
A sound unification algorithm
based on telescope equivalences

Jesper Cockx

DistriNet – KU Leuven

20 April 2016



Pattern matching is awesome
Agda uses unification to:

check which constructors are possible

specialize the result type

data Vec (A : Set) : N → Set where
[] : Vec A 0

cons : (n : N) → A → Vec A n

→ Vec A (1 + n)

f : Vec A 1 → T

f (cons .0 x xs) = . . .
1 / 29



Pattern matching is awesome
Agda uses unification to:

check which constructors are possible

specialize the result type

data Vec (A : Set) : N → Set where
[] : Vec A 0

cons : (n : N) → A → Vec A n

→ Vec A (1 + n)

f : Vec A 1 → T

f (cons .0 x xs) = . . .
1 / 29



Pattern matching is awesome
Agda uses unification to:

check which constructors are possible

specialize the result type

data Vec (A : Set) : N → Set where
[] : Vec A 0

cons : (n : N) → A → Vec A n

→ Vec A (1 + n)

f : Vec A 1 → T

f (cons .0 x xs) = . . .
1 / 29



Details of unification are important

Agda has pattern matching as a primitive,

so results of unification determine

Agda’s notion of equality

Example: deleting reflexive equations implies K

2 / 29



Details of unification are important

Agda has pattern matching as a primitive,

so results of unification determine

Agda’s notion of equality

Example: deleting reflexive equations implies K

2 / 29



Time for a quiz

Should the following code be accepted?

{-# OPTIONS --without-K #-}
. . . -- imports

f : (Bool , true) ≡ (Bool , false) → ⊥
f ()

3 / 29



Time for a quiz

Should the following code be accepted?

{-# OPTIONS --without-K #-}
. . . -- imports

f : (Bool , true) ≡ (Bool , false) → ⊥
f ()

Answer: depends on the type of the equation!

4 / 29



Postponing equations
causes problems
If we postpone an equation,

following equations can be heterogeneous

Naively continuing unification is bad

Equality of second projections

Injectivity of type constructors

. . .

It’s hard to distinguish good and bad situations!

5 / 29



Postponing equations
causes problems
If we postpone an equation,

following equations can be heterogeneous

Naively continuing unification is bad

Equality of second projections

Injectivity of type constructors

. . .

It’s hard to distinguish good and bad situations!

5 / 29



Postponing equations
causes problems
If we postpone an equation,

following equations can be heterogeneous

Naively continuing unification is bad

Equality of second projections

Injectivity of type constructors

. . .

It’s hard to distinguish good and bad situations!

5 / 29



We need a general way
to think about unification

It’s not sufficient to “make things equal”

Core idea:

Unification rules are equivalences

between telescopes of equations

This is the basis of the new

unification algorithm in Agda 2.5.1

6 / 29



We need a general way
to think about unification

It’s not sufficient to “make things equal”

Core idea:

Unification rules are equivalences

between telescopes of equations

This is the basis of the new

unification algorithm in Agda 2.5.1

6 / 29



We need a general way
to think about unification

It’s not sufficient to “make things equal”

Core idea:

Unification rules are equivalences

between telescopes of equations

This is the basis of the new

unification algorithm in Agda 2.5.1

6 / 29



A sound unification algorithm
based on telescope equivalences

1 Unifiers as equivalences

2 Unification rules

3 Higher-dimensional unification



A sound unification algorithm
based on telescope equivalences

1 Unifiers as equivalences

2 Unification rules

3 Higher-dimensional unification



What do we want from unification?

It has to be possible to translate

pattern matching to eliminators

The core tool we need is

specialization by unification

Build a function m : Γ → ū ≡∆ v̄ → T

from a function m′ : Γ′ → Tσ

where σ : Γ′ → Γ is computed by unification

7 / 29



What do we want from unification?

It has to be possible to translate

pattern matching to eliminators

The core tool we need is

specialization by unification

Build a function m : Γ → ū ≡∆ v̄ → T

from a function m′ : Γ′ → Tσ

where σ : Γ′ → Γ is computed by unification

7 / 29



Intermezzo: telescopic equality

Type of an equation may depend

on solution of previous equations

Heterogeneous equality doesn’t

keep enough information:

Safe to consider equation homogeneous?

Does equation depend on other equation?

How do equations depend on each other?

8 / 29



Intermezzo: telescopic equality

Type of an equation may depend

on solution of previous equations

Heterogeneous equality doesn’t

keep enough information:

Safe to consider equation homogeneous?

Does equation depend on other equation?

How do equations depend on each other?

8 / 29



Intermezzo: telescopic equality
Solution: use “path over” construction

to keep track of dependencies

For example:

(e1 : m ≡N n)(e2 : u ≡e1
Vec A v)

Cubical (abuse of) notation:

(e1 : m ≡N n)(e2 : u ≡Vec A e1 v)

9 / 29



Intermezzo: telescopic equality
Solution: use “path over” construction

to keep track of dependencies

For example:

(e1 : m ≡N n)(e2 : u ≡e1
Vec A v)

Cubical (abuse of) notation:

(e1 : m ≡N n)(e2 : u ≡Vec A e1 v)

9 / 29



Specialization by unification
The goal is to construct m : Γ → ū ≡∆ v̄ → T

Input:

Telescope Γ of flexible variables

Telescope ū ≡∆ v̄ of equations

Output:

New telescope Γ′

Substitution σ : Γ′ → Γ

Evidence of unification

ē : Γ′ → ūσ ≡∆σ v̄σ
10 / 29



Specialization by unification
The goal is to construct m : Γ → ū ≡∆ v̄ → T

Input:

Telescope Γ of flexible variables

Telescope ū ≡∆ v̄ of equations

Output:

New telescope Γ′

Substitution σ : Γ′ → Γ

Evidence of unification

ē : Γ′ → ūσ ≡∆σ v̄σ
10 / 29



Specialization by unification
The goal is to construct m : Γ → ū ≡∆ v̄ → T

Input:

Telescope Γ of flexible variables

Telescope ū ≡∆ v̄ of equations

Output:

New telescope Γ′

Substitution σ : Γ′ → Γ

Evidence of unification

ē : Γ′ → ūσ ≡∆σ v̄σ
10 / 29



Specialization by unification

The goal is to construct m : Γ → ū ≡∆ v̄ → T

Input:

Telescope Γ of flexible variables

Telescope ū ≡∆ v̄ of equations

Output:

New telescope Γ′

Telescope mapping f : Γ′ → Γ(ū ≡∆ v̄)

11 / 29



Two more requirements

Let f : Γ′ → Γ(ū ≡∆ v̄) be a unifier

f should be most general

⇒ f needs a right inverse g1

Γ′ should be minimal

⇒ f needs a left inverse g2

12 / 29



Two more requirements

Let f : Γ′ → Γ(ū ≡∆ v̄) be a unifier

f should be most general

⇒ f needs a right inverse g1

Γ′ should be minimal

⇒ f needs a left inverse g2

12 / 29



Two more requirements

Let f : Γ′ → Γ(ū ≡∆ v̄) be a unifier

f should be most general

⇒ f needs a right inverse g1

Γ′ should be minimal

⇒ f needs a left inverse g2

12 / 29



Most general unifiers
as equivalences

A most general unifier of ū and v̄ is an

equivalence f : Γ(ū ≡∆ v̄) ≃ Γ′ for some Γ′

Specialization by unification:

m : Γ → ū ≡∆ v̄ → T

m x̄ ē = subst (λx̄ ē.T ) (isLinv f x̄ ē)

(m′ (f x̄ ē))

13 / 29



Most general unifiers
as equivalences

A most general unifier of ū and v̄ is an

equivalence f : Γ(ū ≡∆ v̄) ≃ Γ′ for some Γ′

Specialization by unification:

m : Γ → ū ≡∆ v̄ → T

m x̄ ē = subst (λx̄ ē.T ) (isLinv f x̄ ē)

(m′ (f x̄ ē))

13 / 29



Disunifiers

A disunifier of ū and v̄ is an equivalence

f : Γ(ū ≡∆ v̄) ≃ ⊥

Specialization by unification:

m : Γ → ū ≡∆ v̄ → T

m x̄ ē = elim⊥ T (f x̄ ē)

14 / 29



Disunifiers

A disunifier of ū and v̄ is an equivalence

f : Γ(ū ≡∆ v̄) ≃ ⊥

Specialization by unification:

m : Γ → ū ≡∆ v̄ → T

m x̄ ē = elim⊥ T (f x̄ ē)

14 / 29



A sound unification algorithm
based on telescope equivalences

1 Unifiers as equivalences

2 Unification rules

3 Higher-dimensional unification



Basic unification rules

MGU is constructed by chaining together

equivalences given by unification rules

(k l : N)(e : suc k ≡N suc l)

≃ (k l : N)(e : k ≡N l)

≃ (k : N)

f −1 : (k : N) → (k l : N)(e : suc k ≡N suc l)

f −1 k = k ; k ; refl

15 / 29



Basic unification rules

MGU is constructed by chaining together

equivalences given by unification rules

(k l : N)(e : suc k ≡N suc l)

≃ (k l : N)(e : k ≡N l)

≃ (k : N)

f −1 : (k : N) → (k l : N)(e : suc k ≡N suc l)

f −1 k = k ; k ; refl

15 / 29



Basic unification rules

MGU is constructed by chaining together

equivalences given by unification rules

(k l : N)(e : suc k ≡N suc l)

≃ (k l : N)(e : k ≡N l)

≃ (k : N)

f −1 : (k : N) → (k l : N)(e : suc k ≡N suc l)

f −1 k = k ; k ; refl

15 / 29



Basic unification rules

MGU is constructed by chaining together

equivalences given by unification rules

(k l : N)(e : suc k ≡N suc l)

≃ (k l : N)(e : k ≡N l)

≃ (k : N)

f −1 : (k : N) → (k l : N)(e : suc k ≡N suc l)

f −1 k = k ; k ; refl

15 / 29



Basic unification rules

MGU is constructed by chaining together

equivalences given by unification rules

(k l : N)(e : suc k ≡N suc l)

≃ (k l : N)(e : k ≡N l)

≃ (k : N)

f −1 : (k : N) → (k l : N)(e : suc k ≡N suc l)

f −1 k = k ; k ; refl

15 / 29



Basic unification rules

Solution: (x : A)(e : x ≡A t) ≃ ()

Deletion: (f x ≡N f x) ≃ ()

Injectivity: (suc x ≡N suc y) ≃ (x ≡N y)

Conflict: (inj1 x ≡A⊎B inj2 y) ≃ ⊥
Cycle: (n ≡N suc n) ≃ ⊥

+ auxiliary rules for weakening and reordering

16 / 29



Rules for η-equality of records
η-expansion of a flexible variable:

(p : N × N)(e : fst p ≡N zero)

≃ (x : N)(y : N)(e : x ≡N zero)

≃ (y : N)
η-expansion of an equation:

(e : x , y ≡N×N f z)

≃ (e1 : x ≡N fst (f z))

(e2 : y ≡N snd (f z))

17 / 29



Rules for η-equality of records
η-expansion of a flexible variable:

(p : N × N)(e : fst p ≡N zero)

≃ (x : N)(y : N)(e : x ≡N zero)

≃ (y : N)
η-expansion of an equation:

(e : x , y ≡N×N f z)

≃ (e1 : x ≡N fst (f z))

(e2 : y ≡N snd (f z))

17 / 29



Rules for indexed data types

Idea: rules solve equations between indices

together with equations between constructors

Example:

(e1 : suc m ≡N suc n)

(e2 : cons m x xs ≡Vec A e1 cons n y ys)

≃ (e1 : m ≡N n)(e2 : x ≡A y)

(e3 : xs ≡Vec A e1 ys)

18 / 29



Rules for indexed data types

Idea: rules solve equations between indices

together with equations between constructors

Example:

(e1 : suc m ≡N suc n)

(e2 : cons m x xs ≡Vec A e1 cons n y ys)

≃ (e1 : m ≡N n)(e2 : x ≡A y)

(e3 : xs ≡Vec A e1 ys)

18 / 29



Rules for indexed data types
This can give a real boost to power:

data Im (f : A → B) : B → Set where
image : (x : A) → Im f (f x)

(x y : A)(e1 : f x ≡B f y)

(e2 : image x ≡Im f e1 image y)

≃ (x y : A)(e : x ≡A y)

≃ (x : A)

19 / 29



From this point, there be dragons

Any questions so far?

20 / 29



A sound unification algorithm
based on telescope equivalences

1 Unifiers as equivalences

2 Unification rules

3 Higher-dimensional unification



Indexed rules are too restrictive

Rules for indexed datatypes require

indices to be fully general

This is too restrictive:

(e1 : cons n x xs ≡Vec A (suc n) cons n y ys)

̸≃ (e1 : x ≡A y)(e2 : xs ≡Vec A n ys)

21 / 29



Indexed rules are too restrictive

Rules for indexed datatypes require

indices to be fully general

This is too restrictive:

(e1 : cons n x xs ≡Vec A (suc n) cons n y ys)

̸≃ (e1 : x ≡A y)(e2 : xs ≡Vec A n ys)

21 / 29



Generalized rules for indexed data

The following rules can be

generalized to arbitrary indices:

Conflict

Cycle

Injectivity: only if index types satisfy K!

22 / 29



Reverse unification rules

Idea: we can generalize the indices

by applying unification rules in reverse

23 / 29



Reverse unification rules: example
(n : N)(x y : A)(xs ys : Vec A n)
(e : cons n x xs ≡Vec A (suc n) cons n y ys)

≃
(m n : N)(x y : A)(xs : Vec A m)(ys : Vec A n)
(e1 : m ≡N n)
(e2 : cons m x xs ≡Vec A (suc e1) cons n y ys)

≃
(m n : N)(x y : A)(xs : Vec A m)(ys : Vec A n)
(e1 : suc m ≡N suc n)
(e2 : cons m x xs ≡Vec A e1 cons n y ys)

≃ (m n : N)(x y : A)(xs : Vec A m)(ys : Vec A n)
(e1 : m ≡N n)(e2 : x ≡A y)(e3 : xs ≡Vec A e1 ys)

≃ (n : N)(x : A)(xs : Vec A n)

24 / 29



Reverse unification rules: example
(n : N)(x y : A)(xs ys : Vec A n)
(e : cons n x xs ≡Vec A (suc n) cons n y ys)

≃
(m n : N)(x y : A)(xs : Vec A m)(ys : Vec A n)
(e1 : m ≡N n)
(e2 : cons m x xs ≡Vec A (suc e1) cons n y ys)

≃
(m n : N)(x y : A)(xs : Vec A m)(ys : Vec A n)
(e1 : suc m ≡N suc n)
(e2 : cons m x xs ≡Vec A e1 cons n y ys)

≃ (m n : N)(x y : A)(xs : Vec A m)(ys : Vec A n)
(e1 : m ≡N n)(e2 : x ≡A y)(e3 : xs ≡Vec A e1 ys)

≃ (n : N)(x : A)(xs : Vec A n)

24 / 29



Reverse unification rules: example
(n : N)(x y : A)(xs ys : Vec A n)
(e : cons n x xs ≡Vec A (suc n) cons n y ys)

≃
(m n : N)(x y : A)(xs : Vec A m)(ys : Vec A n)
(e1 : m ≡N n)
(e2 : cons m x xs ≡Vec A (suc e1) cons n y ys)

≃
(m n : N)(x y : A)(xs : Vec A m)(ys : Vec A n)
(e1 : suc m ≡N suc n)
(e2 : cons m x xs ≡Vec A e1 cons n y ys)

≃ (m n : N)(x y : A)(xs : Vec A m)(ys : Vec A n)
(e1 : m ≡N n)(e2 : x ≡A y)(e3 : xs ≡Vec A e1 ys)

≃ (n : N)(x : A)(xs : Vec A n)

24 / 29



Reverse unification rules: example
(n : N)(x y : A)(xs ys : Vec A n)
(e : cons n x xs ≡Vec A (suc n) cons n y ys)

≃
(m n : N)(x y : A)(xs : Vec A m)(ys : Vec A n)
(e1 : m ≡N n)
(e2 : cons m x xs ≡Vec A (suc e1) cons n y ys)

≃
(m n : N)(x y : A)(xs : Vec A m)(ys : Vec A n)
(e1 : suc m ≡N suc n)
(e2 : cons m x xs ≡Vec A e1 cons n y ys)

≃ (m n : N)(x y : A)(xs : Vec A m)(ys : Vec A n)
(e1 : m ≡N n)(e2 : x ≡A y)(e3 : xs ≡Vec A e1 ys)

≃ (n : N)(x : A)(xs : Vec A n)

24 / 29



Reverse unification rules: example
(n : N)(x y : A)(xs ys : Vec A n)
(e : cons n x xs ≡Vec A (suc n) cons n y ys)

≃
(m n : N)(x y : A)(xs : Vec A m)(ys : Vec A n)
(e1 : m ≡N n)
(e2 : cons m x xs ≡Vec A (suc e1) cons n y ys)

≃
(m n : N)(x y : A)(xs : Vec A m)(ys : Vec A n)
(e1 : suc m ≡N suc n)
(e2 : cons m x xs ≡Vec A e1 cons n y ys)

≃ (m n : N)(x y : A)(xs : Vec A m)(ys : Vec A n)
(e1 : m ≡N n)(e2 : x ≡A y)(e3 : xs ≡Vec A e1 ys)

≃ (n : N)(x : A)(xs : Vec A n)

24 / 29



Reverse unification rules: problems

Applicability is limited:

indices need to be linear patterns

Hard to implement

Not clear how to apply injectivity

for indexed data in reverse

25 / 29



Going beyond the first level

Realization: same problem as for case splitting,

only for equations instead of variables

We can solve it in the same way as well:

by specialization by unification

26 / 29



Going beyond the first level

Realization: same problem as for case splitting,

only for equations instead of variables

We can solve it in the same way as well:

by specialization by unification

26 / 29



Going beyond the first level

Realization: same problem as for case splitting,

only for equations instead of variables

We can solve it in the same way as well:

by specialization by unification

26 / 29



Higher-dimensional unification:
example
(e : cons n x xs ≡Vec A (suc n) cons n y ys)

≃
(e1 : suc n ≡N suc n)
(e2 : cons n x xs ≡Vec A e1 cons n y ys)
(f : e1 ≡suc n≡Nsuc n refl)

≃ (e1 : n ≡N n)(e2 : x ≡A y)(e3 : xs ≡Vec A e1 ys)
(f : cong suc e1 ≡suc n≡Nsuc n refl)

≃ (e1 : n ≡N n)(e2 : x ≡A y)(e3 : xs ≡Vec A e1 ys)
(f : e1 ≡n≡Nn refl)

≃ (e2 : x ≡A y)(e3 : xs ≡Vec A n ys)

27 / 29



Higher-dimensional unification:
example
(e : cons n x xs ≡Vec A (suc n) cons n y ys)

≃
(e1 : suc n ≡N suc n)
(e2 : cons n x xs ≡Vec A e1 cons n y ys)
(f : e1 ≡suc n≡Nsuc n refl)

≃ (e1 : n ≡N n)(e2 : x ≡A y)(e3 : xs ≡Vec A e1 ys)
(f : cong suc e1 ≡suc n≡Nsuc n refl)

≃ (e1 : n ≡N n)(e2 : x ≡A y)(e3 : xs ≡Vec A e1 ys)
(f : e1 ≡n≡Nn refl)

≃ (e2 : x ≡A y)(e3 : xs ≡Vec A n ys)

27 / 29



Higher-dimensional unification:
example
(e : cons n x xs ≡Vec A (suc n) cons n y ys)

≃
(e1 : suc n ≡N suc n)
(e2 : cons n x xs ≡Vec A e1 cons n y ys)
(f : e1 ≡suc n≡Nsuc n refl)

≃ (e1 : n ≡N n)(e2 : x ≡A y)(e3 : xs ≡Vec A e1 ys)
(f : cong suc e1 ≡suc n≡Nsuc n refl)

≃ (e1 : n ≡N n)(e2 : x ≡A y)(e3 : xs ≡Vec A e1 ys)
(f : e1 ≡n≡Nn refl)

≃ (e2 : x ≡A y)(e3 : xs ≡Vec A n ys)

27 / 29



Higher-dimensional unification:
example
(e : cons n x xs ≡Vec A (suc n) cons n y ys)

≃
(e1 : suc n ≡N suc n)
(e2 : cons n x xs ≡Vec A e1 cons n y ys)
(f : e1 ≡suc n≡Nsuc n refl)

≃ (e1 : n ≡N n)(e2 : x ≡A y)(e3 : xs ≡Vec A e1 ys)
(f : cong suc e1 ≡suc n≡Nsuc n refl)

≃ (e1 : n ≡N n)(e2 : x ≡A y)(e3 : xs ≡Vec A e1 ys)
(f : e1 ≡n≡Nn refl)

≃ (e2 : x ≡A y)(e3 : xs ≡Vec A n ys)

27 / 29



Representing higher-order problems
using first-order syntax

An n-dimensional unification problem consists of

a telescope Γ of flexible variables

equation telescopes ∆1, . . . , ∆n

such that ⊢ Γ∆1 . . .∆n

left- and right-hand sides ū1, v̄1, . . . ūn, v̄n
such that Γ∆1 . . .∆i−1 ⊢ ūi , v̄1 : ∆i

28 / 29



Discussion

Higher-dimensional unification seems

easier to implement than reverse rules

But maybe it goes too far?

Alternative: use reflection to implement

a case splitting tactic based on unification

29 / 29



Discussion

Higher-dimensional unification seems

easier to implement than reverse rules

But maybe it goes too far?

Alternative: use reflection to implement

a case splitting tactic based on unification

29 / 29


