Unification in a context of
postponed equations

Jesper Cockx

DistriNet — KU Leuven

4 June 2015

Postponed equations
cause problems

Issue 292: Heterogenous equality is crippled by the Bool # Fin 2 fix

Issue 1071: Regression in unifier, possibly related to modules and/or
heterogeneous constraints

m Issue 1406: Injectivity of type constructors is partially back. Agda
refutes excluded middle

m Issue 1408: Heterogeneous equality incompatible with univalence even
—without-K
Issue 1411: Order of patterns matters for checking left hand sides
Issue 1427: Circumvention of forcing analysis brings back easy proof of
Fin injectivity

m Issue 1435: Dependent pattern matching is broken

The underlying problem

Current representation of heterogeneous
equations lacks information:

Morally different equations have same
representation.

| propose a better representation.

Advantages of new representation

m Handles previous issues in a uniform way

m Also accepts some new examples,
especially when —without-K is enabled

m Theoretically appealing
= possibility for correctness proof

Unification in a context of
postponed equations

Why do we need unification?
A context of postponed equations

Reverse unification rules

Unification in a context of
postponed equations

Why do we need unification?

Dependent pattern matching

data _ < _:N — N — Set where
lz: (n:N)—z<n
ls:(mn:N)=->m<n—sm<sn

4/16

Dependent pattern matching

data _ < _:N — N — Set where
lz: (n:N)—z<n
ls:(mn:N)=->m<n—sm<sn

antisym: (x y :N) > x<y > y<x = x=y
antisym X y p q = 7

4/16

Dependent pattern matching

data _ < _:N — N — Set where
lz: (n:N)—z<n
ls:(mn:N)=->m<n—sm<sn

antisym: (x y :N) > x<y > y<x = x=y
= 7

antisym Xx y p q
X = 4 = =
m 1z NIy =y n =2 ()
y — n
X =N 8 M, x=sm =sn

4/16

Dependent pattern matching

data _ < _:N — N — Set where
lz: (n:N)—z<n
ls:(mn:N)=->m<n—sm<sn

antisym |z| |y| (1zy) q

antisym: (xy:N) - x<y— y<x —
antisym |[sx] [sy| (Isxyp)q =

4/16

Dependent pattern matching

data _ < _:N — N — Set where
lz: (n:N)—z<n
ls:(mn:N)=->m<n—sm<sn

antisym: (x y:N) = x<y — y<x = x=y
antisym [z] |y] (1zy) ¢ =7
antisym |[sx] [sy| (Isxyp)q = 7
m 1z y ?N Z, y=z Z =y n n=z ()
Z =N N
m 1s: Y =N8m, y=sm Z=n8n conflict n

Z =N S n

4/16

Dependent pattern matching
data _ < _:N — N — Set where
lz: (n:N)—z<n
ls:(mn:N)=->m<n—sm<sn
antisym: (xy:N) - x<y— y<x — x=y
antisym |z| |z] (1z|z]) (1z|z]) = refl
antisym |sx] [sy| (Isxyp)q ?

4/16

Dependent pattern matching

data _ < _:N — N — Set where
lz: (n:N)—z<n
ls:(mn:N)=->m<n—sm<sn

antisym: (xy:N) - x<y— y<x — x=y
antisym |z| |z] (1z|z]) (1z|z]) = refl
antisym |sx] [sy| (Isxyp)q = 7

S Y =N Z, conflict N

mlz: .

SX =N N

Sy =N S m, injectivit_x/ y =Ny M,
m ls: SX =N Ssn SX =N Sn

m:=y SX=NSn injectivit_x’ X =x n n=x ()

4/16

Dependent pattern matching
data _ < _:N — N — Set where
1z: (n:N)—z<n
ls:(mn:N)=->m<n—sm<sn

antisym: (x y :N) > x<y— y<x—>x=y
antisym |z| |z] (1z|z]) (1z|z])=refl

antisym [s x| |sy] (1sxyp) (1s [y} [x] q)
= cong s (antisym x y p q)

4/16

Postponed equations
Some equations cannot be solved right away
fz=nsz =
but solving later equations can change this
fz=y sz
f =N_N S

fi=s
—— SZ=NS2Z

injectivit_x’ s = 2
=N

injectivit

S)

Heterogeneous types

data Box : A — Set where
box : (x : A) — Box x

Let s,t: A, then in
S =A t,
bOX S Box s=Box t POX t
the second equation has a heterogeneous type.
Can we apply unification rules

on heterogeneous equations?

6/16

Heterogeneous types

data Bool1l : Set where data Bool2 : Set where

truel : Booll true?2 : Bool2
falsel : Booll false2 : Bool2
Booll —get BOO].Q7 conflict J_ ?

truel Booll gBoolQ true?2

This allows us to prove that Booll # Bool2!

Heterogeneous types

Solution (until now):
types must have the same shape

ok: DOX S pox s=pox t POX t et s =at
(types both have the shape Box .. .)

conflict
not ok: truel goo11=poo1o true2 —— |

(types are unrelated)

Unification in a context of
postponed equations

A context of postponed equations

Lack of information
In current representation
data Box : A — Set where
box : (x : A) — Box x
What's different between second equation of

X =4 y, q Box x =gset BOX Y,
an ?
bOX X Box x=Boxy DOX Y bOX X Box x=Boxy POX Yy

9/16

Lack of information
In current representation

data Box : A — Set where
box : (x : A) — Box x

What's different between second equation of

X =4 y, q Box x =gset BOX Y,
an ?
bOX X Box x=Boxy DOX Y bOX X Box x=Boxy POX Yy

In current representation, nothing!

9/16

Lack of information
In current representation

data Box : A — Set where
box : (x : A) = Box x

10/16

Lack of information
In current representation

data Box : A — Set where
box : (x : A) = Box x

Box x = Box y,

box x = box y

injectivit_x/ Box x = Box y,
xX =y

yi=x

—— Box x = Box x
deletion

10/16

Lack of information
In current representation

data Box : A — Set where
box : (x : A) = Box x

Box x = Box y, L.
box X = box y m Ok to apply injectivity
injectivit_X, Box x = Box y, b/c types are equal

. X =y m Types are equal because
LA Box x = Box x we can apply injectivity
deletion

= circular argument!

10/16

Representing postponed equations
as fresh variables

data Box : A — Set where
box : (x : A) — Box x

What's different between second equation of

€ : X =4 v, d €1 : Box x =gt Box y,
an
€ : boxX X =poxe bOX Y & : box x =, boxy

11/16

Representing postponed equations
as fresh variables

data Box : A — Set where
box : (x : A) — Box x

What's different between second equation of

€ : X =4 v, d €1 : Box x =gt Box y,
an
€ : boxX X =poxe bOX Y & : box x =, boxy

It's obvious now!

11/16

Unification rules require
fully general indices

In order to apply injectivity,

the type of the equation should be a
datatype

the indices should be distinct equation
variables

Injectivity solves the index equations as well!

12/16

Examples

€1 . X = injecti 'tg =
1 . _A Yy, injectivi X=ay yi=x ()
€ : bOX X =poxe bOX Y

13/16

Examples

€ : X = injecti 'tg =
1 . _A Yy, injectivi X=ay yi=x ()
€ : bOX X =poxe bOX Y

€1 . Box x =gt Box Y, injectivit
& Dox x =, boxy A2 (ot a datatype)

13 /16

Examples

€ : X = injecti 'tg =
1 . _A Yy, injectivi X=ay yi=x ()
€ : bOX X =poxe bOX Y

€1 . Box x =gt Box Y, injectivit
& Dox x =, boxy A2 (ot a datatype)

injectivit .
€1 1 boX X =pox x DOX X H (not an equation var)

13 /16

Examples

€ : X = injecti 'tg =
1 . _A Yy, injectivi X=ay yi=x ()
€ : bOX X =poxe bOX Y

€1 . Box x =gt Box Y, injectivit
& Dox x =, boxy A2 (ot a datatype)

injectivit .
€1 1 boX X =pox x DOX X H (not an equation var)

13 /16

Examples

€ : X = injecti 'tg =
1 . _A Yy, injectivi X=ay yi=x ()
€ : bOX X =poxe bOX Y

€1 . Box x =gt Box Y, injectivit
& Dox x =, boxy A2 (ot a datatype)

injectivit .
€1 1 boX X =pox x DOX X H (not an equation var)

Uh oh...

13 /16

Unification in a context of
postponed equations

Reverse unification rules

Reverse solution

When indices are regular variables, we can fix
that by introducing a new equation.

€1 : box X =pox x POX X
solution™1 €7 : X =A Y,
€ . bOX X =pox ¢ DOX Y

injectivit_x/ o
€1 - X=AY

= 0

14 /16

Reverse injectivity

When indices are constructor forms, we can fix
that by gathering the equations together.
€1 : box (S 2) =pox (s z) POX (s 2)
injectivity ' €7 : zZ = zZ,
1 e; . box (s z) EBNOX (s &) DOX (s 2)
injectivity e S Z = S Z
T & box (£ 2) —surs box (5 2)

injectivit_x/ e SzZ=nSzZ
injectivit_x/ ez =n2z
injectivit

=== ()

15/16

Exodus: implementation

I've tried implementing this in Agda

16 /16

Exodus: implementation

I've tried implementing this in Agda

As usual, the code is much uglier than the theory

16 /16

Exodus: implementation

I've tried implementing this in Agda
As usual, the code is much uglier than the theory

Or maybe | just haven't found the right
abstraction vyet...

16 /16

Exodus: implementation

I've tried implementing this in Agda
As usual, the code is much uglier than the theory

Or maybe | just haven't found the right
abstraction vyet...

Any ideas or insights are welcome

16 /16

Exodus: implementation

I've tried implementing this in Agda
As usual, the code is much uglier than the theory

Or maybe | just haven't found the right
abstraction vyet...

Any ideas or insights are welcome

Thank you for your attention!

16 /16

