# A sound unification algorithm based on telescope equivalences

Jesper Cockx

DistriNet - KU Leuven

20 April 2016

# Pattern matching is awesome

 $f(\cos .0 x xs) = \dots$ 

#### Pattern matching is awesome

Agda uses unification to:

- check which constructors are possible
- specialize the result type

 $\begin{array}{l} \textbf{data Vec} \left(A: \texttt{Set}\right): \mathbb{N} \rightarrow \texttt{Set where} \\ \textbf{[]}: \texttt{Vec} \ A \ 0 \\ \texttt{cons}: \left(n: \mathbb{N}\right) \rightarrow A \rightarrow \texttt{Vec} \ A \ n \\ \rightarrow \texttt{Vec} \ A \ (1+n) \end{array}$ 

 $f: extsf{Vec} \ A \ 1 o T$   $f \ ( extsf{cons} \ .0 \ x \ xs) = \dots$ 

#### Pattern matching is awesome

Agda uses unification to:

- check which constructors are possible
- specialize the result type
- data Vec  $(A : Set) : \mathbb{N} \to Set$  where []: Vec  $A \ 0$ cons :  $(n : \mathbb{N}) \to A \to \text{Vec } A \ n$  $\to \text{Vec } A \ (1 + n)$
- $f: \operatorname{Vec} A 1 \to T$  $f(\operatorname{cons} .0 \ x \ xs) = \dots$

## Details of unification are important

Agda has pattern matching as a primitive, so results of unification determine Agda's notion of equality

Example: deleting reflexive equations implies  ${
m K}$ 

## Details of unification are important

Agda has pattern matching as a primitive, so results of unification determine Agda's notion of equality

Example: deleting reflexive equations implies  ${\rm K}$ 

# Time for a quiz

Should the following code be accepted?

{-# OPTIONS --without-K #-}
... -- imports

 $f:(\texttt{Bool}\;,\;\texttt{true})\equiv(\texttt{Bool}\;,\;\texttt{false})
ightarrow\perp f\;()$ 

# Time for a quiz

Should the following code be accepted?

{-# OPTIONS --without-K #-}
... -- imports

 $f:(\texttt{Bool}\;,\;\texttt{true})\equiv(\texttt{Bool}\;,\;\texttt{false})
ightarrow\perp f()$ 

Answer: depends on the type of the equation!

# Postponing equations causes problems

#### If we postpone an equation, following equations can be heterogeneous

Naively continuing unification is bad Equality of second projections Injectivity of type constructors

#### It's hard to distinguish good and bad situations!

# Postponing equations causes problems

If we postpone an equation, following equations can be heterogeneous

Naively continuing unification is bad

- Equality of second projections
- Injectivity of type constructors

. . .

It's hard to distinguish good and bad situations!

# Postponing equations causes problems

If we postpone an equation, following equations can be heterogeneous

Naively continuing unification is bad

- Equality of second projections
- Injectivity of type constructors

. . .

It's hard to distinguish good and bad situations!

# We need a general way to think about unification

It's not sufficient to "make things equal"

Core idea:

Unification rules are equivalences between telescopes of equations

This is the basis of the new unification algorithm in Agda 2.5.1 We need a general way to think about unification

It's not sufficient to "make things equal"

Core idea:

Unification rules are equivalences between telescopes of equations

This is the basis of the new unification algorithm in Agda 2.5.1 We need a general way to think about unification

It's not sufficient to "make things equal" Core idea:

> Unification rules are equivalences between telescopes of equations

This is the basis of the new unification algorithm in Agda 2.5.1

A sound unification algorithm based on telescope equivalences

#### 1 Unifiers as equivalences

#### 2 Unification rules

#### 3 Higher-dimensional unification

A sound unification algorithm based on telescope equivalences

#### 1 Unifiers as equivalences

#### 2 Unification rules

3 Higher-dimensional unification

# What do we want from unification?

#### It has to be possible to translate pattern matching to eliminators

The core tool we need is **specialization by unification** 

Build a function  $m : \Gamma \to \overline{u} \equiv_{\Delta} \overline{v} \to T$ from a function  $m' : \Gamma' \to T\sigma$ where  $\sigma : \Gamma' \to \Gamma$  is computed by unification

## What do we want from unification?

It has to be possible to translate pattern matching to eliminators

# The core tool we need is **specialization by unification**

Build a function  $m : \Gamma \to \overline{u} \equiv_{\Delta} \overline{v} \to T$ from a function  $m' : \Gamma' \to T\sigma$ where  $\sigma : \Gamma' \to \Gamma$  is computed by unification

# Intermezzo: telescopic equality

#### Type of an equation may depend on solution of previous equations

Heterogeneous equality doesn't keep enough information:

- Safe to consider equation homogeneous?
- Does equation depend on other equation?
- How do equations depend on each other?

## Intermezzo: telescopic equality

Type of an equation may depend on solution of previous equations

Heterogeneous equality doesn't keep enough information:

- Safe to consider equation homogeneous?
- Does equation depend on other equation?
- How do equations depend on each other?

Intermezzo: telescopic equality Solution: use "path over" construction to keep track of dependencies

For example:

$$(e_1: m \equiv_{\mathbb{N}} n)(e_2: u \equiv^{e_1}_{\operatorname{Vec} A} v)$$

Cubical (abuse of) notation:

 $(e_1: m \equiv_{\mathbb{N}} n)(e_2: u \equiv_{\operatorname{Vec} A e_1} v)$ 

Intermezzo: telescopic equality Solution: use "path over" construction to keep track of dependencies

For example:

$$(e_1: m \equiv_{\mathbb{N}} n)(e_2: u \equiv^{e_1}_{\operatorname{Vec} A} v)$$

Cubical (abuse of) notation:

$$(e_1:m\equiv_{\mathbb{N}}n)(e_2:u\equiv_{\operatorname{Vec}Ae_1}v)$$

#### Specialization by unification The goal is to construct $m: \Gamma \rightarrow \overline{u} \equiv_{\Delta} \overline{v} \rightarrow T$

Input:

Telescope Γ of *flexible variables* Telescope ū ≡<sub>Δ</sub> v of equations

- New telescope Г
- Substitution  $\sigma: \Gamma' \to \Gamma$
- Evidence of unification  $\bar{e}: \Gamma' \to \bar{u}\sigma \equiv_{\Delta\sigma} \bar{v}\sigma$

# Specialization by unification

The goal is to construct  $m: \Gamma \to \overline{u} \equiv_{\Delta} \overline{v} \to T$ 

Input:

Telescope Γ of *flexible variables*Telescope ū =<sub>Δ</sub> v of equations

- New telescope I
- Substitution  $\sigma: \Gamma' \to \Gamma$
- Evidence of unification  $\bar{e}: \Gamma' \to \bar{u}\sigma \equiv_{\Delta\sigma} \bar{v}\sigma$

# Specialization by unification

The goal is to construct  $m: \Gamma \to \overline{u} \equiv_{\Delta} \overline{v} \to T$ 

Input:

Telescope Γ of *flexible variables* Telescope ū = Λ v of equations

- New telescope Γ'
- Substitution  $\sigma: \Gamma' \to \Gamma$
- Evidence of unification

$$\bar{e}: \Gamma' \to \bar{u}\sigma \equiv_{\Delta\sigma} \bar{v}\sigma$$

# Specialization by unification

The goal is to construct  $m: \Gamma \to \overline{u} \equiv_{\Delta} \overline{v} \to T$ 

Input:

Telescope Γ of *flexible variables* Telescope ū = Δ v of equations

- New telescope Γ'
- Telescope mapping  $f : \Gamma' \to \Gamma(\bar{u} \equiv_{\Delta} \bar{v})$

#### Two more requirements

#### Let $f: \Gamma' \to \Gamma(\bar{u} \equiv_{\Delta} \bar{v})$ be a unifier

*f* should be most general
 ⇒ *f* needs a *right inverse* g<sub>1</sub>

■ Γ' should be minimal
 ⇒ f needs a left inverse g<sub>2</sub>

#### Two more requirements

Let 
$$f : \Gamma' \to \Gamma(\bar{u} \equiv_{\Delta} \bar{v})$$
 be a unifier

*f* should be most general
 ⇒ *f* needs a *right inverse* g<sub>1</sub>

 Γ' should be minimal

 ← f needs a left inverse g<sub>2</sub>

#### Two more requirements

Let 
$$f : \Gamma' \to \Gamma(\bar{u} \equiv_{\Delta} \bar{v})$$
 be a unifier

*f* should be most general
 ⇒ *f* needs a *right inverse* g<sub>1</sub>

Γ' should be minimal
 ⇒ f needs a left inverse g<sub>2</sub>

# Most general unifiers as equivalences

A most general unifier of  $\bar{u}$  and  $\bar{v}$  is an equivalence  $f : \Gamma(\bar{u} \equiv_{\Delta} \bar{v}) \simeq \Gamma'$  for some  $\Gamma'$ 

Specialization by unification:

 $m: \Gamma \to \bar{u} \equiv_{\Delta} \bar{v} \to T$  $m \, \bar{x} \, \bar{e} = \overline{\text{subst}} \, (\lambda \bar{x} \, \bar{e}. \, T) \, (\text{isLinv} \, f \, \bar{x} \, \bar{e})$  $(m' \, (f \, \bar{x} \, \bar{e}))$ 

# Most general unifiers as equivalences

A most general unifier of  $\bar{u}$  and  $\bar{v}$  is an equivalence  $f : \Gamma(\bar{u} \equiv_{\Delta} \bar{v}) \simeq \Gamma'$  for some  $\Gamma'$ 

Specialization by unification:

$$\begin{array}{l} m: \Gamma \to \bar{u} \equiv_{\Delta} \bar{v} \to T \\ m \, \bar{x} \, \bar{e} = \overline{\text{subst}} \, (\lambda \bar{x} \, \bar{e}. \, T) \, (\text{isLinv} \, f \, \bar{x} \, \bar{e}) \\ & (m' \, (f \, \bar{x} \, \bar{e})) \end{array} \end{array}$$

#### Disunifiers

A disunifier of  $\bar{u}$  and  $\bar{v}$  is an equivalence  $f: \Gamma(\bar{u} \equiv_{\Delta} \bar{v}) \simeq \bot$ 

Specialization by unification:

 $m: \Gamma \to \bar{u} \equiv_{\Delta} \bar{v} \to T$  $m \,\bar{x} \,\bar{e} = \operatorname{elim}_{\perp} T \,(f \,\bar{x} \,\bar{e})$ 

#### Disunifiers

A disunifier of  $\bar{u}$  and  $\bar{v}$  is an equivalence  $f: \Gamma(\bar{u} \equiv_{\Delta} \bar{v}) \simeq \bot$ 

#### Specialization by unification:

$$m: \Gamma \to \bar{u} \equiv_{\Delta} \bar{v} \to T$$
$$m \bar{x} \bar{e} = \text{elim}_{\perp} T (f \bar{x} \bar{e})$$

A sound unification algorithm based on telescope equivalences

#### 1 Unifiers as equivalences

#### 2 Unification rules

3 Higher-dimensional unification

#### Basic unification rules

MGU is constructed by chaining together equivalences given by unification rules

 $egin{aligned} &(k \ l : \mathbb{N})(\underline{e}: \mathtt{suc} \ k \equiv_{\mathbb{N}} \mathtt{suc} \ l) \ &\simeq &(k \ \underline{l}: \mathbb{N})(\underline{e}: k \equiv_{\mathbb{N}} l) \ &\simeq &(k : \mathbb{N}) \end{aligned}$ 

 $f^{-1}:(k:\mathbb{N}) o (k\ {\it l}:\mathbb{N})(e:{
m suc}\ k\equiv_{\mathbb{N}}{
m suc}\ {\it l})$  $f^{-1}\ k=k;k;{
m refl}$ 

#### Basic unification rules

MGU is constructed by chaining together equivalences given by unification rules

$$egin{aligned} &(k \ l : \mathbb{N})(\underline{e} : \mathbf{suc} \ k \equiv_{\mathbb{N}} \mathbf{suc} \ l) \ &\simeq &(k \ \underline{l} : \mathbb{N})(\underline{e} : k \equiv_{\mathbb{N}} l) \ &\simeq &(k : \mathbb{N}) \end{aligned}$$

 $f^{-1}:(k:\mathbb{N}) o (k\ /:\mathbb{N})(e: extsf{suc}\ k\equiv_{\mathbb{N}} extsf{suc}\ /)$   $f^{-1}\ k=k;k; extsf{refl}$ 

MGU is constructed by chaining together equivalences given by unification rules

$$(k \ l : \mathbb{N})(\underline{e} : \mathbf{suc} \ k \equiv_{\mathbb{N}} \mathbf{suc} \ l)$$
  
 $\simeq (k \ \underline{l} : \mathbb{N})(\underline{e} : k \equiv_{\mathbb{N}} l)$   
 $\simeq (k : \mathbb{N})$ 

 $f^{-1}:(k:\mathbb{N}) o (k\ {\it l}:\mathbb{N})(e:{
m suc}\ k\equiv_{\mathbb{N}}{
m suc}\ {\it l})\ f^{-1}\ k=k;k;{
m refl}$ 

MGU is constructed by chaining together equivalences given by unification rules

$$egin{aligned} &(k \ l : \mathbb{N})(\underline{e} : \mathbf{suc} \ k \equiv_{\mathbb{N}} \mathbf{suc} \ l) \ &\simeq (k \ \underline{l} : \mathbb{N})(\underline{e} : k \equiv_{\mathbb{N}} l) \ &\simeq (k : \mathbb{N}) \end{aligned}$$

 $f^{-1}:(k:\mathbb{N}) o (k\ {\it l}:\mathbb{N})(e:{
m suc}\ k\equiv_{\mathbb{N}}{
m suc}\ {\it l})\ f^{-1}\ k=k;k;{
m refl}$ 

MGU is constructed by chaining together equivalences given by unification rules

$$(k \mid N)(\underline{e} : \operatorname{suc} k \equiv_{\mathbb{N}} \operatorname{suc} l)$$
  
 $\simeq (k \mid N)(\underline{e} : k \equiv_{\mathbb{N}} l)$   
 $\simeq (k : \mathbb{N})$ 

 $f^{-1}:(k:\mathbb{N})
ightarrow (k\ l:\mathbb{N})(e: ext{suc }k\equiv_{\mathbb{N}} ext{suc }l)$  $f^{-1}\ k=k;k; ext{refl}$ 

Solution: 
$$(x : A)(e : x \equiv_A t) \simeq ()$$
  
Deletion:  $(f \ x \equiv_{\mathbb{N}} f \ x) \simeq ()$   
njectivity:  $(\operatorname{suc} x \equiv_{\mathbb{N}} \operatorname{suc} y) \simeq (x \equiv_{\mathbb{N}} y)$   
Conflict:  $(\operatorname{inj}_1 x \equiv_{A \uplus B} \operatorname{inj}_2 y) \simeq \bot$   
Cycle:  $(n \equiv_{\mathbb{N}} \operatorname{suc} n) \simeq \bot$ 

+ auxiliary rules for weakening and reordering

# Rules for $\eta$ -equality of records $\eta$ -expansion of a flexible variable:

$$(\underline{p}:\mathbb{N} imes\mathbb{N})(e:\texttt{fst}\;p\equiv_{\mathbb{N}}\texttt{zero})\\simeq (\underline{x}:\mathbb{N})(y:\mathbb{N})(\underline{e}:x\equiv_{\mathbb{N}}\texttt{zero})\\simeq (y:\mathbb{N})$$

 $\eta$ -expansion of an equation:

$$egin{aligned} &(e:x,y\equiv_{\mathbb{N} imes\mathbb{N}}f\ z)\ &\simeq egin{pmatrix} &(e_1:x\equiv_{\mathbb{N}} extsf{fst}\ (f\ z))\ &(e_2:y\equiv_{\mathbb{N}} extsf{snd}\ (f\ z)) \end{aligned}$$

# Rules for $\eta$ -equality of records $\eta$ -expansion of a flexible variable:

$$(\underline{p}:\mathbb{N} imes\mathbb{N})(e:\texttt{fst}\;p\equiv_{\mathbb{N}}\texttt{zero})\\simeq (\underline{x}:\mathbb{N})(y:\mathbb{N})(\underline{e}:x\equiv_{\mathbb{N}}\texttt{zero})\\simeq (y:\mathbb{N})$$

 $\eta$ -expansion of an equation:

$$egin{aligned} &(e:x,y\equiv_{\mathbb{N} imes\mathbb{N}}f\ z)\ &\simeq egin{pmatrix} &(e_1:x\equiv_{\mathbb{N}} extsf{fst}\ (f\ z))\ &(e_2:y\equiv_{\mathbb{N}} extsf{snd}\ (f\ z)) \end{aligned}$$

#### Rules for indexed data types

Idea: rules solve equations between indices together with equations between constructors

Example:

 $(e_1 : \operatorname{suc} m \equiv_{\mathbb{N}} \operatorname{suc} n)$  $(e_2 : \operatorname{cons} m \times xs \equiv_{\operatorname{Vec} A e_1} \operatorname{cons} n y ys)$  $\simeq {e_1 : m \equiv_{\mathbb{N}} n)(e_2 : x \equiv_A y) \over (e_3 : xs \equiv_{\operatorname{Vec} A e_1} ys)}$ 

#### Rules for indexed data types

Idea: rules solve equations between indices together with equations between constructors

Example:

$$(e_1 : \operatorname{suc} m \equiv_{\mathbb{N}} \operatorname{suc} n)$$
$$(e_2 : \operatorname{cons} m \times xs \equiv_{\operatorname{Vec} A e_1} \operatorname{cons} n \times ys)$$
$$\simeq (e_1 : m \equiv_{\mathbb{N}} n)(e_2 : x \equiv_A y)$$
$$(e_3 : xs \equiv_{\operatorname{Vec} A e_1} ys)$$

#### Rules for indexed data types

This can give a real boost to power:

data 
$$\operatorname{Im} (f : A \to B) : B \to \operatorname{Set}$$
 where  
image :  $(x : A) \to \operatorname{Im} f (f x)$ 

$$(x y : A)(\underline{e_1} : f x \equiv_B f y)$$
  
$$(\underline{e_2} : \operatorname{image} x \equiv_{\operatorname{Im} f e_1} \operatorname{image} y)$$
  
$$\simeq (x y : A)(e : x \equiv_A y)$$
  
$$\simeq (x : A)$$

#### From this point, there be dragons

#### Any questions so far?

A sound unification algorithm based on telescope equivalences

#### 1 Unifiers as equivalences

#### 2 Unification rules

#### 3 Higher-dimensional unification

#### Indexed rules are too restrictive

## Rules for indexed datatypes require indices to be fully general

This is too restrictive:

 $(e_1 : \operatorname{cons} n \times xs \equiv_{\operatorname{Vec} A(\operatorname{suc} n)} \operatorname{cons} n y ys) 
onumber \ 
eq (e_1 : x \equiv_A y)(e_2 : xs \equiv_{\operatorname{Vec} A n} ys)$ 

#### Indexed rules are too restrictive

Rules for indexed datatypes require indices to be fully general

This is too restrictive:

$$(e_1 : \operatorname{cons} n \ x \ xs \equiv_{\operatorname{Vec} A (\operatorname{suc} n)} \operatorname{cons} n \ y \ ys)$$
  
$$\not\simeq (e_1 : x \equiv_A y)(e_2 : xs \equiv_{\operatorname{Vec} A n} ys)$$

#### Generalized rules for indexed data

The following rules can be generalized to arbitrary indices:

- Conflict
- Cycle
- Injectivity: only if index types satisfy K!

#### Reverse unification rules

Idea: we can generalize the indices by applying unification rules in reverse

- $(\underline{n}:\mathbb{N})(x \ y:A)(xs \ ys: \operatorname{Vec} A n)$
- $(e: \operatorname{cons} n \times xs \equiv_{\operatorname{Vec} A (\operatorname{suc} n)} \operatorname{cons} n \times ys)$
- $(m n : \mathbb{N})(x y : A)(xs : \operatorname{Vec} A m)(ys : \operatorname{Vec} A n)$  $\simeq (\underline{e_1} : m \equiv_{\mathbb{N}} n)$  $(\underline{e_2} : \operatorname{cons} m x xs \equiv_{\operatorname{Vec} A}(\operatorname{cons} n x ys))$ 
  - $(m \ n : \mathbb{N})(x \ y : A)(xs : \operatorname{Vec} A \ m)(ys : \operatorname{Vec} A \ n)$
- $\simeq (e_1 : \text{suc } m \equiv_{\mathbb{N}} \text{suc } n)$  $(\underline{e_2} : \text{cons } m \times xs \equiv_{\text{Vec } A e_1} \text{cons } n \text{ y } ys)$
- $\simeq (\underline{m} \ n : \mathbb{N})(x \ \underline{y} : A)(xs : \operatorname{Vec} A \ m)(\underline{ys} : \operatorname{Vec} A \ n)$  $(\underline{e_1} : m \equiv_{\mathbb{N}} n)(\underline{e_2} : x \equiv_A y)(\underline{e_3} : xs \equiv_{\operatorname{Vec} A \ e_1} ys)$  $\simeq (n : \mathbb{N})(x : A)(xs : \operatorname{Vec} A \ n)$

 $(\underline{n}:\mathbb{N})(x \ y:A)(xs \ ys:\mathbb{Vec}\ A \ n)$  $(e: \operatorname{cons} n \times xs \equiv_{\operatorname{Vec} A (\operatorname{suc} n)} \operatorname{cons} n \times ys)$  $(m n : \mathbb{N})(x y : A)(xs : \operatorname{Vec} A m)(ys : \operatorname{Vec} A n)$  $\simeq$  ( $e_1 : m \equiv_{\mathbb{N}} n$ )  $(\overline{e_2}: \operatorname{cons} m \times xs \equiv_{\operatorname{Vec} A(\operatorname{suc} e_1)} \operatorname{cons} n \times ys)$ 

$$(\underline{n}:\mathbb{N})(x \ y:A)(xs \ ys: \operatorname{Vec} A \ n)$$

$$(e: \operatorname{cons} n \ x \ xs \equiv_{\operatorname{Vec} A (\operatorname{suc} n)} \operatorname{cons} n \ y \ ys)$$

$$(m \ n:\mathbb{N})(x \ y:A)(xs: \operatorname{Vec} A \ m)(ys: \operatorname{Vec} A \ n)$$

$$\simeq (\underline{e_1}: m \equiv_{\mathbb{N}} n)$$

$$(\underline{e_2}: \operatorname{cons} m \ x \ xs \equiv_{\operatorname{Vec} A (\operatorname{suc} e_1)} \operatorname{cons} n \ y \ ys)$$

$$(m \ n:\mathbb{N})(x \ y:A)(xs: \operatorname{Vec} A \ m)(ys: \operatorname{Vec} A \ n)$$

$$\simeq (e_1: \operatorname{suc} m \equiv_{\mathbb{N}} \operatorname{suc} n)$$

$$(\underline{e_2}: \operatorname{cons} m \ x \ xs \equiv_{\operatorname{Vec} A e_1} \operatorname{cons} n \ y \ ys)$$

$$\simeq (m \ n:\mathbb{N})(x \ y:A)(xs: \operatorname{Vec} A \ m)(ys: \operatorname{Vec} A \ n)$$

$$(\underline{e_2}: \operatorname{cons} m \ x \ xs \equiv_{\operatorname{Vec} A e_1} \operatorname{cons} n \ y \ ys)$$

$$\simeq (m \ n:\mathbb{N})(x \ y:A)(xs: \operatorname{Vec} A \ m)(ys: \operatorname{Vec} A \ n)$$

$$(\underline{e_1}: m \equiv_{\mathbb{N}} n)(\underline{e_2}: x \equiv_{A} \ y)(\underline{e_3}: xs \equiv_{\operatorname{Vec} A e_1} \ ys)$$

$$\simeq (n:\mathbb{N})(x:A)(xs: \operatorname{Vec} A \ n)$$

$$(\underline{n}:\mathbb{N})(x \ y:A)(xs \ ys: \operatorname{Vec} A \ n)$$

$$(e: \operatorname{cons} n \ x \ xs \equiv_{\operatorname{Vec} A (\operatorname{suc} n)} \operatorname{cons} n \ y \ ys)$$

$$(m \ n:\mathbb{N})(x \ y:A)(xs: \operatorname{Vec} A \ m)(ys: \operatorname{Vec} A \ n)$$

$$\simeq (\underline{e_1}: m \equiv_{\mathbb{N}} n)$$

$$(\underline{e_2}: \operatorname{cons} m \ x \ xs \equiv_{\operatorname{Vec} A (\operatorname{suc} e_1)} \operatorname{cons} n \ y \ ys)$$

$$(m \ n:\mathbb{N})(x \ y:A)(xs: \operatorname{Vec} A \ m)(ys: \operatorname{Vec} A \ n)$$

$$\simeq (e_1: \operatorname{suc} m \equiv_{\mathbb{N}} \operatorname{suc} n)$$

$$(\underline{e_2}: \operatorname{cons} m \ x \ xs \equiv_{\operatorname{Vec} A \ e_1} \operatorname{cons} n \ y \ ys)$$

$$\simeq (\underline{m} \ n:\mathbb{N})(x \ y:A)(xs: \operatorname{Vec} A \ m)(\underline{ys}: \operatorname{Vec} A \ n)$$

$$\simeq (\underline{e_1}: m \equiv_{\mathbb{N}} n)(\underline{e_2}: x \equiv_A \ y)(\underline{e_3}: xs \equiv_{\operatorname{Vec} A \ e_1} \ ys)$$

$$\simeq (n:\mathbb{N})(x:A)(xs: \operatorname{Vec} A \ n)$$

$$(\underline{n}:\mathbb{N})(x \ y:A)(xs \ ys: \operatorname{Vec} A \ n)$$

$$(e: \operatorname{cons} n \ x \ xs \equiv_{\operatorname{Vec} A (\operatorname{suc} n)} \operatorname{cons} n \ y \ ys)$$

$$(m \ n:\mathbb{N})(x \ y:A)(xs: \operatorname{Vec} A \ m)(ys: \operatorname{Vec} A \ n)$$

$$\simeq (\underline{e_1}: m \equiv_{\mathbb{N}} n)$$

$$(\underline{e_2}: \operatorname{cons} m \ x \ xs \equiv_{\operatorname{Vec} A (\operatorname{suc} e_1)} \operatorname{cons} n \ y \ ys)$$

$$(m \ n:\mathbb{N})(x \ y:A)(xs: \operatorname{Vec} A \ m)(ys: \operatorname{Vec} A \ n)$$

$$\simeq (\underline{e_1}: \operatorname{suc} m \equiv_{\mathbb{N}} \operatorname{suc} n)$$

$$(\underline{e_2}: \operatorname{cons} m \ x \ xs \equiv_{\operatorname{Vec} A \ e_1} \operatorname{cons} n \ y \ ys)$$

$$\simeq (\underline{m} \ n:\mathbb{N})(x \ y:A)(xs: \operatorname{Vec} A \ m)(\underline{ys}: \operatorname{Vec} A \ n)$$

$$\simeq (\underline{e_1}: \operatorname{suc} m \equiv_{\mathbb{N}} \operatorname{suc} n)$$

$$(\underline{e_1}: m \equiv_{\mathbb{N}} n)(\underline{e_2}: x \equiv_A \ y)(\underline{e_3}: xs \equiv_{\operatorname{Vec} A \ e_1} ys)$$

$$\simeq (n:\mathbb{N})(x:A)(xs: \operatorname{Vec} A \ n)$$

#### Reverse unification rules: problems

- Applicability is limited: indices need to be linear patterns
- Hard to implement
- Not clear how to apply injectivity for indexed data in reverse

### Going beyond the first level

## Realization: same problem as for case splitting, only for equations instead of variables

We can solve it in the same way as well: by specialization by unification

### Going beyond the first level

Realization: same problem as for case splitting, only for equations instead of variables

We can solve it in the same way as well: by specialization by unification

### Going beyond the first level

Realization: same problem as for case splitting, only for equations instead of variables

We can solve it in the same way as well: by specialization by unification

$$(e: \operatorname{cons} n \times xs \equiv_{\operatorname{Vec} A (\operatorname{suc} n)} \operatorname{cons} n y ys)$$

$$(\underline{e_1}: \operatorname{suc} n \equiv_{\mathbb{N}} \operatorname{suc} n)$$

$$\simeq (\underline{e_2}: \operatorname{cons} n \times xs \equiv_{\operatorname{Vec} A e_1} \operatorname{cons} n y ys)$$

$$(f: e_1 \equiv_{\operatorname{suc} n \equiv_{\mathbb{N}} \operatorname{suc} n \operatorname{refl})$$

$$\simeq (e_1: n \equiv_{\mathbb{N}} n)(e_2: x \equiv_A y)(e_3: xs \equiv_{\operatorname{Vec} A e_1} ys)$$

$$(f: \operatorname{cong} \operatorname{suc} e_1 \equiv_{\operatorname{suc} n \equiv_{\mathbb{N}} \operatorname{suc} n \operatorname{refl})$$

$$\simeq (e_1: n \equiv_{\mathbb{N}} n)(e_2: x \equiv_A y)(e_3: xs \equiv_{\operatorname{Vec} A e_1} ys)$$

$$(f: e_1 \equiv_{n \equiv_{\mathbb{N}} n} \operatorname{refl})$$

$$\simeq (e_2: x \equiv_A y)(e_3: xs \equiv_{\operatorname{Vec} A n} ys)$$

$$(e: \operatorname{cons} n \times xs \equiv_{\operatorname{Vec} A (\operatorname{suc} n)} \operatorname{cons} n y ys)$$

$$(\underline{e_1}: \operatorname{suc} n \equiv_{\mathbb{N}} \operatorname{suc} n)$$

$$\simeq (\underline{e_2}: \operatorname{cons} n \times xs \equiv_{\operatorname{Vec} A e_1} \operatorname{cons} n y ys)$$

$$(f: e_1 \equiv_{\operatorname{suc} n \equiv_{\mathbb{N}} \operatorname{suc} n} \operatorname{refl})$$

$$\simeq (e_1: n \equiv_{\mathbb{N}} n)(e_2: x \equiv_A y)(e_3: xs \equiv_{\operatorname{Vec} A e_1} ys)$$

$$(\underline{f}: \operatorname{cong} \operatorname{suc} e_1 \equiv_{\operatorname{suc} n \equiv_{\mathbb{N}} \operatorname{suc} n} \operatorname{refl})$$

$$\simeq (e_1: n \equiv_{\mathbb{N}} n)(e_2: x \equiv_A y)(e_3: xs \equiv_{\operatorname{Vec} A e_1} ys)$$

$$(\underline{f}: e_1 \equiv_{n \equiv_{\mathbb{N}} n} \operatorname{refl})$$

$$\simeq (e_2: x \equiv_A y)(e_3: xs \equiv_{\operatorname{Vec} A e_1} ys)$$

$$(e: \operatorname{cons} n \times xs \equiv_{\operatorname{Vec} A (\operatorname{suc} n)} \operatorname{cons} n y ys)$$

$$(\underline{e_1}: \operatorname{suc} n \equiv_{\mathbb{N}} \operatorname{suc} n)$$

$$\simeq (\underline{e_2}: \operatorname{cons} n \times xs \equiv_{\operatorname{Vec} A e_1} \operatorname{cons} n y ys)$$

$$(f: e_1 \equiv_{\operatorname{suc} n \equiv_{\mathbb{N}} \operatorname{suc} n} \operatorname{refl})$$

$$\simeq (e_1: n \equiv_{\mathbb{N}} n)(e_2: x \equiv_A y)(e_3: xs \equiv_{\operatorname{Vec} A e_1} ys)$$

$$(\underline{f}: \operatorname{cong} \operatorname{suc} e_1 \equiv_{\operatorname{suc} n \equiv_{\mathbb{N}} \operatorname{suc} n} \operatorname{refl})$$

$$\simeq (e_1: n \equiv_{\mathbb{N}} n)(e_2: x \equiv_A y)(e_3: xs \equiv_{\operatorname{Vec} A e_1} ys)$$

$$(\underline{f}: e_1 \equiv_{n \equiv_{\mathbb{N}} n} \operatorname{refl})$$

$$\simeq (e_2: x \equiv_A y)(e_3: xs \equiv_{\operatorname{Vec} A n} ys)$$

$$(e: \operatorname{cons} n \times xs \equiv_{\operatorname{Vec} A} (\operatorname{suc} n) \operatorname{cons} n y ys)$$

$$\stackrel{(e_1: \operatorname{suc} n \equiv_{\mathbb{N}} \operatorname{suc} n)}{(\underline{e_2}: \operatorname{cons} n \times xs \equiv_{\operatorname{Vec} A e_1} \operatorname{cons} n y ys)} (f: e_1 \equiv_{\operatorname{suc} n \equiv_{\mathbb{N}} \operatorname{suc} n} \operatorname{refl})$$

$$\simeq (e_1: n \equiv_{\mathbb{N}} n)(e_2: x \equiv_A y)(e_3: xs \equiv_{\operatorname{Vec} A e_1} ys) (f: \operatorname{cong} \operatorname{suc} e_1 \equiv_{\operatorname{suc} n \equiv_{\mathbb{N}} \operatorname{suc} n} \operatorname{refl})$$

$$\simeq (e_1: n \equiv_{\mathbb{N}} n)(e_2: x \equiv_A y)(e_3: xs \equiv_{\operatorname{Vec} A e_1} ys) (f: e_1 \equiv_{n \equiv_{\mathbb{N}} n} \operatorname{refl})$$

$$\simeq (e_2: x \equiv_A y)(e_3: xs \equiv_{\operatorname{Vec} A n} ys)$$

Representing higher-order problems using first-order syntax

An *n*-dimensional unification problem consists of

- a telescope Γ of flexible variables
- equation telescopes  $\Delta_1, \ldots, \Delta_n$ such that  $\vdash \Gamma \Delta_1 \ldots \Delta_n$
- left- and right-hand sides  $\bar{u}_1, \bar{v}_1, \dots \bar{u}_n, \bar{v}_n$ such that  $\Gamma \Delta_1 \dots \Delta_{i-1} \vdash \bar{u}_i, \bar{v}_1 : \Delta_i$



## Higher-dimensional unification seems easier to implement than reverse rules

#### But maybe it goes too far?

Alternative: use reflection to implement a case splitting tactic based on unification



Higher-dimensional unification seems easier to implement than reverse rules

But maybe it goes too far?

Alternative: use reflection to implement a case splitting tactic based on unification