A sound unification algorithm
based on telescope equivalences

Jesper Cockx

DistriNet — KU Leuven

20 April 2016

Pattern matching is awesome

1/29

Pattern matching is awesome

Agda uses unification to:
m check which constructors are possible
m specialize the result type

1/29

Pattern matching is awesome
Agda uses unification to:
m check which constructors are possible
m specialize the result type

data Vec (A : Set) : N — Set where
[]: Vec AO
cons:(n:N)—-A—VecAn
— Vec A(1+ n)

f:VecAl—=T
f (cons .0x xs) =...

Details of unification are important

Agda has pattern matching as a primitive,
so results of unification determine
Agda’s notion of equality

2/29

Details of unification are important

Agda has pattern matching as a primitive,
so results of unification determine
Agda’s notion of equality

Example: deleting reflexive equations implies K

Time for a quiz

Should the following code be accepted?

{-# OPTIONS --without-K #-}
—-— 1imports

f :(Bool, true) = (Bool, false) — L

f()

3/29

Time for a quiz

Should the following code be accepted?

{-# OPTIONS --without-K #-}
—— 1mports

f :(Bool, true) = (Bool, false) — L

f()

Answer: depends on the type of the equation!

Postponing equations
causes problems

If we postpone an equation,
following equations can be heterogeneous

5/29

Postponing equations
causes problems

If we postpone an equation,
following equations can be heterogeneous

Naively continuing unification is bad
m Equality of second projections
m Injectivity of type constructors

Postponing equations
causes problems

If we postpone an equation,
following equations can be heterogeneous

Naively continuing unification is bad
m Equality of second projections
m Injectivity of type constructors
...,

It's hard to distinguish good and bad situations!

5/29

We need a general way
to think about unification

It's not sufficient to “make things equal”

6/29

We need a general way
to think about unification

It's not sufficient to “make things equal”
Core idea:

Unification rules are equivalences
between telescopes of equations

6/29

We need a general way

to think about unification
It's not sufficient to “make things equal”
Core idea:

Unification rules are equivalences
between telescopes of equations

This is the basis of the new
unification algorithm in Agda 2.5.1

A sound unification algorithm
based on telescope equivalences

Unifiers as equivalences
Unification rules

Higher-dimensional unification

A sound unification algorithm
based on telescope equivalences

Unifiers as equivalences

What do we want from unification?

It has to be possible to translate
pattern matching to eliminators

7/29

What do we want from unification?

It has to be possible to translate
pattern matching to eliminators

The core tool we need is
specialization by unification

Build a function m: I o =pv— T
from a function m’ : ' — To
where o : " — T is computed by unification

Intermezzo: telescopic equality

Type of an equation may depend
on solution of previous equations

8/29

Intermezzo: telescopic equality

Type of an equation may depend
on solution of previous equations

Heterogeneous equality doesn’t
keep enough information:

m Safe to consider equation homogeneous?
m Does equation depend on other equation?

m How do equations depend on each other?

Intermezzo: telescopic equality

Solution: use “path over” construction
to keep track of dependencies

For example:

(e1:m=nn)(ex:u=, ,v)

9/29

Intermezzo: telescopic equality

Solution: use “path over” construction
to keep track of dependencies

For example:

(e1:m=nn)(ex:u=, ,v)

Cubical (abuse of) notation:

(s :m=nn)(e:U=yecae V)

Specialization by unification
The goal is to construct m: I o =pv—> T

10/29

Specialization by unification
The goal is to construct m: I o =pv—> T

Input:
m Telescope [of flexible variables

m Telescope & = v of equations

10 /29

Specialization by unification
The goal is to construct m: I o =pv—> T

Input:
m Telescope [of flexible variables
m Telescope & = v of equations
Output:
m New telescope I
m Substitution o : " — T

m Evidence of unification
e: "= o =p, Vo
10/29

Specialization by unification

The goal is to construct m: I o =pv—> T

Input:
m Telescope [of flexible variables
m Telescope &1 = v of equations
Output:
m New telescope I

m Telescope mapping f : " — (7 =a V)

11/29

Two more requirements

Let f: " — (7 =a V) be a unifier

12/29

Two more requirements

Let f: " — (7 =a V) be a unifier

m f should be most general
= f needs a right inverse g

12/29

Two more requirements

Let f: " — (7 =a V) be a unifier

m f should be most general
= f needs a right inverse g

m [’ should be minimal
= f needs a left inverse g»

12/29

Most general unifiers
as equivalences

A most general unifier of 7 and v is an
equivalence f : (o =a v) >~ [’ for some I’

13/29

Most general unifiers
as equivalences

A most general unifier of 7 and v is an
equivalence f : (o =a v) >~ [’ for some I’

Specialization by unification:

m: I —wuo=pv—T
m x € = subst (Ax . T) (isLinv f X €)

(m'" (f x &)

13 /29

Disunifiers

A disunifier of & and v is an equivalence
f:T(ut=av)~ L

14 /29

Disunifiers

A disunifier of & and v is an equivalence
f:T(ut=av)~ L

Specialization by unification:

m: I wu=pAv—>T
mxé=elim, T (f X&)

14 /29

A sound unification algorithm
based on telescope equivalences

Unification rules

Basic unification rules

MGU is constructed by chaining together
equivalences given by unification rules

15 /29

Basic unification rules

MGU is constructed by chaining together
equivalences given by unification rules

(k | : N)(e : suc k =y suc /)
(kl:)e:k 1)
(k:)

15 /29

Basic unification rules

MGU is constructed by chaining together
equivalences given by unification rules

(k | : N)(e : suc k =y suc /)
~ (k!l:N)(e: k=n1)
(k:)

15 /29

Basic unification rules

MGU is constructed by chaining together
equivalences given by unification rules

(k | : N)(e : suc k =y suc /)
~ (kl:N)(e: k=N
~ (k : N)

15 /29

Basic unification rules

MGU is constructed by chaining together
equivalences given by unification rules

(k | : N)(e : suc k =y suc /)
~ (kl:N)(e: k=N
~ (k : N)

f1:(k:N)— (k/:N)(e: suc k =y suc /)
f~1 k=k; k refl

15 /29

Basic unification rules

Solution: (x: A)(e: x=at) ~ ()

Deletion: (f x =y f x) =~ ()

Injectivity: (suc x =y suc y) ~ (x =y y)
(inji1 x =awg injo y) >~ L

Cycle: (n =y sucn)~ L

Conflict:

+ auxiliary rules for weakening and reordering

16 /29

Rules for n-equality of records

n-expansion of a flexible variable:
(p: N x N)(e: fst p =y zero)
~ (x : N)(y : N)(e : x =y zero)
~ (y : N)

17 /29

Rules for n-equality of records
n-expansion of a flexible variable:
(p: N x N)(e: fst p =y zero)
~ (x : N)(y : N)(e : x = zero)
~ (y : N)
n-expansion of an equation:
(e:x,y =nxn f 2)
_(er:x=nfst (f 2))
" (ep:y =nsnd(f 2))

17 /29

Rules for indexed data types

|dea: rules solve equations between indices
together with equations between constructors

18 /29

Rules for indexed data types

|dea: rules solve equations between indices
together with equations between constructors

Example:
(e1 : suc m =y suc n)

(ex: cons m x Xs =yec Ae, CONS Ny ys)

_(a:m=xn)(e:x=ay)
(63 : XS =yec A er yS)

18 /29

Rules for indexed data types

This can give a real boost to power:

data Im (f : A— B): B — Set where
image : (x : A) — Im f (f x)

Aler:f x=pfy)

(xy
(_ image X =1y f ¢, image y)

(xy:A)e:x=ay)
~ (x : A)

19/29

From this point, there be dragons

Any questions so far?

20/ 29

A sound unification algorithm
based on telescope equivalences

Higher-dimensional unification

Indexed rules are too restrictive

Rules for indexed datatypes require
indices to be fully general

21/29

Indexed rules are too restrictive

Rules for indexed datatypes require
indices to be fully general

This is too restrictive:

(€1 : cons n X Xs =yec A (suc n) CONS Ny ys)

% (e1:x =py)(€: XS =vec An ¥S)

21/29

Generalized rules for indexed data

The following rules can be
generalized to arbitrary indices:

m Conflict
m Cycle
m Injectivity: only if index types satisfy K!

22/29

Reverse unification rules

|dea: we can generalize the indices
by applying unification rules in reverse

23/29

Reverse unification rules: example

(n:N)(xy:A)(xs ys:Vec A n)
(e:cons n X Xs =yec A(suc n) CONS Ny ¥5)

24 /29

Reverse unification rules: example
(n:N)(xy:A)(xs ys:Vec A n)
(e:cons n X Xs =yec A(suc n) CONS Ny ¥5)
(mn:N)(xy:A)(xs:Vec Am)(ys: Vec An)
~ (e1:m=yn)
(€2 : cons m X XS =vyec A (suc e;) CONS Ny ¥s)

24 /29

Reverse unification rules: example
(n:N)(xy:A)(xs ys:Vec A n)
(e:cons n X Xs =yec A(suc n) CONS Ny ¥5)
mn:N)(xy:A)(xs:Vec Am)(ys: Vec An)
€1 M=y n)
€ 1 CONS M X XS =yec A (suc ¢;) CONS N Y ¥S)

(
~ (&
(
(mn:N)(xy:A)(xs:Vec Am)(ys:Vec An)
(e1 suc m =y suc n)

(e; 1 cons m X XS =yec A CONS N Y YS)

I

24 /29

Reverse unification rules: example

(n:N)(xy:A)(xs ys:Vec A n)

(e:cons n X Xs =yec A(suc n) CONS Ny ¥5)
(mn:N)(xy:A)(xs:Vec Am)(ys: Vec An)
(e1 : m=nn)

(€2 : cons m X XS =yec A (suc ¢;) CONS N y y5)

(mn:N)(xy:A)(xs:Vec Am)(ys:Vec An)
~ (e : suc m =y suc n)

(e2: cons m x XS =yec A CONS Ny ¥S)

(mn:N)(xy:A)(xs:Vec Am)(ys:Vec A n)

(e - m=nn)(e: x=ay)(e3:XS =vec A ¥5)

24 /29

Reverse unification rules: example

(n:N)(xy:A)(xs ys:Vec A n)

(e:cons n X Xs =yec A(suc n) CONS Ny ¥5)
mn:N)(xy:A)(xs:Vec Am)(ys: Vec An)
€1 M=y n)
€ 1 CONS M X XS =yec A (suc ¢;) CONS N Y ¥S)

n:N)(xy:A)(xs:Vec Am)(ys:Vec An)
. suc m =y suc n)
. CONS M X XS =yec Ae, CONS N Y YS)

n:N)(x y: A)(xs:Vec Am)(ys:Vec An)
. m =N n)(g X=ay)(€3: XS =yecAe ¥5)
' N)(x : A)(xs : Vec A n)

12

12

(
~ (&1
(
(
(
(
(
(
(

3|ﬂ>|3|£>°£’3

12

24 /29

Reverse unification rules: problems

m Applicability is limited:
indices need to be linear patterns
m Hard to implement

m Not clear how to apply injectivity
for indexed data in reverse

25/29

Going beyond the first level

Realization: same problem as for case splitting,
only for equations instead of variables

26/29

Going beyond the first level

Realization: same problem as for case splitting,
only for equations instead of variables

We can solve it in the same way as well:
by specialization by unification

26 /29

Going beyond the first level

Realization: same problem as for case splitting,
only for equations instead of variables

We can solve it in the same way as well:
by specialization by unification

26 /29

Higher-dimensional unification:
example

(e:cons N X XS =yec A (suc n) CONS N Y ¥5)

(e : suc n =y suc n)
~ (& :CONS N X XS =yec A CONS N Y yS)
(f - €1 =suc n=ysuc n refl)

27 /29

Higher-dimensional unification:
example

(e:cons N X XS =yec A (suc n) CONS N Y ¥5)

(e1 : suc n =y suc n)
~ (& :CONnS N X XS =yec A CONS NY YS)
(f : € =suc n=ysuc n Tefl)
o
T (f

et:n=nn)(e:x=ay)(€:Xs =yecae ¥S)
f : cong suc €, =guc n=ysuc n refl)

27 /29

Higher-dimensional unification:
example

(e:cons N X XS =yec A (suc n) CONS N Y ¥5)

(e1 : suc n =y suc n)

€)1 CONS N X XS =yec A CONS N Y YS)
f: €1 =suc n=nsuc n refl)

e

1:n=nn)(e:x=ay)(e3: XS =yecAe, ¥S)
f : cong suc e; =qyc n=ysuc n refl)
e

1:n=nn)(e:x=ay)(€: XS =vecAe YS)
f:e =p=nrefl)

27 /29

Higher-dimensional unification:
example

(e:cons N X XS =yec A (suc n) CONS N Y ¥5)

|®

: suc n =y suc n)

€ : CONS N X XS =yec Ae, CONS N Y ¥S)

: €1 =suc n=nsuc n refl)
n=nn)(e:x=ay)(es: XS =yecae ¥S)

; CONgG SUC €] =gyc n=ysuc n Yefl)
n=nn)(e:x=ay)(es: XS =yecae ¥S)

L €] =p=yn refl)

X =4 y)(e3 - XS =vec An)’5)

l

12

12
e o R L N Y Y
Mo o |

12

P

27 /29

Representing higher-order problems
using first-order syntax

An n-dimensional unification problem consists of

m a telescope [of flexible variables

m equation telescopes Ay, ..., A,
such that FTA;... A,
m left- and right-hand sides @y, v1, . .. 0, v,

such that TAy ... A1 F o, w0 A

28/29

Discussion

Higher-dimensional unification seems
easier to implement than reverse rules

29 /29

Discussion

Higher-dimensional unification seems
easier to implement than reverse rules

But maybe it goes too far?

Alternative: use reflection to implement
a case splitting tactic based on unification

29/29

