
STAMP:
Strongly Type-sAfe
Meta-Programming

Thomas Winant Dominique Devriese

Jesper Cockx

DistriNet – KU Leuven

21 September 2015



Type-safe metaprogramming:
Overview

Most metaprogramming is weakly type-safe

(e.g. Template Haskell)

generated programs may contain type errors

type checker checks generated code

With Agda as metalanguage, we can do better:

embed Haskell type system in Agda

generated code type correct by construction

1 / 10



STAMP:
Strongly Type-sAfe
Meta-Programming

1 Why STAMP?

2 Examples

3 The STAMP architecture

4 The Agda encoding



STAMP:
Strongly Type-sAfe
Meta-Programming

1 Why STAMP?

2 Examples

3 The STAMP architecture

4 The Agda encoding



Why strongly type-safe
metaprogramming?

we cannot test all possible pieces of code

generated by a metaprogram

type errors in generated code are impossible

to debug by the user

types document what can be expected of

the metaprogram

2 / 10



Why use Agda instead of a
special-purpose metalanguage?

We can generate both the type and the typing

context of the metaprogram together with the

program itself

3 / 10



STAMP:
Strongly Type-sAfe
Meta-Programming

1 Why STAMP?

2 Examples

3 The STAMP architecture

4 The Agda encoding



Pick k’th from n function
arguments

Given k and n, generate the following definition

pick :: a1 -> ... -> an -> ak

pick x1 ... xn = xk

4 / 10



Automatic deriving

Derive Eq

Derive lenses

5 / 10



STAMP:
Strongly Type-sAfe
Meta-Programming

1 Why STAMP?

2 Examples

3 The STAMP architecture

4 The Agda encoding



The STAMP architecture

Added syntax to Haskell to make a STAMP call

STAMP works as a Core2Core plugin

call corresponding Agda metaprogram

translate Agda representation to Haskell

Core

splice generated code into the right position

6 / 10



Current shortcoming

calls to Haskell functions in generated code

are not checked

type error only after translation to core

solution: need to generate Agda interface

based on Haskell code

7 / 10



STAMP:
Strongly Type-sAfe
Meta-Programming

1 Why STAMP?

2 Examples

3 The STAMP architecture

4 The Agda encoding



The Agda encoding

Fairly standard encoding of System FC

Kinds

Types depend on kinds

Terms depend on types

8 / 10



Weakening and substitution

definition of Term datatype requires

weakening and substitution of types

we take

TySubst Σ1 Σ2 = All (Type Σ2) Σ1

9 / 10



Design based on Haskell
documentation

good to verify correctness w.r.t. Haskell

specification

not very convenient for writing

metaprograms (substitution hell)

based on our experiences now,

we hope to add a convenience layer later

10 / 10


