \Delta_{1} \ldots \Delta_{n}$
\square left- and right-hand sides $\bar{u}_{1}, \bar{v}_{1}, \ldots \bar{u}_{n}, \bar{v}_{n}$ such that $\Gamma \Delta_{1} \ldots \Delta_{i-1} \vdash \bar{u}_{i}, \bar{v}_{1}: \Delta_{i}$

Discussion

Higher-dimensional unification seems easier to implement than reverse rules

But maybe it goes too far? Alternative: use reflection to implement a case split+ins tactic hased

Discussion

Higher-dimensional unification seems easier to implement than reverse rules

But maybe it goes too far?
Alternative: use reflection to implement
a case splitting tactic based on unification

